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Welcome to this lecture number 20 of our course on fundamentals of transport processes.  
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If you recall, in the previous lecture we had started solving problems involving transport 

in one dimension; unsteady transport in one dimension. So, we had considered the simple 

case of a fluid that is heated from below. Initially the system is all at constant 

temperature T infinity and at the initial time at time t equals 0, we had instantaneously 

changed the temperature at this bottom surface to T naught and we had wanted to see 

how the temperature varies within the fluid. We had considered the fluid to be infinite in 

the plane in the x y plane, the system to be infinite and we have also considered an 

infinite fluid in the z direction in the perpendicular z direction and I told you that this is 

actually an idealization of a system where if you have a container of fluid and you place 

it on a heat source. 

So long as the penetration of the heat into the fluid, the depth of penetration is much 

smaller than the height of the fluid. You can consider it to be infinite in the z direction so 

that in that sense it is an idealization. We will come back and see under what conditions 



this idealization is valid. So, the conditions on this are that at t equals 0; you have a 

temperature T naught at this surface for t less than 0, the temperature was equal to T 

infinity everywhere, the entire fluid was at the temperature T infinity; that means, at t is 

equal to 0, the temperatures T infinity everywhere except at the surface. If you go far 

from the surface, so this is an infinite fluid in the limit as z goes to infinity; the 

temperature is once again equal to T infinity. 
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Now, for this we had done a balance with the change in energy in the time delta t is equal 

to energy in minus energy out plus any sources of energy. This energy density we had 

written as rho C p times t, so the change in energy was equal to the energy density times 

the volume; volume is cross-sectional area, times the height and for the height we had 

taken a small differential distance delta z in the z direction. So, this was equal to the 

energy in; energy in is flux; times Area times the time interval, after all the flux is equal 

to the energy transported per unit area per unit time. So, energy in at the location z; z 

upwards is positive minus the energy out at the location z plus delta z plus any sources. 

You write this balance and then divide by the total volume, divide by the total time 

interval and then you get a diffusion equation of this form wherein the time derivative of 

the temperature is related to the spatial derivative of the flux, once you have this 

expression; now we use the constitutive relation. 



If you recall in the beginning lectures I had said that there are two components to this. 

One is the balance law which basically states that what comes in minus what goes out 

plus sources has to be equal to the rate of accumulation; that is one component, the other 

component is the constitutive relation; that constitutive relation is required for this flux, 

this flux in this particular case the flux is purely diffusive because we have not enforced 

any velocity field, so because of that the flux is just due to diffusion alone. So, once you 

have that you express the flux in terms of the temperature through the constitutive 

relation and then you get a diffusion equation which is of this kind. The rate of tails 

change of temperature is equal to a diffusion coefficient times the second derivative with 

respect to spatial position due to diffusion plus the any source of sync of energy. 
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Now this problem has an exact analogy in mass transfer as well, you consider an infinite 

medium the z is the direction and you consider some solute in which initially the 

concentration is C infinity far away and for t less than 0, C is equal to C infinity 

everywhere, for t greater than 0, you instantaneously impose a concentration C0 at the 

surface C is equal to 0; C0 at z is equal to 0 and then far from the surface, the 

concentration is still C infinity because this is an infinite fluid and therefore, if you go 

further and further away, you should recover the concentrations far from the surface C is 

equal to C infinity as z tends to infinity and therefore, you would expect the 

concentration field to decay in some fashion away from the surface.  



Once again this is an idealization, if I plot the concentration here as a function of 

distance z here give concentration decays away from the surface. This is once again an 

idealization; it appears a stronger idealization than in temperature case because it does 

not seem feasible to be able to just tune the concentration to abruptly change at a 

particular time interval. However, I will show you in the succeeding lectures that this 

kind of idealization does in fact, give you useful results. 

So this is an exact analogy and the way that you solve it, is also an exact analogy. 

Consider a small interval delta z; cross sectional area A and write the balance equation; 

change in mass in time delta t is equal to mass in minus mass out plus any sources of 

mass for example, if there were a reaction which was either generating this species or 

consuming the species, there would be either a source or a sink of mass within this 

volume, so that will come in the source term. 

What is the change in mass within the time delta t, the mass within this volume is going 

to be equal to the concentration times the volume itself A times delta z. So, therefore, the 

mass at time delta at time t; C equal to C at z; t right A times delta z and mass at time t 

plus delta t is equal to C at z t plus delta t; A times delta z. So, therefore, the change in 

mass is the change in concentration times the volume. So, this is going to be equal to A 

delta z times C at z t plus delta t, minus C at z t; that is going to be the change in mass 

within the time delta t is equal to mass in at the location z, the mass flux times the area, 

times the time interval. This is going to be equal to the mass flux at the location z; that is 

the mass in; times the area, times the time interval, so there is the mass in within this 

time interval delta t. 

Minus the mass flux at z plus delta z times A times delta t plus any sources or sinks of 

mass these sources or sinks of mass within a time delta t will be of the form of a rate of 

generation of mass; a rate of generation or consumption generation will be positive, 

consumption will be negative. So, if we have the form the rate of generation or 

consumption; times the volume times the time interval the rate of; so is the rate of 

generation of mass per unit volume, the time rate of generation per unit volume 

multiplied that by the volume, multiply that by the time interval to get how much mass 

has been generated within this volume within the time interval. 



So, this is the balance equation; now to get the differential equation, we divide 

throughout by delta z, throughout by the volume and the time interval. So, we have to 

divided throughout by A, delta z, delta t and you will get C at z t plus delta t minus C at z 

t by delta t is equal to now we had j z at z minus j z at z plus delta z, you divide by A 

delta t, delta z; you will get j z at z minus the flux at that plus delta z. Note this first 

subscript denotes that the flux is in the z direction, the first subscript denotes the flux is 

in the z direction, the direction of the flux depends upon the direction of the 

concentration variation. In this particular case, we are taking variations in concentration 

only in the z direction; therefore, the flux will also be only in the z direction. 

The second one denotes the location; at which you are taking the flux. So, for the input 

we are taking the flux at the location z, for the output we are taking the flux at the 

location z plus delta z. So, this has now got to be divided by delta z and you just get the 

source over here, so that is the balance equation; take the limit delta z going to 0, delta t 

going to 0 to get a differential equation; that equation as of the form partial C by partial t 

is equal to minus, partial j z by partial z plus S; the negative sign because I have j z at z 

minus j z at z plus delta z. Normally the derivative is defined as j z at z plus delta z 

minus j z at z divided by delta z so that is why the negative sign; so this is the balance 

equation. 

Now we have to go on to determining the constitutive relation, the constitutive relations 

of the form j z is equal to minus the diffusion coefficient times d c by d z. The negative 

sign because mass is transported from regions of higher concentration to regions of lower 

concentration and b here is the mass diffusion coefficient; put that into the equation once 

again using the assumption that the diffusion coefficient is independent of the 

concentration of position you will get partial c by partial t; is equal to D t square c by d z 

square plus source.  

So that is the mass diffusion equation you can see on the left side you have a first 

derivative concentration with respect to time, on the right side you have a diffusion 

coefficient times the second derivative of concentration field with respect to the z 

coordinate plus a source. This is the mass diffusion equation and you can see that it is 

exactly analogous to the thermal diffusion coefficient that I have here except that the 

temperature has been replaced by concentration, the thermal diffusivity has been 

replaced by mass diffusivity and the thermal sources have been replaced by the mass 



source, so there is the only difference otherwise they are exactly the same. So, you could 

go from one to the other just by replacing the temperature with concentration and the 

diffusivities. There is an exact analogy for momentum transfer as well; in that case what 

you would consider is a surface in a fluid. 
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So, let us take this as the x direction, this as the z direction. Consider the fluid to be 

stationary fluid. So, for t less than 0; u x is equal to 0 everywhere, for t greater than 0; 

you instantaneously give a velocity u to the bottom surface; u x is equal to u at z is equal 

to 0 and because of that; due to momentum diffusion, the fluid close to the surface will 

start will initially you will just have velocity u here and velocity 0 everywhere, due to 

momentum diffusion; the surface closest will start to move and you will get some kind of 

a velocity profile; however, we consider this fluid to be of infinite height and therefore, 

far from the surface, the velocity is still equal to 0 which means that u x is equal to 0 as z 

goes to infinity. This would be an idealization of for example, if I had container like this 

and I started to move the bottom surface then there will be some fluid that is flowing 

within the region close to the bottom surface; however, if the height is much larger than 

the length scale for the penetration of momentum, you can assume that it is an infinite 

fluid, so that is the idealization here. 

Now, the balance law in this case is usually written slightly differently. So, I will use the 

slightly different formulation of the balance law, which is basically Newton’s law; rate 



of change of momentum is equal to sum of applied forces, so that is the balance law in 

this case. So if I have a differential volume of height delta z and cross sectional area A, if 

I have a differential volume of height delta z and cross sectional area A; the balance law 

in this case is written as the rate of change of momentum is equal to the sum of forces, 

that is Newton’s law; rate of change of momentum within this differential volume is 

equal to the sum of all the forces that are exerted on this differential volume. 

What is the rate of change of momentum? The momentum itself in this case one should 

be careful because the momentum is a vector, in this particular problem the momentum 

is in the x direction. So, we are talking about the rate of change of momentum in the x 

direction; the momentum in the x direction can be written as the density times the 

velocity in the x direction, times A volume; this is a momentum density, the density 

times the velocity is a momentum density, times the volume is the momentum within this 

differential volume the x momentum within this differential volume. 

So, the rate of change of momentum within a time delta t is going to be equal to the 

momentum rho u x at z t plus delta t minus A; delta z, rho u x at t; z t, that is the change 

in momentum. You have to divide that by the time interval delta t to get the rate of 

change of momentum, so this is the rate of change of momentum. There is a rate of 

change of momentum within this differential volume, so therefore, is equal to A delta z 

rho into u x at z t plus delta t minus u x at z t divided by delta t; that is the rate of change 

of momentum that has to be equal to the sum of the applied forces, so let us look at the 

sum of the applied forces. 
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The forces can be broadly divided into two types; one is surface forces and body forces. 

The body forces are proportional to the volume itself, the gravitational force for example, 

whereas, the surface forces are proportional to the surface area. These surface forces at 

on two surfaces; the bottom surface here and the top surface here, so what is the surface 

force exerted on the bottom surface. The surface force exerted on the bottom surface is 

going to be equal to the shear stress on the bottom surface, times the area that is the force 

exerted on the bottom surface. The shear stress force per unit area multiplied by the area 

of the surface therefore, the sub force at surface at z; the force is given by the shear stress 

at the location z times the surface area. 

Here is where one has to be careful about sign conventions; I told you that in the case of 

fluxes; the flux is positive if it is going in the plus z direction. In this particular case, the 

force is considered to be positive if it acts at the surface with outward unit normal in the 

plus z direction, look at the bottom surface; at this bottom surface to this volume, the 

outward unit normal is in the minus z direction. So, see outward unit normal is in the 

minus z direction; that means, that the force that is exerted at the surface is going to be 

equal to minus tau x z; at the location z. So, this is the force that is exerted tau x z is the 

force exerted at a surface whose outward unit normal is in the plus z direction, which 

tends to increase the momentum in the volume below this surface.  



In this case the outward unit normal is in the minus z direction therefore, the shear stress 

at the surface is equal to minus tau x z times A. So, one has to be careful about the sign 

convention that is adopted. So, long as you adopt a consistent sign convention, the result 

will end up being the same. What about the force at the surface at the location z plus 

delta z, at surface at z plus delta z; in this case the outward unit normal is in the plus z 

direction. Therefore, the force is equal to tau x z at z plus delta z times A, those are the 

surface forces. The surface forces due to the shear stress at the surface, you do have body 

forces also those body forces will basically be proportional to the volume. 

So, they can be written as the force density in the x direction, times the volume, so that is 

the general expression for the body forces. So these two have to be put into the 

conservation equation, so this is equal to minus tau x z at z times A plus tau x z at z plus 

delta z times A plus f z A delta z. So, that is the total equation. Just to reiterate tau x z 

force per unit area stress, it has two subscripts; the first one is x that represents the 

direction of the force or the direction of the momentum, I had told you earlier that in this 

case you are writing an equation for the balance in momentum in the x direction, that is 

what the first subscript means the x corresponds to the direction of the force. 

The second is the direction of transport that x momentum is being transported in the z 

direction. Just as we had mass and heat transport in the z direction in the previous 

problems that we solved, in this case the x momentum is being transported in the z 

direction. The second index represents the direction of transport or the direction 

perpendicular to the surface across which momentum is being transported. So, that 

reference the direction perpendicular to the surface across which the transport takes 

place. So the direction of the unit normal to the surface, there is a second subscript, in the 

previous cases we had just one subscript because mass was a scalar, energy was a scalar. 

In this case momentum is a vector, so we need one subscript for the direction of the 

momentum itself another subscript for the direction in which transport takes place. 

Once we have this, we just have to divide throughout by the volume and take the limit as 

delta t, delta z go to 0. So, if I divide throughout by the volume I will get rho into u x at 

z, p plus delta t minus u x at z t divided by delta t is equal to tau x z at z plus delta z 

minus tau x z at z divided by delta z plus the force density. So, that is the balance 

equation and to from this to a differential equation, all you need to do is take the limit as 

delta t going to 0 delta z going to 0. 
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So let us do that over here, you will get rho into partial u x by partial p is equal to; in this 

case you have tau x z at z plus delta z minus tau x z at z divided by delta z. So, this will 

be equal to partial tau x z by partial z plus f z. 

Now, we use Newton’s law of viscosity constitutive relation of the shear stress. If you 

recall I said that in the case of Newton’s law, we have to write the stress as plus mu 

times partial u x by partial z because the force is considered positive if it increases the 

momentum of the volume below; that was the reason. So, if you substitute that, you will 

get rho into d u x by d t is equal to, once again if the viscosity is considered to be a 

constant this becomes mu d square u x by d z square plus f x, I am sorry note that these 

are all forces in the x direction because the direction of the force is p in x direction, so 

this is the conservation equation. 

If I divide throughout by density, I will get partial u x by partial t is equal to the 

kinematic viscosity; mu by rho is the kinematic viscosity times partial square u x by 

partial x square plus x. Once again you can see that you can get this equation from the 

concentration or temperature equations just by substituting for the x velocity instead of 

temperature or concentration. The momentum diffusivity or the kinematic viscosity 

instead of the mass or the thermal diffusivity and the force there should be a density 

there as well direct. So, these equations all three for mass, momentum and energy in this 



simple configuration; I have exactly the same form and therefore, you can solve them 

using exactly the same framework, for either mass momentum or energy 

So, this is a one dimensional convection diffusion equation, regardless of the problem 

that you consider. If you have variation only in one direction and the variation in time, 

the equation is going to be of this form. They all three of the form of diffusion equations 

the only thing that changes is the density whether it is mass, momentum or energy and 

the diffusivity whether it is mass, momentum or energy; the sources whether they are 

sources of mass, momentum or energy; however, the forms of the equations are exactly 

the same and therefore, the method of solution in this case will also be exactly the same. 

So, I have provided you a unified framework for considering diffusion of mass 

momentum and energy from a surface. In this case there is no convection; there is only a 

time rate of change of mass, momentum or energy and the diffusion from the surface and 

any sources or sinks. Simplest problem that you are considering, how to solve this 

problem; we will continue that in the next lecture, in the meantime just recall that in all 

of these three cases; you get exactly the same form of the equation, only the variable 

changes. Whether it is density of mass momentum or energy and the diffusion coefficient 

changes those are the only two differences, how to solve these. We will continue in the 

next lecture, I will see you there. 


