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So we are at lecture number 27 of our course on fundamentals of transport processes, 

where we were discussing potential flows higher Reynolds number flows invisid, 

irrotational. The vorticity is equal to 0; that means that the anti-symmetric part of the rate 

of deformation tensor is equal to 0, since del cross u is equal to 0 u can be expressed as 

the gradient of the potential. So u is written as the gradient of a potential, this potential is 

the velocity potential and the mass conservation equation is equivalent to writing del 

square phi is equal to 0.  

So phi satisfies the Laplace equation and the momentum conservation equation can be 

reduced to the Bernoulli equation as we had shown in the previous lectures p plus half 

rho u i square plus rho times partial phi by partial t is equal to p naught. In the body force 

is provided that body force is can be expressed as the gradient of the potential, that 

potential can be incorporated within the pressure itself as we had shown in the previous 

lectures. 



So using this we had solved the equations for the flow around a sphere, moving with the 

constant velocity u. We found out that the force F i is equal to the added mass times d U i 

by d t. The kinetic energy is equal to half added mass times U i square in both cases the 

added mass is equal to the density of the fluid times 2 by 3 pi R cubed, 2 by 3 pi R cubed 

is one half of the mass of fluid displaced. I am sorry, 2 by 3 pi R cube times rho is one 

half of the mass of fluid that is displaced by the sphere and we got the rather paradoxical 

result that for a sphere that is moving at constant velocity, the net force exerted by the 

sphere on the fluid is identically equal to 0.  

I had justified that on the basis that since there are no viscous treasures, there is no 

dissipation of energy therefore, you should not required to do any work in order to move 

that sphere at constant velocity. In this lecture, we will see that this is a more general in 

relation, for any object that is moving at constant velocity the net force exerted on that 

object is equal to 0. 
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So let us take an object of a general shape let us take an object of a general shape moving 

with a velocity u, once again I work in a coordinate system, which is fixed at the centre 

of the object of course, I could equivalently have the object at constant velocity, I am 

sorry the objects stationary and the fluid flowing in at a constant velocity far away from 

the object, the result will end up being the same. We will solve it for this particular 



configuration in this lecture and later when we do two dimensional potential flows we 

will solve it for the other configuration.  

I fix my origin at the centre of this object and I find out the velocity potential of course, 

the velocity potential for this case is going to be a complicated expression for a sphere I 

got a nice simple velocity potential, for this particular cases going to be a complicated 

expression. But in either case the force exerted the force exerted F i is going to be 

integral over the surface of p times n i times a unit normal is equal to minus integral ds of 

p naught minus half rho u i square. Because the object is moving with a constant velocity 

the origin of the coordinate system is translating I have this additional contribution to the 

total time derivative of the potential. So this is equal to minus rho d phi by d t. 

Because this object is going at a constant velocity d phi by d t is not equal to 0 even 

though the velocity is a constant, even though d u d t is equal to 0, d phi d t is not equal 

to 0 because the object is translating. Therefore, if I am sitting at a fixed location, a fixed 

observation point as an object is moving the potential at this point changes because the 

distance from the centre of the object changes. Even though I am sitting at a fixed 

location, because the origin of the coordinate system is moving, this is going to be a 

change in the potential at that point.  

We had calculated that in the previous lecture and that turns out to be minus integral ds 

of p naught I am sorry if I have a unit normal here minus half rho u i square plus rho 

capital U summation, see this is a different index because I cannot have the same index 

appearing three times. So this is u j square minus rho times capital U j times small u j 

times n i of course, p naught by an integrated over this entire volume p naught times the 

unit normal integrated over the entire surface has to be equal to 0 because a constant 

pressure cannot exert a net force. 

So I get the final force as integral over the d surface ds of half rho u j square minus rho U 

j u j times n i. So I have to evaluate this. Note that this n i is the outward unit normal this 

n is the outward unit normal to the object. Now consider the following integral consider 

the following integral, integral over the fluid volume integral over the fluid volume of 

partial by partial x i of rho u j square by 2 minus rho capital U j small u j.  

So this is an integral over the entire fluid volume. So to place this in context I am having 

an object which is moving at the velocity U and I have got an expression for the force. 



This is an irregular object I have got the expression for the force. If I consider this 

integral over the entire fluid volume which goes all the way from the surface of the 

object to a surface far away at infinity, fluid volume this is the fluid volume V which 

goes all the way from the surface of the object to the surface far away at infinity. This is 

the divergence of something integrated over the volume that is equal to integral over the 

bounding surfaces of n dot this thing. 
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So this is equal to integral over the surface this one surface at s infinity as we saw, this 

another surface on the surface of this sphere. So there is an integral over the surface at 

infinity ds of n i into rho u j square by 2 minus rho capital U j small u j minus the 

integral over the surface s ds n i one has to be careful here, because for the surface that is 

on the surface of this sphere the fluid surface that is on the surface of the sphere the unit 

normal’s pointing opposite to the unit normal to this sphere, the unit normal is pointing 

opposite to the unit normal of the sphere.  

So therefore, whereas, I should strictly speaking add up the contributions on the two 

surfaces. If I take this n i to be the unit normal for the sphere itself if I take this n i to be 

the unit normal for the sphere itself this becomes minus integral ds n i of the same thing, 

where I have defined my n as the outward unit normal to the surface of the sphere on this 

integral ds and you can easily verify that this second term is just the force on the sphere, 

the second term here, the second term that I have here is just the force on the sphere that 



is here of course, the first term is an integral at infinity, the second term is the integral 

over the surface of the sphere. 
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So this is going to be equal to integral ds of the surface at infinity n i into rho u square by 

2 minus rho minus F i. So this gives me the force F i in terms of this volume integral 

over the fluid volume and the surface integral over the surface at infinity therefore, this 

gives me F i is equal to integral over the surface at infinity minus integral over the 

volume minus the integral over the volume fluid volume. We can simplify this integral 

over the fluid volume by taking, by differentiating it, differentiate using chain rule, 

partial by partial x i of half rho u j square is going to be equal to rho u j partial u j by 

partial x i, partial by partial x i of rho u j times capital U j capital U is the velocity of the 

object it is a constant therefore, this just becomes equal to minus rho u j partial capital U 

is a constant, I have here partial u j by partial x i. 

I have here partial u j by partial x i since the flow is a irrotational the rate of deformation 

tensor is symmetric therefore, the rate of deformation tensor partial u j by partial x i is 

equal to its transpose because we have an irrotational flow, the anti-symmetric part of the 

rate of deformation tensor is 0 therefore, the rate of deformation tensor is symmetric. 

That means, that the rate of deformation tensor partial u j by partial x i is equal to its 

transpose partial u i by partial x j.  



So this becomes equal to integral over the surface at infinity ds n i minus integral over 

the volume of rho u j partial u i by partial x j minus rho times capital U j partial u i by 

partial x j. I just replaced the rate of deformation tensor by its transpose because we 

know that the rate of deformation tensor is symmetric. Now I have to two terms here, 

these two terms let us just simplify them a little bit. We know that rho u j partial u i by 

partial x j can be written as rho times partial by partial x j of u i u j minus rho u i partial u 

j by partial x j.  

The second term is of course, velocity times the divergence of the velocity partial u j by 

partial x j is the divergence of the velocity, since the flow is incompressible the 

divergence of the velocity has to be equal to 0 and therefore, I have rho u j times partial u 

i by partial x j is rho times partial by partial x j of u i times u j, as for the second term rho 

u j partial u i by partial x j, since capital U is a constant anyway I can take it into the 

derivative because capital U is a constant anyway. So I can take it into the derivative. So 

this becomes equal to the rho partial by partial x j of u i times capital U j.  

So substitute these n the simplifications n and I will get the force F i is equal to integral 

as a infinity ds n i into rho u j square by 2 minus rho u j capital U j minus integral dV of 

rho partial by partial x j of u i u j minus rho partial by partial x j of u i times capital U j. 

So that is a simplification for this case, you look at this second term here, look at the 

second term here, both the terms here are the divergence of something integrated over a 

volume, both terms are divergence of something integrated over a volume. So that can of 

course, will reduce to a surface integral, the integral of the unit normal times the surface, 

partial by partial x j of u i u j integrated over the volume is equal to n j times u i u j 

integrate over the surface. 
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Of course, now there are two surfaces, one is the surface on the object itself; the other is 

the surface at infinity. So therefore, for this fluid volume V there are two bounding 

surfaces, one surface is on the object, the other surface is far away at infinity therefore, 

this volume integral has to be summed over those two surfaces. So therefore, if I convert 

this into a surface integral what I will get is integral over the surface at infinity ds n i into 

rho u square by 2 minus rho minus I have two surface integrals here, integral the surface 

at infinity ds n i into rho u i u j minus rho u i times capital U j. So this is over the surface 

at infinity and I have the next over the surface integral over the surface of the object, 

note that in this case I am taking the unit normal outward. And therefore, I have an 

negative sign, I had taken the unit normal inward to the object or outward to the fluid, 

this would have be in a positive sign. 
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So these are the two terms that come out from this volume integral after I have used the 

symmetry of the rate of deformation tensor. So I am getting an integral over two surface 

integrals over surface is at infinity and one surface integral over the object itself let 

simplify it a little bit here so this gives me the force F i is equal to integral over the 

surface at infinity ds n i into rho u j square by 2 minus rho u j U j minus the integral over 

the surface at infinity ds n i in I am sorry this is n j yeah please make that correction here, 

this index should be j n j because I have a derivative with respect to x j here. Therefore, 

the unit normal has to have the same index as the derivative. So I should have n j. So this 

should be n j rho u i u j minus rho u i U j plus the integral over the surface ds of rho u i 

into n j u j minus n j times capital U j, this putting these two terms together this becomes 

a rho u i times n j small u j minus n j times capital U j. 

This is my final expression for the force and I have taken you through all of this just to 

prove this one point, that this entire thing has to be equal to 0, on the surface of the 

object the no normal velocity boundary conditions unit normal dotted with fluid velocity 

has to be equal to unit normal dotted with object velocity. What I have here is the 

difference unit normal times object fluid velocity times minus unit normal times fluid 

velocity n dot small u minus n dot capital U, from the no normal velocity boundary 

condition on the surface of the object this entire thing has to be equal to 0 because there 

is a no normal velocity boundary condition on this object.  



If two integrals over the surface at infinity the two integrals over the surface at infinity as 

r goes to infinity the velocity field decreases as 1 over r cubed for a sphere, it decreases 

exactly as 1 over r cubed for an irregular shaped object you could have other terms as 

well those are the terms of course, have decay faster as 1 over r power 4, 1 over r power 

5 etcetera the 1 over r cubed decay for the velocity field corresponds to the 1 over r 

square decay for the potential. 

If the potential decays as 1 over r square the velocity which is the gradient of the 

potential decays as 1 over r cubed. The velocity will decay with a lower power only if 

you have a contribution to the potential proportion to 1 over r, 1 over r is a source term. 

So if you have a source term you will have a contribution to the velocity which decays 1 

over r square. However if there is no net source, if you satisfy the incompressibility 

condition there is no net source within the fluid, the highest power of decay can be 1 

over r square for the potential and therefore, the highest power of decay for the velocity 

can be 1 over r cubed.  

If the velocity decays as 1 over r cubed you can see the first two integrals the surface 

integrals over the surface at infinity, velocity decreases as 1 over r cubed surface area of 

a surface, where r goes to infinity increases as 1 over r square, the product of the two 1 

over r cubed times 1 over r square is proportional to 1 over r and that product goes to 0 in 

the limit as r goes to infinity and for that reason the integrals over both of the surfaces. A 

surface integral over both of these surfaces both of them go to 0 in the limit as r goes to 

infinity therefore, this has shown that for any shaped object the net force exerted by the 

fluid on the object provided it is moving at constant velocity has to be equal to 0 when 

we derived for the specific case of a sphere in the last lecture. 

We used symmetry arguments to derive this but, this calculation shows the that is true 

for any object and I took you through this for a three dimensional object because I will 

be doing a similar calculation for a two dimensional object, when we look at two 

dimensional potential flows in the next section. So this calculation basically shows us 

that the net force exerted on the fluid by any object is 0 provided it is moving at constant 

velocity. As I mention that is equivalent to what is called the de-Alembert’s paradox in 

the last lecture.  



The kinetic energy of course, has to be a constant and once again this is a reflection of 

the fact that there is no net dissipation of energy in the flow, because you completely 

neglected viscosity, dissipation of energy of course, only to two viscous dissipation due 

to the viscous part of the stress tensor, in this case you neglected it. We include only the 

pressure which is the reversible part of the stress tensor for that reason there is no 

dissipation and therefore, the net energy of the flows preserved therefore, to move an 

object at constant velocity you do not need to exert a force.  
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Because when you accelerate the object you do need to exert a force, that force is equal 

to the added mass times the acceleration. For the particular case of a sphere we found the 

added mass is equal to one half of the mass of the fluid displaced by the sphere. So let us 

go to next topic which we will consider two dimensional potential flows, that is we are 

going to try to solve the Laplace equation in two dimensions del square phi is equal to 0 

which corresponds to d square phi by d x square plus and we will solve this using the 

principle of complex variables, the solutions that we get are in general applicable to any 

case where the Laplace equation where the the the variable that the field satisfies the 

Laplace equation. It applies equally well to the diffusion equation for temperature and 

concentration as well but, in this particular case will apply to the case of potential flow 

equations. So we have two x and y coordinates, in this two dimensional plane one can 

define a complex number as z is equal to x plus i y. 



In that case you take the x axis as the real axis the y axis as the imaginary axis and any 

point z has given by x plus i y alternatively, if I take in a polar coordinate system r theta 

coordinate system this is also given by r e power i theta, where e power i theta as you 

know is cos theta plus i sin theta this gives us of course, if i substitute this e power i theta 

is equal to cos theta plus i sin theta I get x is equal to r cos theta y is equal to r sin theta 

as the usual conversion from polar coordinate system to a cartesian coordinate system.  

Now we can have a function of this x and y coordinates in the complex plane. Some 

function which is a function of this coordinate z, this is in general a complex function 

this is in general a complex function it will in general have real and imaginary parts, both 

of these real and imaginary parts will be functions of both x and y. So this function will 

in general have a real part plus an imaginary part. A functional will have a real part plus 

an imaginary part, this function is what is called an analytic function. Analyticity in the 

complex plane is the equivalent of differentiability in the real plane this function is called 

an analytic function provided that I can define a derivative d F by d z. 

So the question is that if i move a small distance delta z from the location z in some 

direction. If I move a small distance delta z from the distance from the location z in some 

direction at my original location I had my function F of z my original location I had my 

function F of z I move to a new location z plus delta z, this function has some other value 

there F of z plus delta z. The difference between the two is the change in F when you 

move from z to z plus delta z.  

So it is a change in F if you move from z to z plus delta z and a function is called 

analytic. If this delta F can be expressed as some function d F by d z times delta z. What 

that means is that the change in delta F the change in f the delta F, which is the change in 

F when I moved from location z to location z plus delta z depends only upon delta z that 

is delta x plus i delta y it does not depends separately on x and y it depends on x and y 

only through this delta z which is x plus i delta y. 
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So the requirement that the function has to be analytic imposes conditions on the real and 

imaginary part of this complex function. So let us look at that. So what is delta F? F delta 

F the change in F if I if I write F as phi plus i times psi right the change in F is going to 

be equal to delta x times partial phi by partial x plus i partial psi by partial x plus delta y 

times partial phi by partial y plus i partial psi by partial y just using the chain rule for 

differentiation. Delta F is the change in F when it goes a small distance delta z, delta z is 

equal to delta x plus i delta y; that means, that delta F is going to be equal to the variation 

of phi with respect to x times delta x i am sorry the variation of F with respect to x times 

delta x plus the variation of F with respect to y times delta y and partial F by partial x is 

equal to partial phi by partial x plus i times partial psi by partial x ultimately, I want 

something that goes proportional to delta z. We want something that proportional to the 

delta z. So I rewrite this as delta x times plus i delta y times. 

Note that the complex square root of minus 1 the imaginary number i has the property 

that i square is equal to minus 1 which means that in the second expression I have minus 

I, minus i times i is equal to minus 1 into minus 1 which gives the plus sign over here. So 

that separation I have made, I have written delta y times partial phi by partial y as i delta 

y times minus i partial phi by partial y. So if this difference delta F can be written 

proportional to delta z which is equivalent to d F by d z times delta x plus i delta y.  



If it can be written in this fashion it implies that the coefficient of delta x and the 

coefficient i delta y have to be equal in this expression for delta F, the coefficient of delta 

x and the coefficient of i delta y have both got to be equal what; that means, is that this 

has to be equal to this one. Note that F was complex but, phi and psi are real values even 

though F was complex both phi and psi are real functions therefore, if these two are 

equal you require that separately the real parts are equal and there imaginary parts are 

equal. 
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If these two numbers are equal to each other you require separately that the real parts are 

both equal to each other and the imaginary parts are equal to each other. So therefore, the 

function is analytic only if partial phi by partial x is equal to partial psi by partial y and 

partial phi by partial y is equal to minus partial psi by partial x. So this gives you the 

conditions under which the real and imaginary parts are both equal and complex 

variables is often referred to as the Cauchy Riemann conditions for analytic functions.  

If a function is analytic its real and imaginary parts have to satisfy these conditions for 

the function to be analytic in the complex plane the Cauchy Riemann conditions, this 

also has implications for the functions phi and psi itself, the easy way to see it for 

example, you can do two things here, the first thing you do is the take the first function, 

you take partial by partial x by partial x of this whole thing and you take partial by 

partial y the second function and add both of them up. 



So on the left hand side you have partial square phi by partial x square plus partial square 

phi by partial y square. On the right hand side I have the second derivative partial psi by 

partial x partial y minus partial square by phi by psi by partial x partial y this is 

identically equal to 0. So this basically tells me that if a function is analytic its real part 

identically satisfies the Laplace equation in this two dimensional plane, I could do the 

other thing. So I could do the other way that is I multiplied this way partial by partial y 

this is by partial by partial x and then subtract the two, we subtract the lower one from 

the upper one, the second derivatives of phi will cancel out and I will be with left a 

Laplace equation for psi. So to summarize if a function is analytic both its real and 

imaginary parts satisfies the Laplace equation. So we are looking for potential flow 

solutions which satisfy the Laplace equation therefore, this tells us that any complex 

function any, analytic complex function in the complex plane does satisfy the Laplace 

equation. 

So when you look a potential flow solutions we look for two things, the first is that it has 

to satisfy the Laplace equation, the second is that it has satisfy the no normal velocity 

boundary conditions. An analytic function does satisfy the Laplace equation. So it is a 

valid potential flow solution provided it satisfy the normal velocity boundary condition 

therefore, any analytic solution function in the complex plane which satisfies the no 

normal velocity boundary condition is a valid solution for the potential flow equations in 

that domain subject to those boundary conditions. As I have already shown you solutions 

for potential flow are unique therefore, you can have only one solution which satisfies 

the boundary conditions and there is an analytic function in the complex plane therefore, 

it satisfies the potential flow equations. So for this analytic function since I know that the 

real part satisfies the Laplace equation without loss of generality, I can assign phi the real 

part as the velocity potential. 

So for the potential flow F is equal to phi of x, y plus i psi of x, y. We know both of them 

automatically satisfy the Laplace equation. I will choose phi as my potential function. So 

potential function is phi is equal to phi this satisfies del square phi is equal to 0 what; that 

means, is that the velocity components u x will be equal to partial phi by partial x and u i 

is equal to partial phi by partial y. So if I choose my potential this is just my convention 

you could choose either one as a potential, if you choose the negative of that also as a 

potential but, as a convention we choose the real part of this complex function as the 



velocity potential and then you get the two velocity fields based upon the two 

components of the velocity based upon the derivatives of the potential at that particular 

location. 
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So we know that d F by d z we just calculated d F by d z here is equal to delta x times 

partial phi by partial x plus i partial psi by partial x plus i delta y times minus i partial phi 

by partial y plus partial psi by partial y and because our solution is analytic the 

coefficients of delta x and the coefficients of i delta y are identically equal to each other. 
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So therefore, I can choose either of these is equal to delta x plus i delta y into partial phi 

by partial x plus i partial psi by partial x. However i times partial psi by partial x we have 

the Cauchy Riemann condition here that partial psi by partial x is equal to minus partial 

phi by partial y. So this is equal to delta x plus i delta y is just delta z into partial phi by 

partial x minus i partial phi by partial y which is equal to I am sorry I should write the 

left hand side as delta F here is equal to delta z times u x minus i u y.  

So once I have the complex function I have the complex function F which is analytic, 

whose real part is the velocity potential then the derivative of that complex function 

which I will refer to as the complex velocity it is equal to d F by d x will be equal to u x 

minus i u y. So this is how the complex velocity which is u x minus i u y is related to the 

derivative of the complex potential. 
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I will refer to F as the complex potential, the real part of F is the actual potential and the 

imaginary part is this function psi and the derivative of that is the complex velocity, that 

complex velocity is equal to u x minus i u y, where u x and u y are the two components 

of the velocity. What is this function psi? We know that from the Cauchy Riemann 

conditions partial phi by partial x is equal to u x is equal to partial psi by partial y and 

partial phi by partial y is equal to u y is equal to minus partial psi by partial x.  

So what is psi? It is clear from this psi is the stream function, stream function satisfies 

the condition u x is equal to partial psi by partial y, u y is equal to minus partial psi by 



partial x therefore, if i define my complex potential F of z is equal to phi of x y plus i and 

if I identify phi as my velocity potential then psi is the stream function and partial phi by 

partial x and partial phi by partial y are u x and u y respectively, and from the Cauchy 

Riemann conditions there have to be partial psi by partial y and minus partial psi by 

partial x and if I take the derivative d F by d z. 

I will get u x minus i u y this is the complex velocity obtain by taking the derivative of 

the complex potential, note that the derivative of the complex potential with respect to z 

coordinate it is like taking a gradient except that both of these are now complex objects, 

where they do not have vector directions, there is complex objects in this complex plane. 

One can get another interpretation of d F by d z in a polar coordinate system.  

So let us just briefly do that for proceeding x and y. So if I am at some location r with an 

angle theta, this is u x, this is u y, one can find out the components in the r theta 

coordinate system. The r theta coordinate systems u r is along the r direction, u r is along 

the direction of increasing r and therefore, it makes an angle theta with respect to the x 

direction, u theta is along the direction of increasing theta. Note that theta increases in 

this direction theta increases in this direction, in the anticlockwise direction therefore, u 

theta has to be in this direction. So this is the direction of u theta. 

So therefore, the angle between u theta and u y is also equal to theta. So now this 

complex velocity u x and u y iI can write in terms of u r and u theta, it is quite easy to see 

that u x is equal to u r cos theta, u r cos theta because the angle between u x and u r is 

theta u theta is directed in the direction of minus u x, u theta is in the anticlockwise 

direction therefore, it is in the direction of minus u x. So this becomes minus u theta sin 

theta and u y angle between u y and u r is pi by 2 minus theta. So u y is equal to u r sin 

theta plus u theta cos theta u y is equal to u r sin theta plus u theta cos theta substitute 

that in here d F by d z is equal to u r cos theta minus u theta sin theta minus i into u r sin 

theta plus u theta cos theta, you can simplify this you can simplify this quiet easily to get 

u r minus i u theta into cos theta minus i sin theta and u r cos theta minus i am sorry cos 

theta minus i sin theta is equal to u r minus i u theta e power minus i theta. 
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Therefore, to summarize if we have a complex function f of z is equal to phi of x, y plus i 

psi of x, y we identify phi as the potential function. If this is analytic function both phi 

and psi automatically satisfy Laplace equations. So they are all both solutions of the 

potential flow equations without loss of generality and by convention we identify phi of 

this analytic function as the potential for our potential flow. In that case psi automatically 

becomes the stream function. So the real part is the potential, the imaginary part is the 

stream function. We define the complex velocity as d F by d z this can be written as in 

terms of the two velocity components as u x minus i u y alternatively, as u r minus i u 

theta e power minus i theta. So these are that the velocity components in terms of the 

complex velocity w which is the derivative of the potential function with respect to psi. 

So this was the first part of our analysis. How do you get the solutions, which 

automatically satisfy the potential equation? We showed that any complex function, 

which is analytic automatically satisfies the potential equations. 

However the potential flow equations have to satisfy not just the Laplace equation itself, 

potential flows which satisfy not just Laplace equation itself but, also the no normal 

velocity boundary conditions. So we have to find solutions for the potential flow 

equations which satisfy the zero normal velocity boundary conditions under specific for 

specific configurations. So we will continue that in the next lecture but, before that let 

me just talk about complex analytic functions.  



What are the forms of F of z which are analytic? In general any function which acts on z 

itself and does not act differently on x and y is an analytic function, this includes all 

possible functions such as z, z square etcetera any polynomial z bar and any some of 

polynomials, if you have a linear sum of polynomial functions it will also be analytic, 

since for example, exponential of z e power z, sin z, cos z all of these functions can be 

expressed in Taylor series which involve powers of z, since any power of z is analytic all 

of these functions also are analytic. 

So there are various functions of various kinds any common function which acts on z 

itself does not act separately on x and y is an analytic function, there are few things that 

one has to be careful about for example, z power functions of the form 1 by z, 1 by z 

square etcetera these are also analytic except that they go to infinity at the origin but, 

they are still analytic. If you take the real and imaginary parts of these function find that 

they do satisfy the Cauchy Riemann condition 1 over z, 1 over z square and so on only 

thing is they go to infinity at the origin, then there are other function such as log of z this 

is also an analytic function but one has to be careful in how it is defined in the complex 

plane, one has to be careful because if I define F of z is equal to log of z this is equal to 

log of r e power i theta, z is equal to r e power i theta. So this equal to log r plus i theta. 

Now the point is that in the complex plane the point at a particular location is defined by 

r and theta. So this is the angle from 0, this is x and y, this is the angle from the x axis. 

So I have a point, whose coordinate is r and theta the angle from the x axis is theta, 

however theta is not uniquely specified for this case, because if I go all the way around 

then come back to that location theta goes to theta plus 2 pi. 
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So that is same point is at theta is equal to theta let us say it is some 50 degrees say is 

theta, then 50 degrees is equal to theta at that point, theta is also equal to 2 pi plus 50 

because I can go all the way around and come back. So at one particular location, I have 

multiple values for the angle theta because I can go on number of times around the 

origin, come back to that location and I have the same physical point has multiple values 

of theta. Of course, one cannot have a multi valued function I require that the entire that 

the all points on this plane have unique values of coordinates, they do have unique values 

of x and y, but when I expressed in terms of theta it has multiple values that does not 

make a difference for functions of this kind. 

Functions of this kind, even though theta is different, the physical x and y will still be the 

same. But for this particular function the imaginary part is equal to i times theta and that 

has multiple values therefore, one has to take the care to ensure that you define a 

coordinate such as such that you cannot cross one particular axis. So in other words I 

cannot go around this axis is called a branch cut. So in that case this axis on this side is 

theta is equal to pi, on this side of this axis theta is equal to minus pi and I cannot cross 

this axis and therefore, theta is uniquely specified throughout the domain.  

So this branch cut is required both for the log function as well as for fractional powers, z 

power half for example, if I take z power half I get e power i theta by 2. So if I go around 

theta to theta plus 2 pi that e power i theta by 2 has a different value. So for all those 



cases one has to take a branch cut in the complex plane, subject to that all of these are 

analytic functions, the only non-analytic function is one which acts separately on x and y 

for example, if I take the complex conjugate, if I take z is equal to x plus i y the complex 

conjugate is equal to x minus i y. 

So this is not an analytic function because we are operating separately on x and y, where 

as in all such functions which operate on z itself, they all turn out to be analytic 

functions. So we have this range of analytic functions which we can which represent 

potential flows and we can ask for this particular form of the function what kind of 

potential flow do I get? So in next lecture we look at that question, I choose a particular 

form for the function and I try to see, what is the kind of potential flow that results for 

this particular form of the function and by identifying boundaries on which the normal 

velocity is equal to zero.  

I can find out what kinds of flow result from specific values of these complex functions. 

So that we will continue in the next lecture, what kind of potential flows results from 

specific forms of complex functions? We will continue that and look at potential flows in 

two dimensions using this complex plane. So that will be our next step to look at what 

kind of potential flows result from specific forms of the complex function? We will 

continue that in the next lecture. We will see you then. 


