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Diffusion: Estimation of mass diffusion coefficient 

 

Welcome to this lecture number 16 in our course on fundamentals of transport processes. 

In the previous lecture we were discussing molecular diffusion and how we get the 

constitutive relations based upon molecular diffusion. The discussion the previous 

lecture was restricted to diffusion in gases, mass diffusion in gases. 
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I considered here a typical experimental configuration that is used for calculating the 

diffusion coefficient, you have two reservoirs with different kinds of gas molecules with 

a valve in between and when you open the valve, there is a transporter of gases across 

the surface, for the present we had considered that the molecular masses of the two gases 

are equal that is a simplification, but it makes our discussion easier. 

If the molecular masses are equal, then there is no net motion across the surface there is 

no net mass transfer across the surface at constant temperature and pressure; however, 

since there is a variation in concentration, there will be a transfer of the red molecules 

downwards and a transfer of the blue molecules upwards and we had identified the cause 

for this transfer.  



If you expand out this region here, you can see that for transfer across the surface the 

molecules that are coming downwards are coming on an average at a distance above the 

surface comparable to the mean free path because these molecules travel distances 

comparable to the mean free path between collisions therefore, the molecules that are 

coming downwards are coming originating at some distance above the surface, that 

distance is comparable to the mean free path. The molecules that are going upwards are 

originating at some distance below the surface, that distance is also equal to comparable 

to the mean free path.  

There is no net transport, the total number of molecules coming down has to be equal to 

the total number of molecules going up, because there is no mean fluid velocity at any of 

these locations; however, because the concentration of molecules of type A above the 

surface is different from the concentration of molecules of type B below the surface, 

there will be a net transport of molecules from above to below because the total number 

of molecules at that surface above of A type is higher than the number of molecules 

surface below and that is going to cause a net transport of molecules. There will be an 

equal and opposite transport of molecules of type B in the opposite direction once again 

because the concentrations at these two locations are there. So, these are the diffusion 

fluxes due to the fluctuating velocities of the molecules. When I discussed convection, I 

had said that the convective transport of materials is equal to the mean velocity and if the 

flux is equal to the mean velocity times the mass density or the concentration.  

In this case of the diffusive flux we have a similar relationship, except that is not exactly 

equal it is not the mean velocity, but rather the root mean square of the fluctuating 

velocity that should be taken to account. So, if the root mean square is a fluctuating 

velocity that is important in this case. So, therefore, the flux is equal to is proportional to 

the root mean square fluctuating velocity, times the concentration at that average 

location. Where B is a constant and A is also constant, it tells you what is the average 

distance above or below the surface from which these molecules originate.  

So, the flux downwards is equal to b times the concentration actor location above the 

surface, times the root means substituting velocity. Flux upwards is equal to some 

constant, times the concentration at the locations below the surface times the fluctuating 

velocity. Net flux is the flux going upwards minus the flux going downwards. So, I had 



written that as this concentration at two different locations times the routines are 

saturating velocity the difference between these two. 
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So, therefore, the flux was given by j is equal to j plus minus j minus, which is equal to B 

times V rms in to C at z minus A lambda, minus C at z plus A lambda. Now each of 

these two we had expanded, we had written C at z minus A lambda equal to c I should 

like the second feed on 0, 0 here is equal to C at z is equal to 0, minus A lambda d c by d 

z and that is equal to 0.  

And similarly C at z is equal to plus A lambda is equal to C f. So, those are the two 

expressions, now I have to take C at z minus A lambda, minus C x z plus lambda, when I 

subtract the two these terms will cancel out and ultimately you will be left with an 

equation for the diffusion flux that is of the form B V rms, minus 2 A lambda d c by d z 

and z is equal to 0, minus 2 A lambda the whole cube by 3 factorial, plus additional 

terms higher order terms. So, that is the expression for the flux. 

Note that when we make the linear approximation in the previous lecture, what we had 

done was to neglect this term and higher order terms in comparison to this term which 

we resumed was going to be the largest term. So, we cut off the series at this first term 

when it is justified. If you look at this term here, it scales as the ratio of a mean free path, 

you mean free path is the molecular scale and the gradient is the gradient of the 

concentration, the gradient of the concentration is going to be equal to the difference in 



concentration between these two locations, divided by this microscopic plants scale. The 

gradient of the concentration is going to be the difference in concentration divided by 

this length scale (Refer Time: 08:42) difference in concentration, the system size if you 

will therefore, this term here will scale as a mean free path times a difference in 

concentration is the first time here will scale us a mean free path times the difference and 

concentration divided by the system size. 

The second term here will scale as the mean free path cubed because it is lambda cubed 

times the third derivative of the concentrations with respect to distance, delta C by L 

cubed. 

So obviously, this term can be neglected in comparison to the first term only for lambda 

by L, being small compared to 1. Only in that case will this term be much smaller than 

this done here because this causes lambda by L, the next term goes as lambda L the 

whole cube, the next time will go as lambda by L to the 5th power and so on. So, we can 

neglect the second term in comparison to the first only when the mean free path is much 

smaller than the distance over which there are concentration variations. Typically there 

will be concentration variations in a reactor for example, or distance is comparable to the 

particle size, the catalyst size or in the case of heat exchanger the temperature varies or 

distance comparable to the diameter of the tube. So, therefore, only when the mean free 

path is much smaller than this lens macroscopic land scale, is this valid and that is a 

point that I had emphasized in the last lecture as well. The continuum description is valid 

only when the system size is much larger than the molecular scales; in the case of gases 

the molecular scale is the mean free path, in the case of liquid the molecular scale is the 

particle damage itself. 
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So, if that condition is satisfied, then we can neglect all these higher terms in the 

expansion, you can neglect all these higher terms in the expansion and retain only the 

first term and then we get this expression for the flux and just by looking comparing that 

with the standard fixed loss or for mass transfer, you can see that the diffusion 

coefficient is proportional to the mean free path times the fluctuating velocity. 

So, therefore, if we know what is the mean free path and what is the fluctuating velocity, 

we can get some estimate for the mass diffusion coefficient. So, you will next try to 

calculate what are the mean free path and the fluctuating velocity in gas molecules in 

gases? 

The fluctuating velocity in gases can be written in a few different ways; typically half m 

V rms square is equal to 3 by 2 k T for mono atomic gases from the equip partition of 

energy, which implies that V rms is equal to root of 3 k T by m. So, this is the root mean 

square of the fluctuating velocity of the molecules, you can also define a mean velocity. 

The mean velocity of the molecules is sometimes defined as root of 8 k T by pi m; this is 

what is called the mean molecular speed, these two differ only by a constant that is order 

one. So, for the present purposes we will use this definition of the root mean square 

fluctuating velocity. In any case we do have these constants here in this expression and 

these constants will change depending upon which value of the gas velocity that one 



implies, in either case we can use any one of these in order to just get an estimate of the 

decision coefficient. So, I will use the root mean square of the fluctuating velocity. 

How much is this velocity for example, if we take the case of hydrogen gas at room 

temperature I standard temperature and pressure, what is the mass of the hydrogen 

molecule? we know that mass of one mole is equal to 2 grams and one mole is 6.023 into 

10 power 23 molecules. 

Therefore the mass of one molecule is equal to 2 into 10 power minus 3, 2 grams is 2 

into 10 power minus 3 kilograms, divided by 6.023 into 10 power 23; this works out to 

approximately 3.32 into 10 power minus 27 kilograms. Now what is k T? k T is equal to 

1.38 into 10 power minus 23 there is a Boltzmann constant in Joules per Kelvin into at 

room temperature will take it is approximately 300 Kelvin, this is approximately 4 into 

10 power minus 21 J. 

Using these two you will find that V rms equal to square root of 4 into 10 power minus 

21 divided by it is approximately equal to 1200 meters per second approximately. You 

can see that quite easily. So, this is the root mean square velocity of the molecules in 

hydrogen gas. In oxygen gas for example, this is for h 2, the molecular weight of oxygen 

m is equal to 16 times, m of oxygen is 16 to mass of hydrogen, it is 32 whereas, 

hydrogen is 2, which means that V rms of oxygen is going to be approximately equal to 

1 by 4, you have one over square root of mass in the denominator, 1 by 4 times V rms 

now hydrogen, which will be approximately 300 meters per second.  

Similarly, for air which contains nitrogen and oxygen it is approximately the same, 

approximately 300 meters per second. Approximately 300 meters per second is also the 

speed of sound in air 330 meters per second. So, therefore, the speed of the molecular 

fluctuating velocities is comparable to the speed of sound and that is no surprise because 

sound propagates through pressure waves through the air and the maximum velocity 

which those pressure waves can propagate has to be comparable to the molecule of 

fluctuating velocities. So, this the molecule of saturating velocity is V rms for hydrogen 

is about 1200 meters per second, for oxygen it is about 300 meters per second. 
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Now, what about the mean free path? How does one calculate or rather estimate the 

mean free path? The mean free path is the distance between two inter molecular 

collisions. So, if you consider one molecule as it is moving with the translation velocity 

V, now this molecule it sweeps out a cylindrical volume, this molecule it will sweep out 

a cylindrical volume as it moves along, whose radius is equal to the molecular diameter 

such that if some other the center of some other molecule comes within the cylinder; that 

means, that the two molecules are collided; that means, the distance between these two 

has become the centers of these two molecules has become less than a molecular 

diameter; that means, that these two molecules have collided. 

So, sweeps outer cylinder of volume of cross sectional radius d and some length L, what 

is the total volume in the cylinder? Swept out is going to be equal to the cross sectional 

area pi d square times L. 

What is the number of second molecules in the cylinder has to be equal to the number 

density of the molecules times the volume of the cylinder, that is the number of second 

molecules in this cylinder. When the length is very small the number of second 

molecules is also very small. So, the probability that a second molecule has collided is 

very small; as the length becomes larger and larger you have many such molecules in 

this volume; that means, that this molecule has already collided. 



When does the molecule translate approximately one mean free path, that is when the 

number of second molecules in this cylinder is approximately one; that is therefore, it has 

translated a distance equal to one mean free path when n pi d square times lambda, it is 

approximately equal to 1. What that means is that, the mean free path lambda is equal to 

1 by n pi d square. So, this is just an order of magnitude estimate, I said that the number 

of second molecules has to be approximately 1, for the molecule to collide on average 

and on that basis I would get caught the mean free path to within a proportionality 

constant. You can do a more exact calculation and if you do that you will find that the 

expression for spherical molecules for the mean free path is 1 by root 2 sorry straight that 

as. 

Note that n is the number density of the molecule; the number of molecules per unit 

volume. So, it is just a number per unit volume. So, therefore, if I have this expression 

for the mean free path, I can then calculate what is the mean free path in real gases; so, 

and I should correct myself. So, in order to estimate what is the mean free path I need to 

know what is the number density of the molecules and the diameter of the molecules. So, 

once again if we take the example of hydrogen, the diameter of the hydrogen molecules 

is approximately 1.3 angstrom is equal to 1.3 into 10 power minus 10 meters. 

What is the number density of the molecules? The number density of the molecules has 

to be you know that num n by v is equal to P by k T from the ideal gas law, P is equal to 

if you recall the ideal gas law, it is usually written as P is equal to N k T by V; N is the 

number of molecules V used to volume. So, therefore, I can also write this as n k T 

whereas, small n is the number of molecules per unit volume. So, from the ideal gas law 

you get the number density of the molecules or the number of molecules per unit 

volume.  

So, pick n is equal to P by k T, once again at standard temperature and pressure, the 

pressure is 1.01 into 10 power 5 Pascals, that is an SI units atmospheric pressure is 10 

power 5 pascals, which is newtons per meter square. Now what is k T? k T is the 1.38 

into 10 power minus 23 joules per Kelvin into 300 Kelvin. It is approximately 4 into 10 

power minus 21 choose. So, this I have 4into 10 bar 21 joules.  
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If I divide these two up, I will get a number density; n is approximately 2 point 5 into 10 

bar 25 molecules per meter cubed. Pascal has dimensions of force per unit area or energy 

per unit volume and dividing it by energy. So, I just get a number per unit volume of 

these molecules and using that and the diameter of these hydrogen molecules, I can 

estimate the mean free path lambda is equal to 1 by n d square is equal to 1 by 2 pi into 2 

point 5 into 10 bar 25 into 1 point 37 into 10 power minus 10 whole squares. And this 

gives me mean free path of approximately 5 into 10 power minus 7 meters, which is 

approximately 0 point 5 micrometers, it is a half a micrometer.  

So, that is the mean free path in a gas and for the container approximation to be valid, I 

told you in the last lecture that the system size has to be much greater than this mean free 

path which is about half a micron. So, continuum description in this case the case of 

gases will be valid only when distances are larger than half of my craft or so. 

Similarly, you can do the calculation for oxygen, nitrogen air: for all of these things the 

number density remains the same, the number density is exactly the same because it 

depends only on the pressure and the temperature; however, the molecular diameter d of 

o 2 is approximately 3.3 angstroms. So, molecular diameter is larger x factor of 3 or so, 

therefore, the mean free path goes as one over the diameter square. So, it will be smaller 

by a factor of approximately 10 lambdas is approximately equal to 6 into 10 power 

minus 8 meters. 



So, that is 0.06 microns for oxygen. So, now, we have got the mean free path we have 

got the molecular fluctuating velocity, from this we can estimate a diffusion coefficient. 

D is equal to some constant times V rms times lambda, we found that V rms was 

approximately for the case of oxygen is restricted to 300 meters per second into 6 into 10 

power minus 8 meters, if you work that out you will get a constant into approximately 

1.8 into 10 power minus 5 meter square per second. So, that is the diffusion coefficient 

approximate diffusion coefficient for oxygen molecules translating in air. The diffusion 

coefficient for hydrogen molecules is slightly higher; diffusion for hydrogen molecules is 

equal to C into 1200 meters per second into 5 into 10 power minus 7meters. So, this will 

give me approximately a constant into 6 into 10 power minus 4 meter square per second. 

So, that is roughly the range of diffusion coefficients for a very small gas molecules it 

will be about 10 power minus 4, but for most gas molecules the diffusion coefficient is in 

the range of 10 power minus 5 meter square per second. So, there is a normal diffusion 

coefficient and this comes from a molecular calculation of the actual mean free path and 

the fluctuating velocity in a molecule in a gas. 

Note that we had earlier said that the diffusion coefficient goes as V rms times to the 

mean free path, which is root of 3 k T by m if the root mean square velocity and 1 by 

root 2 pi d square. So, this is the dependence, this is the dependence on the number 

density the molecular diameter and the molecular fluctuating velocity. 

I will continue this in the next lecture to give you a more precise idea of what these 

diffusion coefficients mean. Everything that which I have done so far is only in gases, 

how does it translate into diffusion coefficients in liquids; once that is done then we will 

look at diffusivities for momentum and energy and we will get diffusion coefficients for 

those as well in a similar manner in gases in a more approximate manner in liquids and 

that will give us some idea how to treat diffusion in comparison to convection. So, I will 

continue with this diffusion calculation, the next lecture go to diffusion coefficient in 

liquids and then we will look at mass diffusion I am sorry momentum diffusion and 

energy diffusion. So, we will continue this in the next lecture, I will see you then. 


