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Unidirectional transport: Conservation equation for heat & mass transfer 

 

This is now lecture number 19, in our course on Transport Processes. We had in the last 

two lectures looked at diffusion coefficients and constitutive relations. 
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Firstly, the two mechanisms of transport convection and diffusion; convection due to the 

mean velocity of the molecules, and the flux is equal to the component of the velocity 

perpendicular to the surface times the density of whatever is being transported with its 

mass momentum or energy; diffusion flux due to the fluctuating molecular velocities not 

the fluid mean velocity, the fluid velocity. As I had explained to you in a previous lecture 

the fluid velocity is the vector sum of the velocities of all of the molecules, whereas the 

fluid fluctuating velocity is the molecular velocity minus the mean velocity. 
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The convection flux is quite easy it is equal to the velocity perpendicular to the surface 

times the density of whatever is being transported. Diffusion flux due to molecular 

velocity fluctuations only when there is a variation in the density of whatever is being 

transported, mass momentum or energy. If there is no variation the transport in one 

direction will be equal to the transport in the other direction, and there is no net flux. 

The variation comes about because the molecules in the case of gases that are going 

across the surface; the molecules going upwards are coming from a location a little bit 

below the surface, whereas the molecules that are going downwards coming from a 

location that is slightly above the surface. The concentration of the molecules at these 

two locations is different; you have different concentration of molecules at these two 

locations when there is a concentration variation across the surface. And this results in a 

flux, that flux is approximately equal to the difference in concentration between these 

two locations times the root mean square of the fluctuating velocity. The root mean 

square of the fluctuating velocity in gases we know it is equal to square root of 3 k t by 

m; where t is the temperature. That is how the temperature is defined in gases. 

Therefore, from this the flux is equal to the root mean square fluctuating velocity times 

the concentration difference between these two locations that concentration difference is 

the mean free path times the gradient of the concentration. The mean free path times the 



variation across the surface. So therefore, we get expressions that end up being of the 

form of Fick’s law. 
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That is that the flux is equal to something times the gradient in concentration, that thing 

in front is the diffusion coefficient and the diffusion coefficient scales as the root mean 

square fluctuating velocity times the mean free path in gases. Same is true in the case of 

momentum diffusion and in the case of energy diffusion. 
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In the case of momentum diffusion it is the momentum that is being transported, in gases 

that momentum is transported by the physical motion of molecules as in the case of 

mass. Similarly, energy is transported by the physical transport of molecules because 

there is a slight difference in the internal energy across the surface if there is a 

temperature variation, and that is what transports molecules across. 

And therefore, in gases the mass, momentum and energy diffusion coefficients are all of 

the same magnitude. They all scale as the mean free path times the fluctuating velocity, 

because the flux is equal to the fluctuating velocity times the difference in concentration 

that difference is the mean free path times the gradient. So, the diffusion coefficients are 

all the root mean square fluctuating velocity times the mean free path. We had made 

some estimates of the mean free path in gases at room temperature it varies from about 

half a micron to our 0.6 microns. The rms fluctuating velocity is approximately the speed 

of sound; it is about 300 meters per second in air and oxygen and about 1200 meters per 

second in hydrogen. 

On that basis all diffusion coefficients are roughly about 10 power minus 5 meter square 

per second. In liquids the mechanisms are different. 
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Mass diffusion still requires the physical transport of molecules, because I had shown 

you in this case if one molecule is to move in one direction densely packed cluster of 



molecules then the other molecules have to move out of the way. Therefore, a single 

molecule motion is not sufficient for diffusion; you require cooperative motions of many 

molecules. And due to that the diffusion coefficient is lower than what you would expect 

on the basis of the mean free path I am sorry; the molecular scales and the root mean 

square fluctuating velocity. 

(Refer Slide Time: 06:07) 

 

In liquids momentum diffusion is relatively fast, because you do not require molecules to 

move out of the way, momentum can be transported by intermolecular interactions. So, 

momentum can be transported from one molecule to the next due to molecular contacts. 

And therefore, momentum diffusion is much faster in liquids. The momentum diffusivity 

is of the order of 10 power minus 6 meter square per second, whereas the mass 

diffusivity (Refer Time: 06:31) 10 power minus nine meter square per second in liquids 

for small molecules. 
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The thermal diffusivity in liquids depends upon the mechanism. As I had tried to explain 

you in the last lecture; the thermal diffusion coefficient depends upon how energy is 

transported. If it is due to intermolecular forces you get a relatively small thermal 

diffusion coefficient of the order of 10 power minus 7. Whereas, in special situations like 

liquid metals for example, energy could be transported through the electron gas around 

the nuclei in a liquid metal, and that results in very fast transport. 

So, that in the summary is diffusion. 
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And now, these two mechanisms convection and diffusion we will use in order to solve 

some problems. Simple problem of unidirectional transport first. Let us start off with 

unidirectional transport; where transport takes place in only one direction. So, basic 

ingredients we have are the flux is due to convection, so what we will try to do is to write 

a balanced equation for differential volume where we write the rate of change of mass, 

momentum and energy within a volume is equal to mass momentum energy in minus 

mass momentum energy out plus accumulation. That is going to be the basic balance. 

And for these two terms what comes in and what goes out can be either due to 

convection or give to diffusion. 

In the case of convection the fluxes j is just equal to u dot n, the velocity dotted with the 

unit normal to the bounding surfaces times concentration density energy density or 

momentum density. And the flux due to diffusion is given by the diffusion coefficient 

times the gradient across the surface; the variation across the surface there should be the 

variation the direction perpendicular to the surface. So, those are the basic or rather 

minus alpha into the variation in the energy density there is equal to I had explained the 

last lecture that when we consider momentum diffusion, we consider the viscosity the 

positive sign for the viscosity because the increase in momentum of a surfaces outward 

unit normal is considered to be positive and this is partial u x partial u by partial x; where 

x is the direction of variation of the mass momentum or energy. So, those are the basic 

ingredients that we will use. 

Consider a definite problem. 
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We have a surface, let us consider the surface that is consider the surface to be infinite 

extent along the plane with a unit perpendicular to the surface is in the z direction and 

along the plane we have the x and y coordinates. We will consider the surface to be of 

infinite extent so that there is no variation in the x and y direction. And we will consider 

the fluid above the surface to also be of infinite extent. 

So, initially the fluid temperature which considers the heat transfer problem first; the 

fluid temperature everywhere is T infinity. So, initially the system is prepared in such a 

way that the fluid temperature everywhere is equal to T infinity, some temperature let us 

say room temperature. At the initial time t is equal to 0 we instantaneously heat this 

bottom surface and apply a different temperature to this bottom surface T is equal to T 0 

at z is equal to 0. 

So, if you look at the temperature profile as a function of position across as I said there is 

no variation in the x and y direction. If you look at the temperature profile initially 

everything is at T infinity, so it takes this as the temperature access; everything is that the 

temperature T infinity at time t equals 0 you are increasing this to T naught. And 

therefore, everything is at T infinity and as time progresses there will be a diffusion of 

heat from the surface and the temperature will start to rise in some manner away from 

the surface. And what we would like to find out is how the temperature rises, what is the 

flux from the surface, how does the flux vary with time. 



This is of course an idealized situation. You could consider it for example an idealization 

of if you have a container which contains some flow at some temperature. And you 

instantaneously put it onto a burner which is at a higher temperature. So, initially the 

fluid was at room temperature that is T infinity and at time t is equal to 0 instantaneously 

you put this at the temperature T 0 here. So, there is an idealization of the problem. 

Instantaneously you place the container on this. And this fluid can be considered to be 

infinite of infinite extent so long as, time progresses the temperature profile will of 

course change; initially there will be will be heated only here, as time progresses the 

temperature profile will change. 

The infinite fluid idealization is valid so long as the distance which the temperature has 

increased is much smaller than the total height of the flowing. So, long as the distance 

for which this temperature disturbance due to the base has penetrated that distance is 

much smaller than the total height of the fluid. In that case you can consider it to be an 

infinite system. So, that is the problem. 

So to be more precise; at for t less than 0 the temperature is equal to T infinity for all z. 

For t greater than 0, T is equal to T naught at z is equal to 0 that is the hot temperature. 

So, t is equal to 0 t greater than 0, the temperature is maintained that T naught at z is 

equal to 0. However, if you go far from the surface since this is an infinite fluid if you go 

sufficiently far from the surface the temperature is going to be equal to T infinity. So, T 

is equal to T infinity as z goes to infinity. If you go sufficiently far from the surface the 

temperature is equal to T infinity. So, that is the problem that we have to solve, and that 

we have to do by doing a balance. 

Now, what do we do in a temperature balance? We take a small slice of the fluid of 

height delta z and cross sectional area A, maybe take a small slice of the fluid of height 

delta z and cross sectional area A, and we write a balanced for this. The rate of change of 

thermal energy within this volume is equal to what comes in minus what goes out plus 

any sources or sinks within this differential volume. Now what is the rate of change of 

energy? So, let us consider a time interval delta T; delta T small t. Within this time 

interval what is the change in energy. 

The energy is equal to if we assume that it is a constant pressure process that is it is open 

to the atmosphere then the energy per unit volume e is equal to rho C p times t at the 



location at the height z and the time t. This is the energy density times the volume is the 

total energy. Therefore, the total energy is equal to rho C p T at z and t times the volume. 

The volume is equal to delta z into the cross sectional area A. So, that is the total energy 

within this differential volume. 

Now the change in energy within the time delta t is going to be equal to e at z t plus delta 

t minus e and z t; if we consider the density in the specific heat to be constants then this 

will just be equal to rho C p t at z t plus delta t minus t at z t into the volume which is 

delta z times A. So, that is the change in energy with in a time delta t. 
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So, change in energy in time delta t is equal to energy in minus energy out plus any 

accumulation; that is the basic balance. The change in energy in a time delta t I had said 

was equal to rho C p into t at z t plus delta t minus t at z t into the volume that is the area 

into the height. 

Now, what is the energy coming in at the location z? The energy in at the location z is 

going to be equal to the thermal diffusion coefficient times the temperature gradient at 

that location. Therefore, I will get; this will be equal to the flux at the locations z. Energy 

in is the flux, flux is energy per unit area per unit time. Therefore, the flux at the location 

z times the area times the time interval is going to be equal to the energy that is coming 



in at the location z. So, it is going to be equal to the flux times the time interval times the 

area; that is the energy that are coming in at the locations z. 

The energy leaving at the location z plus delta z this once again equal to the flux at that 

location z plus delta z times the area times the time interval, because the flux is equal to 

energy transported per unit area per unit time. So, this is going to be the energy out; the 

flux in the z direction at the location z plus delta z times delta t times the area. And this 

accumulation term if there is any source of energy within that element let us say because 

there is a reaction within that element or there is some either phase change within that 

element. The source of energy within that element, so I should write this as source 

accumulation; this will in general be sourced density a source per unit volume, a source 

density times the volume itself delta z in to A. So, this S is energy accumulated. So, this 

energy source S there is an energy generated per unit volume per unit time due to 

reaction. For example, if you have a certain reaction taking place there are certain 

amount of energy that is generated per unit volume of the fluid depending upon the 

concentration of the reactants per unit time. So, that has to be multiplied by the volume 

and by the time delta t. 

So, that is a fundamental balance equation. And once we have this we can divide 

throughout by the volume A times delta z divided throughout by the time delta t to get an 

equation. So, you write down for each differential volume for each interval of time 

divided by the total volume and divide by the time interval. If we divide by the volume 

and the time interval you will get rho C p into T and z t plus delta t minus t at z t when I 

divide by a delta z times delta t, I will get a delta t here I will get q z at z minus q z at z 

plus delta z divided by delta z plus the source of energy. 

Now we go from to a differential volume, and the differential time interval. Take the 

limit delta t going to 0 and delta z going to 0, when you take that limit you get a 

derivative with respect to temperature of with respect to time on the left and the 

derivative of the flux with respect to z on the right. So, you will get rho C p partial T by 

partial t when you take the limit of time interval going to 0. This on the right side is q at 

z minus q at z plus delta z divided by delta z. Normally we write the derivative as q at z 

plus delta z minus q at z divided by delta z. 



So, this is basically the negative of the derivative with respect to z. So, this is equal to 

minus q at z plus delta z minus q at z y delta z. I just written it with a negative sign 

outside. And now this term here you can recognize as the derivative d q by d z. In this 

case it is a partial derivative because we have variations both in z as well as some time. 

So, this is now a partial derivative minus partial q z where partial z; where q z is the flux 

in the z direction plus any source of energy (Refer Time: 24:46). We know that the flux 

was equal to minus k times partial T by partial z; that was Fourier law for heat 

conduction flux was equal to minus k times partial T by partial z. 

So, if we substitute that in this equation I will get rho C p partial t by partial t is equal to 

minus k t by d z of partial T by partial z plus t energy source per unit volume per unit 

time. This is of course, assuming that the thermal conductivity k is independent of 

temperature, there is the assumption that we are making here. So, if you use that 

assumption then I will get an equation for the temperature field as rho C p dT by dt is 

equal; I am sorry it should be a plus sign here gladly note this mistake so there is a minus 

sign over here in d q by d z and q z itself has a negative sign. So, in the end you will get 

a positive sign in the equation for the temperature field. 

So, we will get k d square t by d z square plus S e. Alternatively, if I divide throughout 

by rho C p I will get partial T by partial t is equal to k by rho C p partial square T by 

partial z square plus S e by rho C p. This of course is the thermal diffusion coefficient 

this k by rho C p is the thermal diffusion coefficient. So, the final equation that I am 

getting is of the form dT by dt is equal to alpha d square t by d z square plus S by rho C 

p. Where alpha is the thermal diffusion coefficient and you can see that when the thermal 

diffusion coefficient has dimensions of length square per unit time then you get correct 

dimensional consistency in this equation between the time derivative and the special 

derivative. 

So, this is the thermal diffusion for coefficient for unsteady diffusion in one dimension. 

You see a little bit more about the analogy between this and mass and heat diffusion in 

the next lecture. And then we look at how to solve these problems. So, we will continue 

this in the next class, I will see you then. 


