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Lecture - 39 

Turbulence - Part 2 

So, welcome to lecture 39 of our course on fundamentals of transport processes. As you 

recall in the last lecture we were discussing turbulent flows. Many characteristics of 

turbulent flows; one is there primarily at high Reynolds number, because you require the 

non-linear terms in the equation to have multiple solutions for the conservation 

equations. As I said even at high Reynolds numbers the laminar flow is still a valid 

solution of the equations of motion. The only problem is that the laminar flow is 

unstable, where low Reynolds number the laminar flow is stable, which means that if I 

have a flow and if I put in a small disturbance that disturbance decays it damps out and 

you get back the laminar flow as time progress. 

Whereas the Reynolds number increases that comes a transition Reynolds number, which 

depends upon the flow configuration for which if you put in a disturbance that 

disturbance does not decay, but amplifies. In other words any spontaneous disturbance 

and in nature there are always disturbances in nature, if you have a pipe flowing there is 

always, some sound wave some vibrations something or the other which will act as a 

disturbance for the velocity profile. That disturbance will spontaneously take the flow 

from the laminar state it will spontaneously grow up, because the flow is unstable and it 

will take the disturbance that the flow from the laminar state to a turbulent state. A 

highly irregular chaotic state only at high Reynolds numbers with large velocity 

fluctuations.  

So, even though the flow is statistically steady that is in the limit as time progresses if 

you take an average over time. If your period of average in this larger than the frequency 

of the fluctuations, those averages will be independent of time. However, at a given 

location there will be a fluctuation in the velocity profile in all components of the 

velocity as a function of time and this irregularity is characteristic feature of the turbulent 

flow. In other words the fluctuations are not regular in the in the sense of being periodic 

oscillations with one particular frequency. But rather they are chaotic they are they are 



highly irregular oscillations which do not have a well-defined frequency characterizing 

them.  

They are three dimensional, so even though I may have a two dimensional flow. For 

example; the flow in a channel is a two dimensional flow in which the mean velocity is 

only in the flow direction along the walls whereas, there where that the velocity gradient 

is only perpendicular to the walls. Even though the mean velocity may be two 

dimensional the fluctuating velocity is in general completely three dimensional. At each 

location you have velocity is in all three directions and these are fluctuating velocities. In 

the flow direction there will be a mean velocity, in other two directions the average of 

the fluctuating velocities will be 0. But the fluctuating velocities themselves will be non-

zero never the less. Because, of these velocity fluctuations the amount of energy that is 

dissipated is much larger than what you expect for the laminar flow with nice straight 

extreme lines.  

Because, you have these additional fluctuations, which are cause additional strain rate 

locally and additional dissipation, due to which it is a highly dissipative flow. Also the 

diffusion of mass momentum and energy takes places not a primarily not due to 

molecular diffusion. But rather due to the motion of these eddies, which are correlated 

parcels of fluid of various length scale, which are transported across the fluid, resulting 

in enhanced transport of mass momentum and energy. For this reason they are highly 

diffusive and also highly dissipative, because the momentum transport rate is much 

larger than what you expect for a laminar flow. And for that reason the flow is the 

friction factor for example; in a pipe or a channel turbulent flow is much larger, 

sometimes orders of magnitude larger than that in a laminar flow.  

So, last class we were trying to look at how we would analyze this highly fluctuating 

velocity profile. As I said one way to analyze it is to separate the velocity into a mean 

velocity plus a velocity fluctuation and then try and obtain equations for the mean 

velocity alone. If you could obtain an equation for the mean velocity alone then one 

could solve that equation and find out the velocity profile throughout the flow. As we 

saw in the last lecture it is not possible to obtain an equation for the mean velocity alone.  

Because, when you write an equation for the… you take the momentum conservation 

equation and average it over time you do get terms, which depend up on the velocity 



fluctuations. That is because as I said there is momentum transport taking place due to 

velocity fluctuations and that innovatively has to come in to the momentum conservation 

equation. Then we went and looked at how does the energy how is the energy in the flow 

produce that is at the large scales what produces the flow energy and how is that energy 

dissipative. And that let us to the discussion of the smallest scales in the flow to micro 

scales. So, let us briefly review that and then progress with how we would go about 

modeling these turbulent flows.  
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As I discussed in the last lecture turbulence is a continue phenomenon, it is not does not 

when the when the flow becomes turbulent it does not mean that the continues 

approximation is breaking down. The equations of motion are still the continued navier 

stokes equations, the solutions are such that the velocity is highly irregular. So, the 

starting equations are as usual the navier stokes mass momentum equations, the navier 

stokes and mass momentum equations. And since, the velocity is fluctuating function of 

time the velocity has some fluctuating function of time, an irregular fluctuating function. 

We can separate it out in to a time average mean velocity, this is the time average mean 

velocity, which I call with as capital U, the time average mean velocity which I call as 

capital U plus the fluctuating velocity. 

So, the mean velocity is defined as 1 over T integral 0 to T d t of U vector, it is average 

to over a time period which, is long compare to the largest time scale of the velocity 



fluctuations. Usually the largest time scale of the velocity fluctuations will correspond to 

the mean strain rate at that location. And for our present argument discussion we are only 

looking at steady flows that is there is no time dependence of the velocity profile, so we 

just look at only steady flows. The fluctuating part is the local instantaneous fluid 

velocity minus the mean velocity capital U. Since, it is the instantaneous velocity minus 

the mean velocity, it implies that the average of u prime, which is 1 over T integral 0 to T 

d t of u minus U, this is equal to 0, the average of the fluctuating velocity has to be equal 

to 0, because I have already subtracted out the mean velocity.  

So, this fluctuating velocity has 0 average and one would hope that I can derive an 

equation for the mean velocity alone by taking an average of the entire mass 

conservation equation, after substituting for the velocity in the pressure as the sum of the 

mean plus the fluctuating part. So, I substitute u is equal to capital U plus u prime vector 

in to the mass conservation equation and then I write down entire the equation. So, in the 

last lecture I had written this explicitly as del dot tau vector, where tau was the shear 

stress. You can do either one of the two whether you can take the either the stress or the 

velocity gradient explicitly. 
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So, when we wrote this when we substituted this and took the average we found we got 

an equation of the form rho times U dot grad U is equal to minus grad P plus delta dot 

tau plus the divergence of a second term. Or if I write it in indicial notation you will get 



rho U j partial U i by partial x j is equal to minus partial P by partial x i plus partial by 

partial x j of tau i j plus partial by partial x j of T i j. This second term is what is called 

the Reynolds stress this is because of the velocity fluctuations. The Reynolds stress as 

you recall can be written as minus rho times the average of u i prime u j prime.  

As I said the average of the velocity itself just for completeness I should also say that the 

pressure is written as the mean pressure plus the fluctuating part of the pressure, just for 

completeness the pressures written as a sum of a mean plus the fluctuating part. Now, I 

take the average of the entire momentum conservation equation I have the gradient of the 

pressure here, I am writing the time average I just get the gradient of the mean pressure 

over. So, this is the additional contribution to the stress due to the turbulent velocity 

fluctuations. Note that it is an inertia term it is minus rho times u i prime u j prime. So, it 

is effectively an inertia term, it is a convective transport of momentum due to the 

velocity fluctuations. 

Obviously, for example; if I take the shear stress component of this I will get T x y is 

equal to minus rho times u x prime u i prime. If u x and u y prime the fluctuating 

velocities are completely uncorrelated, this would be identically equal to 0. So, if the if 

they were independent variables the Reynolds stress will be 0. The reason you have a 

Reynolds stress in a turbulent flow is because, these velocities are actually correlated, 

rather they are anti-correlated clearly, only if u x prime u i prime is negative will the 

Reynolds stress be positive for this particular flow. So, what it implies is that a parcel of 

fluid going in the plus u x direction has a lower velocity u i then the average, parcel of 

fluid going in the minus u x direction has a higher u i velocity than average.  
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So, the idea is as follows if I have a shear flow, let us say I have a linear shear flow for 

simplicity. If it is a turbulent flow, let us take a coordinate system here x and y 

coordinate. If it is a turbulent flow momentum is going to get transported from one 

location to the other, only if a partial of fluid going in the plus x direction I am sorry, a 

partial of fluid going in the plus y direction has a negative u x component. So, that if a 

partial of fluid over here has a velocity that is lower than average, when it goes up it is 

going to take its momentum deficit along with it and its going to get speeded up by the 

flow above. Where is the parcel of flouring coming down with a minus u i velocity will 

have a higher velocity u x.  

So, therefore as it comes down it will get slow down and therefore, it will transport 

momentum to the fluid that is below. If you recall when we did our discussion of 

diffusion molecular diffusion the argument was exactly the same. We took particular 

location across which there was a certain velocity profile and we said that molecules that 

are coming upward are coming on an average one mean free path below the surface. 

Molecules that are going down wards are going are coming from on average above the 

surface, those molecules are the molecules coming downwards bring additional 

momentum with them, whose to transfer it to the fluid below. Whereas, molecules going 

upwards deficit of momentum with to transfer it to the fluid above only then will you 

have momentum transport across the surface resulting inertia stress. So, this results 

inertia stress if u x prime and u i prime are anti-correlated for a positive strain rate.  
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So, what is it the generates these fluctuations these fluctuating velocities is highly 

irregular fluctuating velocities. Obviously, these fluctuating velocities have associated 

with them fluctuating strain rates, these fluctuation fluctuating strain rates these 

variations in velocities are going to result in viscous dissipation. So, if I had a fluctuating 

velocity viscous dissipation would tend to slow it down, unless for some reason that is 

the source of energy which is replenishing the energy of these fluctuating of these 

velocity fluctuations.  

So, we next looked at the mechanism by which, velocity fluctuations are generated by 

writing down equations for the mean kinetic energy and the fluctuating kinetic energy. 

The mean kinetic energy per unit volume is of course, equal to rho times I am sorry, the 

mean kinetic energy is equal to half rho U i square and the kinetic energy of fluctuations 

is equal to half rho average of u i prime square, the average of u i prime square. So, I try 

to write an equation for the mean kinetic energy and what we found was and so that is 

what the equation that we got in the previous lecture for the mean kinetic energy of the 

mean flow.  

These terms here the term on the left of course, is the convicted derivative of the 

turbulent kinetic energy. That is the rate at which the kinetic energy is transported this is 

a steady state flow, so the time derivative is equal to 0. So, when the time derivate is 

equal to 0 the left hand side is just the convicted derivative, because there is no time 



variation of half u square. And the right hand side, the three terms on the left are 

basically the divergence of something integrates and favor to right this for a volume 

these three terms will be the divergence of something integrated over the fluid volume, 

which is basically the transport the transport the flux across the surface of the volume. 

So, this does not represent a net change in the energy of the fluid itself, but rather just the 

transport from one volume to the adjacent volume.  

The other three terms are actually what represents the net rate of change of energy should 

be minus sign here that is important, they represent the net change in the energy. The 

first one the pressure times the divergence of the velocity is the work done, in this case if 

the flows incompressible that is identically equal to 0, if the flow is incompressible that 

is the divergence of the velocity is equal to 0. The second term is the viscous dissipation, 

the viscous stress times the means strain rate the dissipation of energy due to the mean 

flow. So, this is the mean strain rate this should be an average stress this is the stress this 

is not the fluctuating stress, but rather the average stress. So, this is an averaged equation, 

so this represents the mean strain rate.  

The last term is the dissipation due to the Reynolds stress. So, this is not a viscous 

dissipation it is a dissipation due to the fluctuating energy of the molecules. The viscous 

dissipation of course, converts energy, mechanical energy into heat energy into thermal 

energy and increases the temperature. The Reynolds stress does not converted into 

thermal energy because it does not increase the fluctuating velocity of the molecules, it 

increases the fluid fluctuating velocity. So, it does not converted into Reynolds stress 

into I am sorry, does not converted in to heat.  

So, where does that energy go? The energy thus dissipated due to the Reynolds stress, 

where does that go? That basically increases the kinetic energy of the fluctuations. For 

this fluid there is a kinetic energy of the fluid, which is equal to half rho into U square 

where U is the total fluid velocity. That kinetic energy we have separated into a kinetic 

energy for the mean flow capital U square plus a kinetic energy for the fluctuations u i 

prime square. You can easily see that if I take the square of capital U i plus u i prime, the 

cross term 2 U i times u i prime averaged will be 0, because the average of u i prime is 

equal to 0. 
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So, the kinetic energy separates out neatly in to two parts; one due to the mean velocity 

and the other due to the velocity fluctuations. This dissipation term due to Reynolds 

stress is converting the energy from the mean flow kinetic energy to the kinetic energy of 

the velocity fluctuations, in other words transferring energy from the mean flow to the 

fluctuations. As I said because these the dissipation in the stresses due to the Reynolds 

stress are much larger than that due to the molecular the viscous stresses.  

Therefore, one would expect that this term the Reynolds stress dissipation term is 

actually much larger than the molecular, the viscous stress dissipation term. Because, as I 

said on a turbulent flow T i j Reynolds is much larger than the average of the molecular 

stress and the viscous stress. So, therefore this is the dominant mechanism which is 

taking energy out of the mean flow. So, where does that energy go? Now to see that one 

has to write a conservation equation for the kinetic energy of the fluctuations.  
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I do not go through the details of the calculation in the last lecture, but just wrote down 

the final equation, it becomes rho U j partial by partial X j of half u i prime square, the 

fluctuating velocity is equal to... So, that was the energy for the turbulent kinetic energy 

fluctuations. The first terms that you see here are of course, just the divergence of 

something and if you write that down for a surface for a particular volume this converts 

into a surface integral and just represents the exchange of energy between adjacent 

volumes. This term here appears with a negative sign, if the sign that is opposite to that 

in the mean kinetic energy equation. So, that acts as a transfer of energy from the mean 

flow to the fluctuations.  

So, this basically acts as the source term in the equation for the fluctuating kinetic energy 

that is balanced by the dissipation due to the velocity fluctuations. So, this the source 

term the Reynolds stress transfer of energy from the mean flow to the fluctuations is 

balanced by the dissipation the viscous dissipation due to the fluctuations and this should 

be not a kinematic viscosity, but rather the dynamical viscosity itself. So, this acts as 

transfer of energy to the fluctuations, so energy is going from the mean flow to the 

fluctuations, the molecular viscous dissipation of energy in the mean flow equation is 

small. So, energy is going from the mean flow to the fluctuations and in the equation of 

fluctuations kinetic energy this energy that is coming down from the mean flow is 

getting dissipated due to molecular ah due to viscous dissipation. 



So, that is the mechanism of dissipation in a turbulent flow, because the viscous 

dissipation of the fluctuations is much larger, than the viscous dissipation due to the 

mean flow. You get a friction coefficient or drag coefficient, which is much larger than 

what would you expect for a laminar flow in a turbulent velocity profile. So, next we 

looked at the question of where does the energy go, you have fluctuations across of 

course, a various length scales starting from the largest one’s which are comparable to 

the system size. The channel width or the border layer thickness for examples, then you 

have smaller and smaller eddies of various dimensions down to the smallest scales. 
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So, what is the smallest scale of turbulence? This smallest scale of turbulence we had 

inferred on the basis of the Kolmogorov equilibrium, universal equilibrium hypothesis as 

this called. And the ideas as follows; for the smallest scales in a turbulent flow it is 

assumed that the length and the time scales are much smaller than the largest flow scales. 

So, we said the largest flow scales that kinetic energy is getting pumped in from the 

mean flow to the fluctuations. So, lets us for definiteness let us associate for example, 

some length scale L and some velocity scale U to the larger scales, inside the larger 

scales that energy is being pumped in to the fluctuations.  

What is the rate at which energy is being pumped into the fluctuations? As you know on 

the left hand side in the equation for the mean kinetic energy we had partial U i by partial 

x j. So, this will scale as rho U square into I am sorry, the kinetic energy equation we had 



this this was partial by partial x j of half U i square, on the left hand side of the kinetic 

energy equation. So, this is the rate at which energy is coming in from the mean flow, 

this one can see is approximately equal to rho times U cubed by L.  

Usually rather than writing the energy per unit volume half rho U square is the energy 

per unit volume, it is more convenient to write it down in terms of the unit mass. 

Because, that reduces one mass dimension that we have to deal with once we write in 

terms of the kinetic energy per unit mass, you no longer have to deal with the mass 

dimension. So, one can write the production of energy, per unit mass rather than per unit 

volume by dividing it by the density. So, this is the rate at which this production of 

energy U cube by L, this has dimensions of lengths square T power minus 3. The rate of 

production of energy, this is the energy that goes down to the smallest eddies and gets 

dissipated. 

So, clearly this production rate of production of energy in a fluid steady state has got to 

be equal to the rate of dissipation of energy in the flow, epsilon is called the rate of 

dissipation of energy. For the smallest scales themselves we assume that the length scale 

and the velocity scale are sufficiently small that they do not depend directly up on the 

macroscopic velocity scale U or the macroscopic length scale L. Because, if you have a 

region that is very small compared to the macroscopic scales it is got it respond only to 

the local environment not to the large spatial extent of the flow or the spatial or the or the 

or the macroscopic velocity. 

So therefore, it depends only it does not depend upon the macroscopic length scale L or 

the velocity scale U. But of course, it depends on those only through this rate of 

dissipation of energy epsilon, because this energy is ultimately have to going to have to 

be dissipated by the small scale flows. So, the length and the velocity scale do depend 

upon epsilon, but not independently on U or L. So, the smallest scales can depend up on 

epsilon, they could also depend up on the kinematic viscosity, they could also depend up 

on the kinematic viscosity mu with dimensions of length square T inverse. So since, the 

length the length and velocity scales of the smallest scale eddies depend only up on 

epsilon and mu just from dimensional analysis you can infer what the dependences are it 

is quite easy. 
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Just from dimensional analysis if I have to get a length scale from epsilon and mu, the 

only way that I can get a length scale is to write eta is equal to u cube by epsilon or one-

forth. The velocity scale v for the smallest scales is new epsilon for one-forth and the 

time scale tau for the smallest scales is u by epsilon power half. You can easily verify 

that these dependences basically produce a length a velocity and a time scale. Now, how 

do these compare to the macroscopic scales? Eta by L is equal to 1 by L into new cube 

by epsilon power one-forth. For epsilon I can substitute U cube by L, because I know 

that the production has got to be equal to the dissipation from here. 

So, for epsilon I can substitute U cube by L and I will get u cubed by U cubed, L cubed 

power one-forth, which is equal to the Reynolds number per minus 3 by 4. So, clearly the 

macroscopic lengths scale is much smaller than the macroscopic scale it goes as R e 

power minus three-fourth, this is in the limit of high Reynolds number. So, clearly in the 

limit of high Reynolds number this goes as R e power minus 3 by 4, which is which 

means that the smallest length scale is much larger than the microscopic scale.  

Similarly, v by capital U that is the ratio of the of the smallest velocity scale to the large 

scale of flow, can be written as 1 over U times u epsilon power one by fourth, which 

goes as R e power minus one-fourth. If you substitute epsilon is equal to U cube by L, if 

substitute epsilon is equal to U cube by L you will get R e power minus one-fourth. So, 

clearly the velocity scale this the smallest eddies is still much smaller than the velocity 



scale of the mean flow. So, these length and velocity scales or what are called the 

Kolmogorov scales, the smallest length and velocity scales in a turbulent flow.  
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Even though the both the length and the velocity scales in the smallest eddies are much 

smaller than those in the large scale flow in the large scale flow. What about the strain 

rate? The scale for the strain rate for the small scale flow is approximately the smallest 

velocity divided by the Kolmogorov scale, this is an this a scale for the strain rate. That 

is the gradient of the velocity field the gradient of the velocity field at the smallest scales. 

And if you work this out this will turn out to be equal to epsilon by nu power half. If I 

take the ratio of the strain rate for the smallest scales divided by the strain rate for the 

large scale flow, the strain rate for the smallest scales is v by eta, the strain rate for the 

large scale flow is equal to U by L.  

So, if I take the ratio of those two, v by eta by U by L. This is equal to epsilon by nu 

power half into L by U, which if you substitute U cubed by L for epsilon this turns out to 

be equal to Reynolds number plus half. So, even though the velocity scale is much 

smaller, the length scale is much smaller the strain rate in the small scale, smallest eddies 

is actually much larger than the strain rate of the large scale flow. The strain rate in the 

smallest eddies is much larger than the strain rate in the large scale flow. 
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So, this is the strain rate how about the energy dissipation rate. The energy dissipation 

rate is proportional to the kinematic is proportional to viscosity times the strain rates 

square. As I said the rate to dissipation of energy is equal to shear stress times strain rate, 

which is equal to the viscosity times the strain rate square. So, the strain rate ratio of 

strain rate in the small scale flow to the large scale flow is R e power plus half that 

means the dissipation rate, in the Kolmogorov scales divided by the dissipation rate, in 

the mean flow is equal to R e power plus 1 is equal to Reynolds number power plus 1, 

because it is goes as a strain rate square.  

This is telling us something very important when we wrote the equation for the mean 

kinetic energy or the mean momentum, we said that the inertial terms were order R e 

larger that the viscous terms. So, when we wrote the mean kinetic energy equation, the 

inertial terms and the production terms were R e larger than the viscous terms in the limit 

of high Reynolds number. And because, of that the dissipation due to the mean strain rate 

and the viscous dissipation due to the mean strain rate, is smaller than the inertial terms 

in the kinetic energy equation, inertial terms are R e larger than the viscous dissipation 

rate.  

What this is telling us is that the dissipation rate in the smallest scales is R e larger than 

the dissipation rate in the large scales. That means that the dissipation rate in the smallest 

scales is comparable to the inertial terms in the large scales. That is what that is what 



determines the balance of energy, the flow itself creates smaller and smaller length scales 

until at the smaller length scale the dissipation rate balances the production rate in the 

largest macro scales. Because, the dissipate rate balances the production rate, the flow is 

able to dissipate all the energy that is pumped in into the macroscopic scales into the 

largest scales.  

That is because, it creates sufficiently small scales both the length and the velocity scales 

of the small scales are much smaller than the length and velocity scales of the large scale 

flow. The strain rate is much larger, it sufficiently large to balance the production of 

energy in the mean flow, the dissipation due to the smallest scales is sufficient to balance 

the production of energy in the mean flow.  
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And the other point is that I got Reynolds number I define the Reynolds number for the 

large scale as U L by the kinematic viscosity. I can similarly, define a Reynolds number 

for the Kolmogorov scales as v eta by nu. I can also define a Reynolds number for the 

Kolmogorov scales as v eta by nu. And as we know eta is given by u cubed by epsilon 

power one-fourth and v is given by nu epsilon power one-fourth by nu, this as you can 

see is equal to 1.  

So, it is creating sufficiently small scales, the Reynolds number based up on the large 

scale flow is large. However, the flow itself is creating smaller and smaller fluctuations, 

fluctuations are smaller and smaller scales. In such a way that for the smallest scales 



inertial and viscous terms are comparable the Reynolds number is above one, inertial and 

viscous terms are comparable and because of that you have a balance between the 

production and the dissipation of energy at these smallest scales. The energy is produced 

in the largest scales is dissipated at the smallest scales, because the strain rate there is 

much larger than that in the large scales. 
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So, you have what is called a cascade of energy in a turbulent flow. If I plot for example, 

as a function of the length scale I have the large scale, the length scale of the flow and 

the large scale L corresponding to the macroscopic flow and I have the small scale eta. 

Energy is coming in, being transferred from the mean flow to the fluctuations at this 

large scale L, as was shown by mean kinetic energy equation and that gives transfer to 

smaller and smaller scales. Until it is dissipater at this smallest Kolmogorov scale at the 

scale where the Reynolds number becomes order one and therefore, there is a balance 

between the inertial and the viscous terms in the momentum conservation equation.  

There are other things that you can say about this kind of an energy transfer, though one 

thing is of course, that that energy is getting transferred from the large scale flow down 

to the small scale flow. We got the small scale just on the basis that at this smallest scale 

there is that the scales themselves the velocity length and time scales do not depend up 

on the large scales, but only upon the rate of dissipation of energy and the kinematic 

viscosity.  
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One can infer how this the amount of energy in these flows varies, is called the energy 

spectrum. The energy itself the energy itself the kinetic energy itself I will call it as E 

here, this has units of L square T power minus 2, that is because, I have scaled it by the 

density. So, this energy per unit mass, which has dimensions of L square T power minus 

2. You know that in fourier transforms you can always write this, the energy can be 

written as integral d k, E of k, where k goes from some small value to a large value.  
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This k is equal to 2 pi by lamda, where lamda is equal to wave length of fluctuations, you 

take lamda as some characteristic eddie size. So, then e of k will give you the amount of 

energy in eddies of that characteristic eddie size. So, the standard and Fourier analysis if 

for those who are not familiar with this kindly go back and refer to your notes on Fourier 

transforms. So, basically instead of writing down the size of the eddie itself, you write 

down the wavelength, which is 2 pi by the size. So, this is convenient way of expressing 

the spectrum.  

So, since k is equal to 2 pi by lamda that means, that if I write this in terms of k rather 

than in terms of the rather than in terms of the length scale, 2 pi by L will come down 

here, because it is one over L is much smaller than one over eta. So, you can easily see 

that since, k has dimensions of length inverse that means that E of k has to go as length 

cubed T power minus 2. Because, energy has dimensions of length square T power 

minus 2, k has dimensions of 1 over length is 2 pi by lamda.  
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So, you can you can get some universal features of this E of k the energy spectrum itself. 

For example; if you are at the smallest Kolmogorov scales just from dimensional 

analysis, the smallest energy scale has to go as is equal to length cube T power minus 2, 

this will go as nu power 5 by 4 epsilon power one-forth times some function some 

function of k times eta. So, that is how you would expect the scaling to be at the smallest 

Kolmogorov scales, because the energy spectrum cannot depend upon U and L, it has to 

depend only up on nu and eta. So, that is at the smallest scales here, which corresponds 

to the largest value of k. So, at this end of the spectrum, which corresponds to the largest 

value of k, it has to scale it has to be some function of U cubed epsilon power minus nu 

power five-fourth epsilon power one-fourth times some function of eta.  

But the largest scales of course, it has to scale only as u and L. So, this will basically 

turnout to be equal to U square L times, some function of k times L. So, that have the 

largest scales the scale in accordance with U and L. So, for this scale I have two limits 

here, let me just plot it again here as function of k, 2 pi by eta, 2 pi by L, E of k. At these 

two scales I know how it has to scale, it has to scale in some way as function of k eta or k 

L depending up on the limit that you are taking. However, in the intermediate regime 

when you are in between these two, it cannot depend up on the kinematic viscosity 

either. Because, for the intermediate regime the kinematic viscosity is much smaller than 

the I mean the viscous effects in the intermediate regime are negligible compared to 

inertial effects, viscous and inertial comparable only at the Kolmogorov scale. 



If you are in between the macroscopic scale in the Kolmogorov scale there is an 

intermediate region were the small scale kinematic viscosity does not matter, as well as 

the large scale U and L do not matter. In this intermediate regime the only thing that 

matters is the energy that is following through the energy that is following through the 

entire system epsilon itself. So, in this inertial sub range as it is called E of k depends 

only on epsilon and k. It cannot depend up on nu, because the length scales are much 

larger than the Kolmogorov scales, cannot depend up on U and L, because the length 

scales are much smaller than the microscopic scales. 
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So, it can depend only upon epsilon and k and just from dimensional analysis you can 

easily see that this intermediate regime. The energy just from dimensional analysis it has 

to scale as E of k is equal to this rather proportional to epsilon power two-thirds k power 

minus 5 by 3, that is the only way we will get the correct dimensions epsilon power two-

thirds k power minus 5 by 3. So, this predicts a scaling law for the energy in eddies of 

various intermediate sizes between the Kolmogorov scale and the microscopic scale. 

So, what this is saying is said this energy spectrum has to go have a minus five-third part. 

This I should state here plotting log, it is just log of the energy, it has a minus five-third 

part as in the intermediate spectrum. So, what this is saying is that the energy in the 

macroscopic scale, the kinetic energy in the macroscopic scales is much larger than the 

kinetic energy in the Kolmogorov scales, most of the energy is in the large scale flow. 



The energy in the small scale flow decreases as the eddie size decreases with a scaling 

law, which goes as k power minus five-third or length scale to the power plus five-third 

it decreases the length scale to the plus five-thirds part. In a manner similar to the energy 

spectrum one can also get the dissipation spectrum. 
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As I said the dissipation of energy is proportional to mu into the strain rate square, is 

proportional to mu times the velocity divided by the length scale whole square. And in 

my Fourier notation I can write this as integral d k times D of k. So basically, the 

dissipation rate goes as 1 over the energy divided by length square. So similarly, 

dissipation spectrum will also go as will have dimensions of the energy spectrum will go 

as the energy spectrum divided by L square, which is proportional to L times T power 

minus 2, just from dimensional analysis. And in the intermediate regime this can depend 

only up on epsilon and k and the only way it can depend up on that is as epsilon power 

two-thirds k power plus one-third. 

Because, it has dimensions of one over length square, so that it is proportional to k 

square times the energy spectrum. So, in my figure that I had here the dissipation 

spectrum actually increases as k power plus one-third in the meter dredge. So, what this 

states is that the energy in the mean flow is much larger than the energy in the smallest 

scales whereas, the rate of dissipation of energy is largest for the smallest scales. k is 

equal to 2 pi by eta corresponds to the smallest scales of the flow and the rate of 



dissipation of energy is largest for the smallest scales. So, this gives us a comprehensive 

idea of the flow energy the lengths scales and the dissipation scales in the flow. 

How do you model these turbulent flows? The most commonly used model is what is 

called the k epsilon model, which is based up on what I had just done, the kinetic energy 

of the flow and the dissipation rate of the flow. It recognizes the fact that you have to 

have both kinetic energy and dissipation, both of these have to be modeled these could 

be in homogeneous through the flow, you have to write additional equations for the 

kinematic energy in the dissipation rates. Here the shear stress is written as the turbulent 

viscosity times the strain rate. So, you write the shear stress tau i j is equal to of course, 

there is a molecular viscosity plus there is a turbulent viscosity times grad U indicial 

notation is by partial x i. Where the turbulent viscosity is modeled as rho constant times 

the kinetic energy square divided by the rate of dissipation of energy. 
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The kinetic energy goes as length square per time square and the dissipation of energy 

goes length square by time cubed and you can see that this combination. Basically, it 

gives you the velocity times the length scale basically, it gives you velocity times the 

length scale. The other models that are often used for this are what are called the mixing 

length models. The mixing length model is similar it has some constant in it, it has a 

mixing length and it has a velocity of fluctuations. Rho times a diffusivity, diffusivity 

has a length scale unit and a velocity scale unit and u prime is a velocity of fluctuations l 



is the length scale. And this velocity of fluctuations is often written as rho c mu times l 

square times the local gradient, the length scale times the local gradient gives you a 

velocity. 

So, these are what are called the mixing length models. Whereas, if you write in terms of 

the kinetic energy and the rate of dissipation of energy it turns out be the k epsilon model 

expression for the kinematic viscosity. So, this is the conservative relation of course, to 

find the turbulent viscosity I need to know what are k and epsilon and typically equations 

are written for each of these. The left hand side for both of these are identical they has a 

rate of change of kinetic energy and in the rate of change of dissipation of energy. Both 

are substantial derivatives in a reference frame moving with the mean fluid velocity. In 

the right hand side for the kinetic energy you have a diffusive term basically the 

diffusion of kinetic energy due to in-homogeneities in the kinetic energy plus the 

production term minus the rate of dissipation of energy. 
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So, this term is the production due to the mean flow, which I will come back to later, this 

is the rate of dissipation of energy. Of course, if you would have steady state the 

homogeneous flow production would exactly balance dissipation. And in the equation 

for the fluctuate for the dissipation of energy I have a similar term here, plus this is a 

term, which is the production term, but it has to have an inverse time unit. Because, the 

rate of dissipation energy is was has it does not have the same dimension as the kinetic 



energy itself. Epsilon has dimension of 1 over T times k, that 1 over T is the turn over 

time, which is taking to accomply this epsilon by k over here. The turn over time, which 

is taken to accomply this epsilon by k, which has dimensions of 1 over T. 

So, that is the transfer of energy term from the mean kinetic energy to the fluctuations. 

And then I have a final dissipation term which goes as minus C 2 epsilon times rho 

epsilon square by k. Once again epsilon by k is one over time, it gives basically a turn 

over time and epsilon divided by that time gives me the rate of change of epsilon. So, 

side the both equations are the familiar convective derivative on the right hand side in 

both cases have a diffusion term. The kinetic energy have production in flow the 

dissipation due to the kinetic energy and in the dissipation term I have the mean flow 

energy transfer and then I have a molecular energy dissipation term. Each of these are 

constants, which are basically fitted, each of these are constants which are basically fitted 

all of these constants are fitted constants as well as the constant C nu here. 

The production is basically the mean kinetic energy production, which is basically is 

equal to the turbulent mu plus mu T times partial U i by partial x j into this is equal to 2 

mu plus mu T times the mean strain rate square. Note that this mu T here takes into 

account the factor this is a Reynolds stress. So, there is the augmentation of the stress to 

the Reynolds stress times the strain rate square, basically gives me the production of 

energy and that energy is dissipated. So, that the balance being the production and 

dissipation is incorporated in these equations for the mean kinetic energy in the mean 

dissipation rate. And as I said all of these are constants which had to be fitted. The 

common ones that I used based up on a large class of turbulent flows for these fitted 

constants are basically, C mu in the equation for the viscosity is usually assumed as close 

to 0.09. 
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This is the same whether it is a mixing length model or it is the k epsilon model. c 1 

epsilon is equal to 1.44, C 2 epsilon is equal to 1.92 sigma k. So, actually very close to 1 

and sigma epsilon is taken as 1.3. So, these set of equations for k and epsilon basically, 

give you what you need for the constitutive relation for the shear stress, mu T for the 

mean velocity equation mean momentum equation. These two coupled with the mean 

momentum equation basically form the k epsilon model for turbulent flows.  

Of course, there are various variations of this the k omega model and so on you could 

have more constants depending upon, whether you have buoyancy effects and other 

effects and you could also take into account the vorticity equation and so on. But this is 

the one that is most commonly used and basically it consists of an inertial a convective 

derivative of each of these quantities is equal to diffusive part plus a production, minus a 

dissipation. Put these in to calculate k and epsilon use k and epsilon to get the kinetic the 

turbulent viscosity and put that into the mean flow. 

So, I have taken this occasion to explain how the length scales of turbulence flow comes 

what are the smallest and the largest length scales. And how the energy varies in between 

these two scales and how elements of this energy transfer mechanism are taken into 

account in turbulence models for turbulent flows, which contain fitted constants of 

course. But they are broadly based up on the physical picture of the energy cascade for 

turbulent flows. In the next lecture we will look at a concrete example of how we do 



modeling of turbulent flows, wall bounded turbulent flows, that is flows in a channel, 

which will be most useful for our case. So, we will continue with that discussion of 

turbulent flow in the next lecture. We will see you then. 

 


