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Welcome to our continuing series of lectures on fundamentals of transport processes 

where we were going through how one does shell balances to get a differential equation 

for the concentration temperature of velocity fields, these are typically partial differential 

equations and then how one goes about solving them. 
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We have seen. So, far 2 different kinds of solutions, one is similarity solutions and the 

other is separation of variables procedure. 



(Refer Slide Time: 00:56) 

 

What I had solved for you originally was a Cartesian coordinate system where we just 

had a flat surface in the x y plane and the z direction was perpendicular to this surface 

and as you recall we took a small differential volume element with surfaces at locations z 

and z plus delta z, these surfaces were surfaces perpendicular to the coordinate z and 

they were surfaces of constant area and therefore, the differential equation that we ended 

up with was fairly simple and formed. 

(Refer Slide Time: 01:34) 

 



If you recall here, we just had one time derivative and the second order derivative in the 

spatial coordinates. This is in a Cartesian coordinate system where the coordinates 

themselves are straight lines and the planes, the surfaces perpendicular to the coordinates 

are surfaces of constant area. 
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In the last lecture, we had looked at how to do this for a coordinate system where the 

surfaces are no longer flat, one would think that even if the surfaces were curved one 

could still use exactly the same approach, use a Cartesian coordinate system and in that 

coordinate system the surfaces will be defined by some equation and then solved in that 

equation in that coordinate system, turns out that that is more complicated it is easier to 

consider surfaces such that the boundaries are surfaces of constant coordinate, there the 

boundaries just becomes surfaces at which the coordinate is equal to a constant value. 

However the differential equations turn out to be more complicated and we had looked at 

one such a cylindrical coordinate system in the previous lecture. Cylindrical coordinate 

systems are widely used in all pipe flows the coordinate system is a cylindrical one. So, 

anytime that you have transport of mass movement or energy in a pipe and annulus and 

other such configurations, the natural coordinate system to use is the cylindrical 

coordinate system. 

In this cylindrical coordinate system rather than having the x and y coordinates, one has 

instead the radial coordinate which is basically the distance from the origin, the distance 



from the origin is a constant at this boundary surface. So, at this surface of this pipe for 

example, in the cylindrical coordinate system, the distance from the origin is a constant, 

therefore, it is convenient to use this distance from the origin as a coordinate and once 

you have chosen the distance from the origin or the radial distance as the coordinate, the 

differential volume that has to be chosen is a volume having constant coordinate, a 

volume which is perpendicular to the direction of variation of the coordinate. In this 

particular case the distance from the origin is the coordinate r and therefore, the 

coordinate system that I will choose is a system I am sorry the differential volume for 

carrying out the balance is a volume between 2 surfaces of constant r. 

The boundary is at the location r is equal to capital R and the differential volume will be 

between surfaces of constant r at the location r is equal to some r and r is equal to r plus 

delta r. So, therefore, in this cylindrical coordinate system the surfaces that I have chosen 

are surfaces at r and r plus delta r. 

Along the axis of course, the coordinate that you will choose is what is called the z 

coordinate along the length direction for the present we will assume that there is no 

variation in that direction. So, we have basically a differential volume bounded by 2 

cylindrical surfaces, one at r and the other at r plus delta r and the earth and bounded by 

2 flat surfaces in the direction along the axis, this is very often called the z direction 

along the axis and r is the distance from the center in the plane of the cylinder. 

Therefore, we will to choose 2 coordinates at location r and r plus delta r in the z 

direction between 0 and l there is no variation in the z direction therefore, that volume 

will just be equal to r. 

We went ahead and did the energy balance for this curvy linear coordinate system the 

change in energy in a time delta t is the change in energy density times the volume which 

is basically 2 pi r delta r times l, 2 pi r is the circumferential length the length of the 

perimeter times the thickness delta r is the area times the length along the axis l is the 

total volume so that change in energy in time delta t is equal to q r what comes in at the 

surface what comes in at the surface r at r minus what goes out at the surface at r plus 

delta r. 

What comes in is the flux times the surface area of this curved surface, the surface area 

of the curved surface is 2 pi r times l at the location r, at the location r plus delta r it is 



equal to 2 pi into r plus delta r times l, since we have choose chosen curved surfaces for 

carrying out our differential volume the surface area on these 2 curved surfaces is no 

longer equal and that has to be incorporated in the balance. 

Plus of course, any source for sink of energy within this differential volume and now 

when we divide throughout by time and by volume, when we divide throughout by time 

and by volume we get a slightly more complicated differential operator here, acting on 

the flux it is not just a sec first derivative as we had earlier, when we did it in Cartesian 

coordinates rather it is a slightly more complicated operator and then if we use the 

constitutive relation for the heat flux, we get this as the conduction equation in a 

cylindrical coordinate system. 

Rather than the second derivative of the temperature on the right side multiplying the 

thermal diffusivity, you have a slightly more complicated operator at the radial 

coordinate and that complication arises because surface area is changing with the radial 

coordinate in this curvy linear coordinate system. 
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We had seen how to solve this for a relatively simple problem, heat transfer across the 

wall of a pipe the pipe had 2 radii, one was the inner radius r I and the other was the 

outer radius r 0. The temperatures were fixed and one had to find out what is the heat 

flux, this is a typical conduction problem across the wall of a pipe because very usually 

in the case of heat exchanges and so on, there is transport across the wall of this pipe the 



pipe is solid. So, the transfer is due to heat conduction alone and this transfer takes place 

across curved surfaces usually and it is necessary to accurately estimate what is the flux 

due to a temperature difference or alternatively what temperature difference is required 

to generate a desired heat flux across the surface to achieve the necessary transport of 

heat, this is at steady state there are no variations in time and we will assume that there 

are no variations in the axial direction either along the axis of the pipe. 

In that case the temperature equation reduces to a rather simple form, 1 by r d by d r of r 

times d T by d r is equal to 0 we had scaled the equation so that the temperature is 0 at 

the inner surface and is equal to 1 at the outer surface so that we get this boundary 

condition we had scaled the radial coordinate by the inner radius. So, we get a at r star 

equal to 1, T star is equal to 0 and when the radius is the ratio of the radii of the outer and 

inner cylinder T star is equal to 1. 

The solution that we get for the temperature field is a logarithmic solution the solution 

that we get for the temperature field in this coordinate system is a logarithmic solution it 

is not the linear variation as we would have got in a Cartesian coordinate system and this 

difference is because for a curved surface the surface area is changing with the radial 

coordinate. 
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And finally, from this we had calculated the radial flux; this flux itself is varying with 

radius, but the total heat that is being transported across turns out to be independent of 



radius, the total heat that is being transported across turns out to be independent of 

radius. 

That is expected because in our balance equation there was only the heat conduction 

term there was no sources or sinks of heat and consequently the total heat that is 

transported has to be independent of the location at which we look regardless of whether 

you look at one particular surface which is closer to the inner surface and another one 

that is closer to the outer surface the flux will change the surface area will change in such 

a way that the whole total heat transported is the same. 

Now, in correlations the total heat is usually expressed as the thermal conductivity times 

an area times T naught minus T i divided by the difference in radius so that is usually 

written in this fashion. In order to bring it approximately of the same form as you would 

have for flat surfaces and you can see by comparing this equation and this one if you just 

compare with the 2 this effectively defines the area for us A L has to be equal to 2 pi L 

into R naught minus R i divided by log of R naught by R i or I can also write this as 2 pi 

L into R L, the average logarithmic radius log average radius where R L is equal to. 

This is the logarithmic average of the radius between the inner and the outer surfaces and 

this is what should be used for calculating the heat transfer from across this pipe the area 

is modified the area is no longer either the inner area or the outer area rather it is this, 

this fact which should be used for the area of the pipe. So, this is the logarithmic log for 

the heat transfer across the wall of the pipe. As the difference becomes much smaller 

than either the inner or the outer radius that is if I have a pipe which is very thin such that 

R naught minus R i is much smaller than either R naught or R i. 

This expression will reduce to what you had for a flat surface so that the thickness 

becomes much smaller than the radius you will get back the expression that you had for a 

flat surface because log or R naught by R i that times you can take the limit as this goes 

to r naught goes to R i and you will get back the expression that you had for the heat 

transfer or for the flat surface. 

This was a simple 1 dimensional problem heat conduction. 
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Next I will look at the heat transfer from a cylinder to the unsteady heat transfer from a 

cylinder the unsteady heat transfer from a cylinder. So, I have some cylinder of whose 

radius is R and length is L, at a particular initial temperature T naught, at a particular 

initial temperature T naught. So, the cylinder is entirely at a constant temperature and at 

time t is equal to 0, I impose the boundary condition that the temperature is equal to T l 

at r is equal to R. So, the entire curved surface of the cylinder is the temperature is 

changed to a different temperature T 1. 

This is once again, a practical problem very often you have situations where for example, 

in the food product industry then you have cylinders cans if you will which are at some 

particular temperature and you want to cool that to a lower temperature and. So, what 

you would do is to immerse it in a fluid having a lower temperature and one would like 

to know how long it takes for the entire can to cool so that is a problem of practical 

importance how long does it take for the entire can to reduce it is temperature from the 

initial temperature that it was at to a lower temperature. So, this is an unsteady heat 

conduction problem for the present we will assume that the entire heat conduction is 

happening within the cylinder the surface is always at the temperature T 1 so that the 

entire heat conduction is happening at the within the cylinder. 

There is no thermal resistance outside. So, we will assume that the temperatures are 

constant at T 1; the other thing that we will assume is that there is no variation in the 



axial direction as I said you will have a coordinate system if I look from that the top. you 

have a radial coordinate system the cylinder surfaces at r is equal to capital R and you 

also have an axial coordinate system an axial coordinate along the axis of the cylinder 

and for the present we will assume that variations are entirely into radial direction there 

is no variation in the axial direction. 

How do we solve this problem? We take differential volume of course; with surfaces 

perpendicular to the direction of the coordinates surfaces of constant coordinate, you will 

have surfaces at r and surfaces at r plus delta r. So, if I look at it here and I have one 

surface at r and another surface at r plus delta r the inner surfaces at r the outer surfaces 

at r plus delta r and it has a length L and as I said if you do the balance you will get back 

the same balance equation that had got back earlier partial T by partial t is equal to alpha 

1 over r d by d r of r plus if there are any sources of sinks of energy in this particular case 

we consider that there are no surface of or sinks of energy and therefore, this thing is 

equal to 0. 

Now, what is the boundary condition on this? At r is equal to R, we know that T is equal 

to T 1. Now note that r is equal to 0 is just a point r is equal to 0 is just a point within this 

is the location along the axis. So, it is just a point in the radial plane at this you require 

that the temperature has to be finite alternatively the derivative of the temperature has to 

be equal to 0. 

In this particular case, we have only 1 boundary and that boundary is at r is equal to 

capital R, we have a second order differential equation and strictly speaking we need 2 

boundary conditions the other boundary in this case is at the origin itself at r is equal to 0 

the other boundary is at the origin itself at r is equal to 0 what should be the boundary 

condition there. So, this is a symmetry condition which there is no physical boundary at 

the location r is equal to 0 because it is just a homogeneous solid. If I had something like 

a wire or something at that location which was heating up the solid then there would be a 

real boundary, there would be a physical boundary in this case it is just 1 homogeneous 

material everywhere. So, there is no physical boundary. 

However there is a boundary condition that is required by symmetry at this location. So, 

if were to take a cut across the cylinder, if I were to take a planar cut across this cylinder, 

if I were to take a planar cut across the cylinder let us say I take it along a plane along a 



plane I cut the cylinder along a plane then I will get temperature profiles as a function of 

radius r and the right side is the distance from the axis in a in right word on the left side 

is the same distance after all r was defined as the distance from the axis. So, it is the 

same distance from the axis. 

If I plot the temperature profile on the right side for example, I could get different sorts 

of temperature profiles I could imagine a temperature profile in which the temperature 

becomes flat as I approach the axis I could. In fact, imagine a temperature profile where 

the temperature becomes flat as I approach the axis. I could imagine another temperature 

profile where the temperature does not become flat as I approach the axis these are 

possibilities on the right side alone. Since there is no variation around the axis in this 

case I have considered the system to be symmetric in that direction so that there is no 

variation around the axis. 

Therefore, for this blue temperature profile the temperature on the other side will look 

something like this it will be symmetric about this point. Similarly for the red profile if I 

were to rotate this temperature profile by 180 degrees on the other side I would get 

something that looks like this, which of these is physical? Turns out only the blue 

temperature profile is physical because it is continuous at that point r is equal to 0. 

This function is continuous because whether you go from the right side or the left side, 

the derivative of the function is the same. So, this is a continuous function with a 

continuous derivative at the axis, the other one that I had imagined is actually not 

continuous, the slope from one side has 1 value, the slope from the other side has another 

value at the same location, a function cannot have 2 different slopes, 2 different 

derivatives at the same location therefore, this red profile is not physical in particular, if 

you had a discontinuity in a slope; that means, you will have a discontinuity in the 

temperature field at that point and the flux would effectively be infinite because the flux 

is the derivative of the temperature which you cannot define, the derivative of the 

temperature you cannot define the flux at that point. 

In general if you have a homogeneous material, the requirement is that the temperature 

the slope of the temperature or the derivative of the temperature has to be equal to 0. 

That is the boundary condition that emerges from the symmetry requirement of the 

coordinate system itself even though we do not have a physical boundary at this location. 



Therefore, this red temperature field is not physical, the only physical temperature is the 

blue one at the axis at r is equal to 0 is therefore, you require this from the coordinate 

system itself. 

Once again this is because there is no physical boundary at this location, if I did have a 

physical boundaries such as a thin wire or something like that you could have a non zero 

slope because there will be a heat flux from that we will come and see that a little later. 

In this case because it is all 1 homogeneous material, the boundary is only due to the 

coordinate system there is no physical boundary this becomes the boundary condition at 

the origin. Alternatively another possible boundary condition is just to say that the 

temperature itself has to be finite at this location. 

And then I have an initial condition at t is equal to 0; T is equal to T 0 for all r less than 

R. The initial time the temperature is uniformly t 0 everywhere only a times t is equal to 

0 the temperature has been increased to t1 at the boundary r is to r. So, those are the 

initial and the boundary conditions. 

Now, we can scale the equations, we can scale the equations, the natural scaling for the 

radial coordinate r star will be equal to r by R because then this boundary condition 

becomes r star is equal to 1 and r star equals 0, those are the boundary conditions the 

locations of the boundaries when I scale r by capital R. 

How should I define a scaled temperature, how should I define a scaled temperature, 

what would you expect in the limit as times goes to infinity you have the cylinder whose 

surface temperature is T 1. As you wait for a very long time you would expect the 

temperature to all become equal to this surface temperature therefore, the temperature in 

the long time limit will be equal to the surface temperature T 1. 

You would expect the scaled temperature field to go to 0 in the long time limit if you 

recall when he had done the heat conduction in a finite slab, we had said that in the limit 

of t going to infinity the transient part of the temperature should go to 0 the transient part 

is the total temperature minus the steady temperature. In this particular case the steady 

temperature is just equal to T 1 it is a constant everywhere. 

So, therefore, it is best to define T star is equal to T minus T 1 by T naught minus T 1, so 

that when T is equal to T naught so that at this at r is equal to R, this would imply that t 



star is equal to 0 at r is equal to capital R, this will imply that t star is equal to 0 because t 

is equal to T 1 at the surface and at r is equal to 0 you can scale it quite easily and you 

get d T star by d r star is equal to 0 and if I defined it that way that would mean that at 

time t is equal to 0, T star is equal to 1, at t is equal to 0, T star is equal to 1 because T is 

equal to T naught at t is equal to 0 therefore, T star is equal to 1. 

Define this way the forcing is at initial time and then the temperature field evolves in 

time. The boundary conditions in the spatial coordinates are both homogeneous the 

boundary conditions in the spatial coordinates are both homogeneous either temperature 

is 0 or it is derivate is 0 what is forcing this temperature field is the initial difference 

between the temperature in the cylinder and that temperature of the surrounding fluid. 

So, this problem; this is basically the transient part of the temperature, we can solve 

using a separation of variables procedure almost identical to the separation of variables 

procedure that we had used for the heat transfer in a finite channel. I will continue in the 

next lecture how this separation of variables procedure is implemented. So, we will 

continue this in the next class. 


