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Lecture - 30 

Conformal transforms in potential flow 
 

So, this is lecture number 30 of our course on fundamentals of transport processes, where 

we were discussing in the last lecture potential flows in two dimensions, and I had 

derived a relation for you starting with the flow around a cylinder of the forces exerted 

on a cylinder in potential flow, for the case where there is a net circulation on the 

cylinder. We had calculated the velocities, and we had shown what kinds of velocities 

we see around the cylinder. Then we had calculated the net force exerted on the cylinder. 
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So, this was the potential flow around a cylinder, and if you recall in the last lecture we 

had taken function F of z of the form minus u z minus u R square by z minus i comma by 

2 pi log z, and I showed you that this corresponded to the flow around the cylinder where 

the fluid was coming in with the velocity minus u far away. And for this particular case I 

had got the relations for the net flow, this is x, and this is y. I got the relations for the net 

flow as F x the track force is equal to 0, F y is equal to rho u times gamma. 

Now I would like to calculate this for a general object not for a cylinder that is moving, 

but that is stationary in a fluid that is; I am sorry cylinder that is at rest in a fluid that is 



moving far away, but rather for the case where the fluid is at rest far away, and the 

cylinder is moving by the constant velocity. For that particular case the function F of z 

just equivalent to adding velocity plus u at every point within the fluid in this particular 

configuration that I have shown you here velocity is minus u far away, velocity is 0 on 

this surface. If I want the cylinder to move I just add up velocity plus u everywhere 

within the flow. 

In that case far away the velocity becomes 0, on the surface the velocity becomes plus u 

along the x direction; adding a velocity plus u everywhere is equivalent to adding 

potential as plus u times z, because if I take the derivative of the potential with respect to 

z will get an additional factor of plus u. So, this is equal to minus u r square by z minus i 

gamma by 2 pi log z, but let us not work it out for this specific case; let us work it out for 

a general case. So, let us just take the general case of an object could be of any shape a 

general shaped object that is moving with the velocity u in a fluid that is at rest far away, 

and in general there is a net circulation around this object. So, therefore in general there 

is a net circulation around this object. So, that integral d x dot u around the surface of the 

object is equal to gamma. So, that is the configuration that we would consider as object 

moving with the velocity u in a fluid that is at rest far away. 

So, how do we calculate the force on this object? Of course, first we calculate the 

pressure, and then we calculate the force as integral of p dot n d s with the entire surface 

of this object. So, the pressure p is equal to p naught minus half rho u j square minus rho 

partial phi by partial t. In this particular case we are considering an object that is moving 

with the steady velocity capital u, and therefore, the time derivative of the potential is not 

0, because as I had shown you in couple of lectures ago if you have an object which is 

moving and your coordinate system origin is at the center of the object; the potential at a 

fixed observation point will change, because the origin of the coordinates system is 

changing. That has to be taken into account. 

Then there are two reasons why the potential at an observation point changes. One is 

because there is the object velocity itself may change. The second is because the origin 

of the coordinate system is moving. In this particular case we are considering an object 

that is moving with a constant velocity. So, there is no change in the velocity; however, 

there is a change in the potential at a fixed point, because the origin of the coordinate 

system is changed. And that if you will recall we calculate it to be minus half rho u j 



square plus rho u j times capital U j, rho u dot capital u where capital u is the velocity of 

the object.  
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Of course, without loss of generality I can set p naught is equal to 0 because that is just a 

constant pressure that is far away when the velocity goes to zero. So, I get p is equal to 

minus half rho u j square plus rho u dot capital u. Therefore, the force F i is equal to 

integral of the surface of minus p times the u naught. So, this is equal to integral d s of 

half rho u j square minus rho u j times capital U j, and I will simplify this a little bit. To 

write this as rho integral over the surface of half u j square minus times n. Note that this 

unit normal n i has defined here; it is the outward unit normal to the object if normal n I 

is the outward unit normal to the object. 

Now we will do the calculation in a manner similar to what was done for a three 

dimensional object. What I will do is I will reduce the integrals to just integrals over 

infinity, and since I know how the velocity is decay as r goes to infinity, from that I will 

be able to calculate what is the force rather than doing it over the surface of the object, 

because we do not currently know what the shape of the object is or anything about the 

object. You want to calculate the force independent of those things. 
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So, if I have this is my object, and I consider the fluid in between this object, and the 

surface at infinity. This s is the surface of the object; s infinity is the surface at infinity. 

For the fluid in between the surface object and the surface at infinity I can write using the 

divergence theorem that rho times integral over the volume partial by partial x i of that 

has to be equal to this is the divergence of something integrated over the surface and be 

written as the unit normal times that thing integrated over the, I am sorry the divergence 

of something integrated over a volume over the volume v where this is the volume v of 

this object partial by partial x i of half u j s. This is going to be equal to integral over the 

surface at infinity of n i times half u j square minus u j u j plus the integral over this 

surface plus the. 

So, this is the integral of the surface at infinity where my unit number is defined this 

way. This is n for the surface at infinity for the surface s itself is the outward unit normal 

to the fluid the outward unit normal to the fluid is the inward unit normal to the object; 

however, I will define my unit normal n as the outward unit normal to the object because 

that is what I require for getting the force. So, this is equal to min plus integral over the 

surface s of d s times the outward unit normal to the fluid shown in blue times half u j 

square minus u j times u j. 

The outward unit normal to the fluid is the inward unit normal to the object, because the 

unit normal to the object whereas the force is defined with respect to, in this case the unit 



normal is the outward unit normal to the object. So therefore, this can be written as 

integral over the surface at infinity d s n i into half u j square minus u j u j minus the 

force. I should put a rho here; there is a density factor everywhere. So, this is just an 

expression for the divergence theorem for the force; of course, I have two unknowns 

here. I have one is the volume integral, the other is the integral over the surface at 

infinity. 
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So therefore, I can write this force F i is equal to rho times integral over the surface at 

infinity d s n i half u j square minus u j u j minus integral of the volume d v. Let us 

simplify out the second term in this expression. Chain rule for differentiation u j partial u 

j by partial x i minus u j partial u j by partial x i. Note that capital U is the velocity of the 

objects. So, that is a constant. So, I have used that while doing the differentiation. I know 

that the rate of deformation tensor has to be symmetric for a potential flow because the 

anti-symmetric part is equal to 0. The vorticity is 0 everywhere in the fluid; therefore, the 

anti-symmetric part of the rate of deformation tensor is equal to 0 everywhere in the 

fluid. So therefore, I can write replace partial u j by partial x i the derivate of u j with 

respect to x i by its transpose partial u i by partial x j. 

I have just replaced partial u j by partial x i by its transpose, because I know that the rate 

of deformation tensor is symmetric in a potential flow. So, this I can write as minus 

integral d v; I do differentiation using chain role here. I can write the first term as partial 



by partial x j of u I u j minus u i partial u j by partial x j. In the second term since capital 

u j is a constant I can write this as partial by partial x j of u i times capital u j. And of 

course, the term partial u j by partial x j is the divergence of the velocity; the divergence 

of the velocity is identically equal to 0. The divergence of the velocity is identically 

equal to 0 because the potential flows incompressible. 

So, this term is identically equal to 0, and the equation for the force becomes F i is equal 

to, we should have a density here rho integral over the surface at infinity minus rho times 

integral over the volume. Note that this term is also the integral over a volume of the 

divergence of something. So, this is also the integral over the volume of the divergence 

of something; that can be reduced to a surface integral as usual.  

(Refer Slide Time: 15:47) 

 

So, this is equal to rho integral of the surface at infinity minus. Now this is integral s 

infinity d s n j minus the integral over the surface of the object. Once again for this term 

that I have shown here this is integral of the divergence of something over this volume v 

that can be written as an integral of the unit normal times that thing over the bounding 

surfaces. There are two surfaces; one surface at infinity and one surface on the surface of 

the object. So, I have just written this as the divergence of something over this volume is 

equal to integral of the unit normal times that same thing on the two surfaces. This is an 

integral over the surface of the object as you can see, integral of n j small u j minus n j 

capital U j times u i integral over the surface. This is equal to F i. 



On the surface of the object itself I have the known normal velocity boundary condition. 

So, on the surface of the object itself I have the known normal velocity boundary 

conditions that is that u dot n is equal to u dot n; that is the normal velocity of the fluid, 

the fluid velocity normal to the surface is equal to the velocity object in that direction. 

We are not enforcing tangential velocity boundary condition, so there can be a slip in the 

transitional direction; however, the normal direction the normal velocity of the fluid 

perpendicular to the object surface is equal to the velocity of the surface itself. So, there 

is no penetration, and because of this normal velocity boundary condition we can see this 

term is identically equal to 0. The term that I have shown in red here is u i times n j u j 

minus n j times capital U j; that is identically equal to zero. 

So, the net force on this object has been reduced to two surface integrals over the surface 

at infinity. So, I have shown you this is equal to rho times integral over the surface at 

infinity d s of n i into half u j square minus u j u j minus n j into u i u j minus u i times 

capital U j. Now this is over a surface that is far away. In two dimensions for the surface 

that is far away in two dimensions, x and y in two dimensions if I have an object at the 

center the fluid velocity of course has to decay as r goes to infinity, because the object is 

moving with some velocity u; however, the fluid is stationary far away. Therefore, the 

fluid velocity has to decrease as you go far away. How does the velocity decrease? If you 

recall if there is circulation we had got the velocity decrease for the flow around a 

cylinder as the complex potential is equal to minus u r square by z minus gamma i 

gamma by 2 pi log z which means the w is equal to u r square by z square minus i 

gamma by 2 pi z is equal to. 

So, these are the two components of the velocity due to circulation as well as due to the 

mean flow; due to the flow of the object with velocity u as well as due to the circulation 

around this object. You can see that the velocity decay due to circulation due to the line 

vortex is proportional to 1 over r. Due to this constant velocity is proportional to 1 over r 

square. The surface area of this object itself increases as r in the limit as r goes to 

infinity. So, if I want to draw out u theta for this case I get u r is equal to u r square by r 

square into cos theta u theta is equal to u r square by r square sin theta plus gamma by 2 

pi r. So, u r decreases one over r square far away whereas u theta decreases one over r. 

You have to multiply this by insert this into this expression in order to find out how the 

force varies. Clearly the surface area far away in two dimension to the surface as I told 



you it is just a line; the length of that that perimeter far away increases proportional to r. 

Therefore, I will get a nonzero contribution to the force only due to velocity 

contributions which go as one over r. If the contribution due to the velocity goes as one 

over r square the surface area increases proportional to r whereas the velocity is 

decreasing as one over r square. The net integral will go as one over r which goes to 0 as 

r goes to infinity. 

A non-zero result can be obtained only due to the contribution to the integrand which 

goes to one over r. If you look at this expression here I have u j square which has to 

decrease as one over r square, because the slowest decaying component of the velocity 

decreases as one over r. Therefore, u square has to decrease as one over r square. 

Similarly I have this small u i times u j here; that also decreases as one over r square 

because it is proportional to the square of the velocity. So, these two terms will give me a 

zero result when it is integrated over the surface far away; however, if you look at these 

two terms u j times u i u j minus n j u i u j, capital U in this expression is a constant is the 

velocity with which the object is moving. Therefore, these contributions are linear in the 

velocity u i and therefore, this could give a contribution which goes as one over r when 

integrated over the surface will in general give me a nonzero value for the force. 
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Therefore over the surface at infinity the only nonzero value that I am going to get to the 

force is due to these two blue terms here, clearly nonzero contribution I will get is due to 



the blue terms. The orange terms are proportional to u square which goes to zero as one 

over r square; therefore, when I integrate that over the surface I will end up with the zero 

result where F i is equal to rho integral d s over the surface at infinity. There is a 

common factor of u j here, and you can see that this u j is common between this term and 

this term. Then the other term is of the form n j u i minus n i u j. So, this is the final 

result for the force. F i is equal to integral rho integral d s of capital U j times n j u i 

minus n i u j. 

So, I have to take the velocity and multiply it by the unit normal. The only contribution 

that I am going to get to the velocity which will give me a nonzero force is going to be 

due to the term that is decreasing as one over r here, the u theta contribution which is 

decreasing as one over r. There is this other contribution which is decreasing as one over 

r square that will give me a zero value, because when I integrate over the surface the 

velocities goes as one over r square and the surface area increases proportional to r itself. 

So, over this surface I have the unit normal. This is the unit normal to the surface and 

just two components n x and n y. I can locate them using the polar coordinate system r n 

theta point on this surface as infinity, and clearly n x is equal to cos theta, and n y is 

equal to sin theta. What about the velocity at this point? U theta is equal to gamma by 2 

pi r. 

So, let us just calculate what is the velocity at this point? The only nonzero contribution I 

will get is due to the velocity u theta at this point. U theta is along the theta direction; this 

is u theta, u theta which is equal to gamma by 2 pi r. So, that is the direction of u theta; I 

will just remove the y here. So, that is the direction of u theta, it has two components u x 

and u y. You can see clearly that u y is in this direction. Let me plot it separately here to 

make it clear. So, I am having a velocity u theta which is going in this direction u theta 

with respect to the coordinate axis; clearly the angle theta with respect to the y 

coordinate and with respect to x coordinate the angle is pi by 2 plus theta. So, with x 

coordinate the angle is pi by 2 plus theta. So, if u theta is in this direction; that means that 

the component u i the component u i is equal to u cos theta. 

The component u x is actually in the minus x direction, because u theta is positive; it is 

going in the anticlockwise direction, u y will be positive for that, u x will be negative. 

So, u x is equal to minus u; u x is equal to minus u theta sin theta, and u y is equal to u 

theta times cos theta. So, using the two values n x n y u, x u y I can calculate what is the 



force. First take the force F x. The velocity we have assumed without loss of generality is 

only in the x direction. So therefore, j is equal to x because the velocity u j is 0 for the y 

direction, the velocity of the object itself is only in the x direction. This we can choose 

without loss of generality, right, if the object is moving in some direction I can always 

align my x axis along that direction. So, if j is x if I want the force in the x direction then 

I have i is also x and j is also x, because the direction of the force is I, direction of the 

velocity is j. 

If I want the component of the force along the velocity vector then i is x and j is x; 

therefore, n j u i minus n i u j is just n x u x minus n x u x, it turns out to be equal to zero. 

So, this tells me that the force along the x direction along the velocity direction, the force 

along the velocity direction F x has to be equal to 0; that is the force along the velocity 

direction, drag force that is identically equal to 0. What about the force along the y 

direction? The force along the y direction is equal to rho integral r d theta of this force u 

x. d s is of course the line in two dimensions it is r d theta u x times n x u y minus n y u x 

and of course, for n x and n y I have to use the cos theta and sin theta here because it is a 

normalized unit vectors, and I had calculated u x and u y for a velocity in the theta 

direction because that is the only one that gives me a contribution to the velocity 

proportional to 1 over r. 
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So, this will give me rho times integral r d theta u x, n x is cos theta into u y is cos theta u 

theta plus n y is sin theta, I am sorry minus sin theta into u x is minus sin theta u theta. 

So, you can see cos square plus sin square is equal to 1, and I get rho times integral r d 

theta capital u x into u theta the only non-zero contribution to u theta comes out of the 

circulation term here which is gamma by 2 pi r into gamma by 2 pi r. The integral over r 

goes from 0 to 2 pi; it goes all the way around the object. So, it goes all the way around 

the surface at infinity. It goes from 0 to 2 pi, and you can easily see that this is equal to 

rho u times gamma. So, this tells me that for an object that is moving at a constant 

velocity in a fluid provided there is circulation around the object in potential flow the net 

drag force itself is 0. 

There is no force acting along the direction of motion; however, there is a net lift force 

perpendicular to the direction of flow depends upon the direction of circulation. The 

circulation is clockwise around the object; the lift force is acting upwards. If it is 

anticlockwise it will act in the opposite downward direction, and this forms the basis of 

all aerodynamics. This result as I showed you holds only for two dimensional flows; that 

is the reason that aircraft wings are long and slender object, because you require that the 

flow should be approximately two dimensional at every point along the aircraft along the 

wing. Otherwise you cannot generate a lift force; three dimensional object moving in a 

fluid will not generate a lift force, because in that case the velocity perturbation becomes 

one over r cubed. The potential goes as one over r square, and the velocities goes as one 

over r cubed. 

Only if the object is two dimensional and if there is a net circulation around the object 

there could be a net lift force due to the circulation around the object. The total force 

exerted is just equal to the density times the velocity with which the object is moving 

times the circulation around the object and the circulation around the object is generated 

by the shape of the object. If you have an object that is shaped like this for example, and 

this is moving with the constant velocity within a fluid, this is moving with the constant 

velocity within the fluid then I have this front and the back stagnation points, and I have 

a net flow that goes around this object. And if I calculate the net calculation along any 

contour that is going around the object, take some contour going around the object, and I 

calculate integral d x dot u over this closed contour. 



This will give me a net nonzero circulation, because this object is no longer symmetric. 

This object does not have up-down symmetry, and because of that I will get a nonzero 

circulation around this object. And the net force exerted upward on this object is just 

equal to the density times the velocity with which the object is moving times the 

circulation. In air craft of course, this is required in order to generate a lift force that it 

can fly; of course, there is a drag force as well, but we do not get that drag force in 

potential flow because we neglected viscosity and therefore, we have neglected the 

viscosity mechanism, but there is net lift force which is purely a potential flow effect. 

Similarly submarines have this the opposite way; they have wings which are up transfers 

it they can go downwards. 

And similarly whenever you want to generate a lift on an object you need to have a long 

two dimensional flow locally around that object; of course, wings are three dimensional 

objects. So, the net circulation around this object has to be reflected in net vorticity at the 

tips of the wings, and for that reason you have what is called vortex shedding at the tips 

of the wings. So, that is beyond the scope of this course. The only thing I want to 

emphasize here is that for an object in two dimensions provided it is moving with the 

constant velocity, and there is a net circulation around this object is going to generate a 

lift force which forms the bases for why aero planes fly. So, before I close potential flow 

I would just like to say that the framework that we have developed here for two 

dimensional flows is more general. 
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It can be used for what are called conformal mappings as follows. So, I showed you that 

the flow in a corner for example, if the corner had a flow in a corner we had done that 

flow, the flow itself look something like this. The complex potential is given by F is 

equal to a z square and w the complex velocity is equal to 2 A times z. If I want to define 

a new complex variable z prime is equal to z square. Since F of z is equal to a z square; 

that means that F of z prime is equal to A times z prime. This thing I had defined with 

my independent variable as F of z is equal to A times z square; that means this was w of 

z. I am just changing variables; I am writing z square as z prime. Therefore, I have z 

prime is equal to A times z prime. How does this flow look in the z prime plane? In the z 

prime plane since F is linear in z prime I get a constant velocity. So, this of course is a 

much simpler flow. 

So, let me put my axis here x and y. This of course is a much simpler flow; it is just a 

straight line. So, this is just a constant velocity everywhere. So, what I have done is by 

my change of variables I have defined that I have transformed the flow in a corner to a 

constant flow. So, if you are given the task of finding the velocity field in a flow that is 

the flow in the corner is shown here. If you have given the task of finding the velocity 

field in this flow; one way of course would be to actually solve and find out what the 

complex potential is. The other way would be to see if there is some way to convert this 

domain into a more simpler domain. 

That is if I can convert if I can do this mapping which converts z to z prime then I know 

what the flow in the simpler domain is, I know what the potential is, I know what the 

velocity is; that velocity is just got be expressed back into the more complex domain. We 

will find out what the velocity in that complex domain is. So, you do not really have to 

solve the problem. You just have to find a way of mapping this complex geometry onto a 

simpler geometry, and I already know what the flow in the simpler geometry is and 

therefore, I can go back and find out what the flow in the complex geometry is. Note that 

I have kept the potential the same between the two; I have kept the potential between the 

simplex and the complex geometry to be exactly the same. So, if I take some aligned 

segment in this more complex in the simpler geometry here delta z and that maps onto 

some other line segment in the complex geometry delta z prime. 

What I have is I have z primer is equal to z square. So, I take the initial location of this 

line and transform it into z square is equal to z prime in this one. Take the final location, 



transform it here, and that basically gives me the line segment in these two locations, and 

just by differentiation you know that delta z prime is equal to d z prime by d z times delta 

z. So, when you do the transformation the line lens transform as the derivative of z prime 

with respect to z. How about the velocities? We know that the potentials are exactly the 

same. So, I know that w of z is equal to d F by d z; w of z prime is equal to d F by d z 

prime. I can use chain rule for differentiation, and write this as d F by d z times d z by d 

z prime. I can use change rule of differentiation to write this as d F by d z times d z by d 

z prime. 

So, this is equal to; this term here is of course w of z. So, this gives me basically w of z d 

z by d z prime. So, note that delta z prime their line segments in the z prime coordinate 

the delta z prime, the line segment in the z prime coordinate transformed as d z by d z 

prime time’s delta z. The velocity w of z prime is now transforming as the inverse of that 

d z prime by d z times, I am sorry the velocity is transforming as the inverse of that d z 

by d z prime time’s w of z. So, the velocity transforms as the inverse of the integral of a 

line segment. So, that is the property of conformal mappings. The potential in the z and 

the z prime are both the same except that you have expressed z prime in terms of z. Line 

segments will transform as d z prime by d z times delta z is equal to delta z prime the 

new coordinate system. 

Velocities will transform as the inverse of that consequences of that. Firstly, circulation 

in both remain a constant, because circulation is defined as gamma is equal to integral d 

x dot u. Line segments are transforming as delta z d z prime by d z ,velocities are 

transforming as d z by d z prime. Therefore, velocity time distance remains the same in 

both of these coordinate systems; that means that the circulation in both of these is 

identically the same. If there is a circulation in the transformed coordinate system there is 

an equal circulation in the original coordinate system. Secondly, the kinetic energy of the 

flow is equal to integral over the surface area of half rho u square. The total kinetic 

energy of the flows integral over surface area half rho times u square. Distances are 

transforming as d z prime by d z; that means velocities will transform as the square of 

that. Velocities transform as d z prime I am sorry distances are transforming as d z prime 

by d z implies that surface area is transforming as the square of that is transforming as d 

z prime by d z the whole square. 



Velocity is transforming as the inverse one over d z prime by d z. Therefore, velocity 

square goes as one over d z prime by d z the whole square; that means that between the 

original and the transformed coordinates the kinetic energy has to be exactly the same, 

because the velocity is transforming as the inverse of the distances in the coordinate 

system. So, these kinds of transforms basically preserve circulation, they also preserve 

kinetic energy. The velocity in the new coordinate system is a simple one; therefore, I 

can transform it back in terms of the original coordinate system to get the velocity back 

in the original coordinate system. That is the big advantage of conformal mappings. You 

do not really have to solve the problem; you just have to find a way to transform from 

one coordinate system to the other, and of course, the subject of conformal mapping 

itself is beyond the scope of this course, but I will just take a little time here to layout 

two commonly used coordinate systems which are often used for mappings. 
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So, the first thing I showed you was that if I want to go from this one to this one this 

angle was pi by 2; therefore, F was equal to a z square and here I got F is equal to a z 

prime. And I did that by going from by defining z prime is equals to z square; it does not 

have to be just square it can be any power of z again. So, you had a general power of z. 

The general power of z is at power n that would in general represent some other angle; 

that would in general represent some other angle with the flow that looks something like 

this. That can be transformed into this flow just by doing this transformation z prime is 

equal to z power n. If this angle is alpha we know that alpha is equal to pi by n. 



Therefore I have z prime is equal to z power n which is equal to. So therefore, the 

derivative d z prime by d z is equal to n z power n minus 1. If I express this z power n 

minus one back in terms of z prime, I will get n into z prime power n minus 1 by n. It is 

equal to n into z prime power 1 minus alpha by pi, because I know that alpha is equal to 

pi by n; therefore, alpha by pi is equal to 1 over n. So, this basically gives me a transform 

for the corner. If I define my function d z prime by d z as n time z prime power 1 minus 

alpha by pi that transforms one corner into just a flat flow. However, this transformation 

which is called the Schwarz-Christoffel transformation is more general than that. It can 

be used to transform a more complex flow. 
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So, if I had a complex flow in the domain that look liked this, if I had one angle here one 

angle, if I had a flow that is going around in this domain, if I had a complex flow that is 

going around at this domain and the angles were defined as this is alpha, this is beta, this 

is gamma and so on. We had multiple angles there. This can still be transformed into the 

flow in just the upper half plane. This can still be transformed into this flow by this 

thing; this is let us call it as z a, z b, z c, z d. These points z a, z b, z c and z d will be 

transformed into points over here, and you have just a constant flow, and this 

transformation the way it is done is to define d z prime by d z is equal to some constant 

into, all this is primes, and so on. You can have more and more corners. All you need to 

do is put this transformation in, and this very complex flow transforms into a flow in a 

flat way in a linear flow in a plaster flat surface. 



So, this is a big advantage. If I have a very complicated shape object all I need to do is 

unfold it using this transformation. Then I know what the velocity in the simple 

configuration is; then use this transformation once again to transform the velocity and the 

potential back to the complex geometry that I have. So, this was called the. There is 

another transform which is often used in aerodynamics which actually transforms 

something that looks like an aero plane wing into a circle. So, if you have an object that 

looks something like this. So, this here is what is called the leading edge, and this is what 

they call the trailing edge, and this is often called 2 c where c is what is called the cord 

length. 

So, if I have a particular specific object that looks like this I can transform it onto a circle 

whose centre is of axis in the complex plain. So, I can transfer it into circle that looks 

something like this whose center is not at the origin. It is off the origin in the complex 

plain, and the leading edge gets transformed down here, and the trailing edge gets 

transformed here and the transformation for that. So, if this is z and this is z prime the 

transformation for that is equal to z prime plus c square by z prime, and so this is very 

useful because it transforms something that looks like an aero plane wing on to a circle. 

And we know what the velocity field around a circle is; we just solved that for the flow 

around a cylinder the potential flow around a cylinder with a net circulation and a net 

velocity. From that straight away you can find out what is the velocity field in this 

complex object. 

So, I just mentioned these two just to give you some idea of how powerful these complex 

these techniques in complex plain are in two dimensions. We do not have unfortunately 

equivalent techniques in three dimensions; if we had those then many of the problems 

that we deal would have been much simpler. So, this completes our discussion of 

potential flow. I first derived the equations for you for an inviscid rotational flow, and I 

showed you that you get two scalar equations. One is for the velocity potential itself, 

because the vorticity is equal to 0; therefore, the velocity can always be expressed as the 

gradient of the potential. So, one equation we get the Laplacian of the potential is equal 

to 0, and then the Bernoulli equation for the pressure. 

Then we solved it for simple cases. One is this sphere moving at constant velocity we got 

the velocity field around the sphere. We found that for constant velocity the net force is 

0. If this sphere is accelerating the net force has to be equal to the added mass times the 



acceleration. For a sphere added mass is equal to one-half of the mass of fluid displaced 

by this sphere. At constant velocity all components of the force are 0. Then we went on 

to 2 dimensional potential flows where we used techniques from the complex variables. I 

showed you that any analytic complex function the real and the imaginary parts satisfy 

the Laplace equation. So, we identified the velocity potential as the real part without loss 

of generality, and the imaginary part turns out to be the stream function. 

Then we looked at simple flows which are generated by common simple functions. For 

example power loss functions generate flow in a corner; log function generates either a 

point source of fluid or a line vortex in two dimensions. And we also looked at the flow 

around a sphere with cylinder with circulation around that cylinder found that the lift 

force is 0 at constant velocity; however, I am sorry the drag force is 0 at constant 

velocity. So, you need no net to do no work in order to move this object at constant 

velocity. The lift force is in general nonzero. If the circulation is nonzero the lift force is 

by rho u times gamma. So, you require a constant velocity as well as the circulation 

around the object in order to generate a lift force and finally, I showed you that that 

result that the lift forces rho u times gamma is general, not restricted to cylinders alone. 

For any object moving at a constant velocity in two dimensional object moving at 

constant velocity if there is a net circulation around that object there will be a net lift 

force; there is still no drag force. So, the work done is still zero, but there is a lift force. I 

discussed for you a few simple things about conformal mappings. So, this completes our 

discussion of potential flow; of course, in potential flow we have neglected to discuss F x 

completely. We have neglected diffusion of momentum; therefore, we cannot satisfy 

transactional velocity boundary conditions. However in the real system the transactional 

velocity does have to come to 0 at the surface of the object itself. 

The rest be movement diffusion which is restricted to a thin layer near the surface. That 

we will see in the next few lectures boundary layer theory similar to what we had done 

for heat and mass transfer, except that this is boundary layer from momentum transfer 

where the connective terms are non-linear in the velocity. So, we will solve boundary 

layer problems in the next lecture. Kindly go back and revise the boundary layer 

solutions that were done for heat and mass transfer, because many of the scaling 

arguments that we will use will be very similar to what we used previously. We will start 

boundary layer theory in the next lecture, will see you then.  


