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Introduction 

Welcome to the Fundamentals of Transport Processes – II; this is the second lecture in 

this course. In the first lecture, I have briefly reviewed the prerequisite for this course 

that is the fundamentals of transport processes 1, briefly what we did there and how. I 

hope you have had a chance to go back and look at those things because we will be using 

similar material here as well. In this lecture I would like to focus on what we will be 

doing in this course, most of this course will be comprised of fluid mechanics that is how 

do you calculate the velocity field for fluid flow, given the forces that are acting on that 

fluid.  
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Now, in the last course we had dealt primarily with transport of mass and energy. 

Transport of mass I must emphasize is confined to the case of very dilute solutions, 

where the solute concentration is small, so that the transport of solute does not affect the 

center of mass motion of the fluid as a whole. In this course we will deal primarily with 

momentum transport that is fluid mechanics trying to predict the velocity field of the 

flow. The big difference between this and the previous course as you would have 

anticipated is that velocity is a vector, it has 3 components this is in contrast to 



concentration, and temperature fields for mass and heat transport respectively, which are 

both scalars. So, we could write out equation for just 1 quantity. 

Whereas in this case for the velocity field it has 3 components, more importantly those 

components depend upon the coordinate system that you are using to analyze the 

problem. If you analyze it in different coordinate systems the components of the velocity 

will in general be different. So, that is something that has to be kept in mind since there 

are 3 components 1 might think simplistically that I could just write down 3 equations 

for each of those components, and solve them. However these equations depend upon 

what coordinate system you are using to analyze the problem.  

In the previous fundamentals of transport processes course, we had talked about the 

transport of heat and mass these are given by the fluxes, the heat flux and the mass flux. 

These fluxes are vectors they are in the direction of variation of concentration and 

direction of variation of temperature. So, in the case of scalar quantities, such as heat and 

mass the fluxes are in the form of vectors. You can anticipate that in the case of vector 

quantities, such as the fluid velocity the flux is going to be more complicate and so we 

will develop techniques in this course to analyze, the velocity as a vector itself. And the 

flux of the velocity as just 1 object independent of the coordinate system, that is being 

used to analyze the problem. And for that we need to develop specialized skills and i will 

come back to that, but first what is the framework that we are going to be using? 

The framework is basically what is called the continuum approximation, which I had 

discussed in the last fundamentals of transport processes course as well. That is we 

assume that the concentration, temperature and velocity are continuously varying 

functions of position; that is they have 1 particular value at each and every location in 

space, those values can also change in time.  

So, the idea is to identify these fields, the concentration, temperature and velocity fields 

as continuously varying functions in space and time. And see what constraints are 

imposed by conservation laws and constitutive relations and how these fields can vary. 

These constraints give us conservation equations which are in the form of differential 

equations, telling you as you go from point to point in space and as you progress in time, 

how these fields vary. And if you can solve those differential equations you can get by 



some kind of an integration procedure, the entire velocity field, concentration field or 

temperature field.  

Now, once you have a continuously varying function the advantage is that you can use 

all of the machinery that has been developed in calculus for differentiation integration, 

but as in the case of the fundamentals of transport processes 1 it’s a little more that and 

we will discuss what methods we developed for solving these filed equations. Of course, 

the concept of field itself is an approximation, so if I have a fluid say flowing past some 

object I am defining velocity and temperature fields as continuously varying functions 

around this object. And what do I mean by the value of the temperature or the velocity at 

1 particular point, the value at 1 particular position. So, if I have a coordinate system so 

if I have some particular position x, y, z. 

What is the meaning of saying the temperature at this point or the density at this point 

has some specific value. What that means is that I go to this particular location sit on this 

location and construct a small volume around this location, construct a small volume 

around this location. So, this volume can be any shape in this particular case I will just 

take a cubical shape. So, this is the location and at this particular location I construct a 

small volume of distance let us say delta x, delta y, delta z and I count what is the total 

number of molecules of the fluid within this differential volume.  

And so if I take the total number of molecules within this differential volume, my fluid 

density is defined as the summation over this entire volume of the mass of the molecule 

of each molecule over all the molecules within this volume divided by the volume itself. 

So, this is equal to the mass of the molecule types and number of molecules divided by 

the volume that is the density.  

Note that in my definition I have delta v at the bottom. So, this is the mass per unit 

volume, in the limit as the volume goes to 0 in the volume as the in the limit as delta x, 

delta y, delta z become smaller and smaller this volume shrinks down to a point at the 

same time. Since, the volume is decreasing the number of molecules is also decreasing in 

such a way, as the in the limit delta x, delta y, delta z goes to 0 this limiting value has a 

unique limiting value that is in the limit as delta x delta y delta is going to 0, volume 

itself is shrinking, but however the number of molecules over there is also decreasing. In 

such a way that the ratio of the 2 goes to a constant value as delta x, delta y, delta z are 



going to 0. So, that is the meaning of density at 1 particular location, what about the 

velocity field? 

The velocity field this as I said is a vector this velocity field is a vector. So, for this 

vector I will use the notation u under bar to denote that it is a vector. So, here what I do 

is I go to this differential volume each molecule within this differential volume has 1 

particular velocity or 1 particular momentum vector. So, I add up over all the molecules 

of the mass of each molecules times the velocity of each molecule, I add up the mass of 

each molecule times the velocity of each molecule.  

And then I divide it by delta v, this is what is called as the momentum density this is 

what is called the momentum density that is in this case mean the momentum per unit 

volume, which is equal to the mass density times the mean velocity. So, if I have the 

mass density from here and I do this calculation and find out the momentum density, the 

velocity is just this whole thing divided by the mass density in the limit once again as the 

volume goes to 0 limit. 
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So, that is what is meant by saying the mean velocity at a particular point, so that is the 

local point wise value of the velocity at that particular location. Note that this is a vector 

velocity so if I for example, if I take the velocity of molecules in the x direction or in the 

y direction. Some molecules will have positive velocity some molecules will have 

negative velocity you have to add all of those up, if the fluid is at rest it does not mean 



the molecules are at rest. What it means is that the sum of the velocities of all molecules 

is equal to 0 not that their individual molecular velocities are equal to 0. So, this is a 

vector addition it gives you a vector momentum density and that divided by the density 

itself is the vector mean velocity of the fluid, the fluid mean velocity.  

Now, of course, you cannot just take this volume going to 0 because as you make the 

volume smaller and smaller, there is going to come a stage at which, there is either 1 

particle in that volume or no particles in that volume. So, there is a limit to which you 

can take this delta v going to 0, this delta v that you are assuming has to be sufficiently 

small that it is small compared to what are called the macroscopic scales in the flow. In 

this particular instant that macroscopic scale will be the sphere diameter. For example, 

the flow through a pipe that macroscopic scale will the be the pipe diameter. You have to 

make sure that the length scales of the differential volume are small compared to the 

macroscopic scales.  

However they still have to be large compared to the microscopic scales they have to be 

large compared to the molecular diameter for liquids, large compared to the mean free 

path the time between collisions for gas molecules. So, as you make this differential 

volume smaller and smaller in such a way that the volume the characteristic length is 

small compared to the macroscopic scales. But still large compared to the molecular 

sizes you are going to come to a stage at which you can define the density and the mean 

velocity as quantities, which are independent of the size of the volume with the 

stipulation that it is large compared to the microscopic scales. But still small compared I 

am sorry large compared to molecular scales, but still small compared to microscopic 

scales. 

So, the typically in the case of gases or liquids in fundamentals of transport processes 1 

we had actually calculated mean the free path of a gas. And that mean free path turns out 

to be of the order of 0.1 to 1 micrometers. So, that is pretty small any typical length scale 

that we encounter in process applications starting from millimeters to centimeters meters 

is going to be sufficiently large, that 1 can use the continuum approximation.  

Continuum approximation cannot be used when the size has become sufficiently small 

that it is comparable to molecular scales, either the mean free path or the distance 

between or the molecular diameter. In that case we have to actually do a complete 



molecular based simulation of the entire system. So, that is the only limitation of the 

continuum approximation. So, here I have defined for you the density the mean velocity 

as fields and I have sort of tried to explain what those fields mean. The other 

distinguishing feature of this velocity field is that the velocity is a vector. 
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As I said at 1 particular location, the velocity field is a vector it has the magnitude and a 

direction. And it can be resolved into 3 components, so I can write for example, if 

velocity u is equal to u x e x plus u y e y plus u z e z it can be written in terms of 3 

components, along the 3 different directions where e x e y and e z are the 3 unit vectors, 

the 3 unit vectors in the 3 directions. So, you can consider this as a combination of 3 

scalars u x in the x direction u y in the y direction and u z in the z direction, and that is 1 

way to do it to try to write conservation equations for each of this. 

However there are properties of vectors which are independent of the coordinate system. 

So, for example, if I were to use a different coordinate system for this if I were to use a 

coordinate system consisting of x prime, y prime, z prime with 3 unit vectors in those 3 

directions. Then this will also be equal to u x prime times e x prime plus u y prime time e 

y prime plus u z prime time e z prime, and you get 3 other components. Of course, there 

should be equations for those as well, but the vector itself has an identity which is 

separate from the coordinate system that you are using to analyze it.  



For example, if I have a flow around a sphere in some particular direction, so in this 

particular case let us say that this was a velocity field for the flow around a sphere in 

some particular direction. This vector is a physical quantity that vector has an identity 

independent of the coordinate system because it is actually gives you the direction of the 

motion of the fluid at that particular location. So, vectors have identity which are 

independent of coordinate systems.  

So, rather that writing down equations for each particular scalar in this manner, I should 

be able to write the equations for the entire vector field itself and that will be 1 of the 

objectives of this course, to derive equations for the vector field itself treating it as an 

object independent of coordinate systems. For example, there are certain things of 

vectors which are independent of coordinate systems, for example, the magnitude of a 

vector is independent of the coordinate system used this also has to be equal to it is 

independent of the magnitude of the coordinate system used. 

Similarly, the dot product between 2 vectors this is also independent of the coordinate 

system used because the vector is actually a physical thing. So, this I can write it expand 

it as A x B x plus A y B y plus A z B z this is also equal to this us also equal to A x 

prime B x prime plus A y prime B y prime plus A z prime B z prime its independent of 

the coordinate system used. So, in this course rather than work with the components of 

the vector, we will rather treat the vector as an object itself and try to derive conservation 

equations for the vector itself rather than for its components. So, that is an important 

difference between what we will be doing in this course, and what we did previously.  

So, there are various vectors velocity is a vector it gives you the direction in which the 

fluid is moving at that particular location, acceleration is a vector, rate of change of 

velocity that is a vector it give the particular direction in which there is a change in 

velocity with respect to time, force is vector, momentum is a vector. There are other 

vectors which we defined in the previous fundamentals of transport process 1. For 

example, the heat flux is a vector it gives you the direction in which heat is flowing. So, I 

can write the flux as q x e x plus q y e y plus q z e z this is a vector gives you the 

direction in which the heat is flowing. 

Similarly, mass flux is a vector we also defined 2 other things as vectors in the previous 

fundamentals of transport process 1 course, 1 of the important 1s was the gradient. For 



example, the gradient of concentration grad c this is a vector it is a vector it is a 

derivative so it’s a vector derivative you see the rate at which the concentration is 

varying as you travel in some direction at some location.  

So, this is a flux of the this the fix law of mass diffusion tells you that the flux vector is 

equal to minus d times grad c flux heat vector equals to minus alpha times k times the 

gradient of the temperature field. So, these are also vectors. Now, for a scalar quantity its 

flux is a vector, for a scalar quantity its flux is a vector the concentration is defined at 1 

particular location, the flux gives you the direction in which mass is travelling or mass is 

being transported at that particular location.  

So, the flux gives you the direction in which the concentration is being transported, so 

for a scalar field the vector is a flux for a vector field, what is the flux going to be? So let 

us discuss that a little bit for a scalar field for a concentration field, the flux is being 

transported in 1 particular direction at a given location. Let me make 1 notational 

modification at this point. 
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For our future discussion it is going to be more convenient to label the axis as x 1, x 2, x 

3 instead of x y and z so from now on we will use these axis labels they will be more 

convenient for us, when we deal with vector quantities. And at the same location in the 

same coordinate system, the unit vectors will be defined as e 1, e 2 and e 3. So, these are 

the unit vectors in the cartesian coordinate system that I will use. And if I can derive the 



conservation equation in this coordinate system for a vector, without reference to its 

individual components the conservation equation is a property of that vector itself.  

So, its independent of coordinate system it’s going to be the same weather I use spherical 

or cylindrical coordinate systems. So, long as my vector quantities and vector derivatives 

are correctly framed in that other coordinate system. So, we will talk about conservation 

equations for the quantity itself not for the coordinate system, when it comes to actually 

solving a problem. Of course, we have to refer to a coordinate system and you have to 

have a way of doing that doing the transforming these vectors and their derivatives form 

one coordinate system to another and that we will do as we go through the course.  

So, we have a concentration field at one particular location its a continuously varying 

function at that particular location. So, if c is the concentration I can also define a flux 

vector at that particular location a flux vector that is the direction of transport of 

concentration. As I said the flux vector is defined as j vector is equal to j 1 e 1 plus j 2 e 

2 plus j 3 e 3 using a coordinate system where x 1, x 2, x 3 are now the axis. These are 

the 3 components j 1 j 2 and j 3 give you the fluxes in the 3 directions. So, I have j 1 in 

this direction j 2 and j 3 the 3 components of this flux. 

The resultant of these three gives me the direction in which mass is being transported. 

So, if I have a cross section perpendicular to this particular direction, we will get the 

maximum transport of mass across that in this case be the direction in which the mass is 

being transported. Now, let us do the same thing for not for a concentration field, but for 

a velocity field. So, in this particular case what is getting transported is momentum, 

momentum is a vector. So, at each particular point I have one momentum vector so this 

momentum density vector will be rho times u with its 3 components rho u 1, rho u 2, rho 

u 3 it has 3 components. Each of these components can be transported so the momentum 

in the x direction can be transported due to molecular diffusion, momentum in the y 

direction can be transported due to molecular diffusion, momentum in the z direction can 

also be transported due to molecular diffusion.  

For the momentum in the x direction, the x 1 direction as I have defined it here so let us 

just go back and simplify and just consider the momentum in the x 1 direction alone. 

This is the momentum in the x 1 direction this momentum in the x 1 direction can be 

transported in any one of three directions. So, I can have x 1 momentum being 



transported in the x 1 direction x 1 momentum being transported in the x 2 direction, and 

x 1 momentum being transported in the x 3 direction. So, there are 3 directions in which 

this particular component of the momentum rho u 1 can be transported due to molecular 

diffusion. 

Similarly, for the second component rho u 2 this can also be transported in one of three 

directions. Similarly, the component in the third direction can also be transported in one 

of three directions. So, each component of the momentum can be transported in 3 

directions and there are 3 such components. So, the total comes out to nine components 

of this particular flux for this vector momentum. This flux can also be defined as a single 

object, so in this particular case of the mass flux we had a single object a vector which 

defined the flux completely. It had 1 direction that direction was the direction of 

transport of mass because mass was a scalar there was only 1 direction for the transport 

of mass. 

In the case of momentum there are 3 components of the momentum and each component 

can be transported in any one of three directions. Therefore, you have an object which 

has nine components, in the case of mass transport there was only one direction the 

direction of transport because concentration was a scalar. In the case of momentum you 

have two fundamental directions, one is the direction of the momentum itself because 

momentum is a vector. The second is the direction of transport that is the direction of 

transport of momentum, basically results in a force acting on some differential volume. 

So, let us make this a little more precise. 
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If I have a particular location here and I have a surface, imagine a surface at this 

particular location within the fluid because of the fluid flow past this surface, there is 

going to be a force exerted on the surface this imaginary surface within the fluid. This 

force is due to the transport of momentum, now the force exerted is a vector itself, force 

exerted is a vector it has three components. However the force itself is going to vary as I 

change the orientation of the surface. the force itself will vary as I change the orientation 

of the surface  

So if I change if I have the orientation in one particular direction I will get one particular 

force if I change the orientation to some other direction, I will get some other force. And 

as I change the orientation in various directions I will get different forces the surface 

itself the orientation of the surface can be defined, in the terms of the perpendicular to 

the surface. What is called the unit normal that is unit normal to the surface gives me a 

direction that unit normal is completely specifies, the orientation of the surface. 
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Now, if I have the unit normal for example, in the x 3 direction, so this unit normal is 

actually e 3 this is e 3. Now, at this surface itself there are forces acting in all 3 directions 

as I said because of the fluid flow there could be forces acting perpendicular to the 

surface due to the pressure. For example, there could be forces acting along the surface 

due to sheer for example, so forces could act in all 3 directions at this particular surface. 

Now, the stress is defined such that tau is called a second order tensor, vector has only 

one fundamental direction. That is the direction of motion of the fluid in case of velocity 

direction of transport. In the case of concentration this has two directions it’s written as 

the force per unit area at a surface with a unit normal. So, in this particular case j vector 

had three components j 1 was the flux in the x 1 direction j 2 was the flux in the x 2 

direction j 3 was the flux on the x 3 direction. This stress will now have nine components 

as I said there are 3 components of momentum each component has 3 directions of 

transport. So, in general I can write this as tau 1 1 e 1 e 1 pus tau 1 2 e 1 e 2 plus etcetera. 

We have nine components plus tau 3 3 e 3 e 3 so it has a total of nine components, what 

does each of the components mean? 
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Tau 1 1 is equal to force per area in x 1 direction acting at a surface with in x 1 direction. 

So, let us spell it out in great detail, so if I want to calculate the component tau 1 at one 

particular location. Note that this is now a function of both of position and time so at one 

particular location I go there, I construct a surface with unit normal in the x 1 direction. 

So, this surface would have unit normal in the x 1 direction and at this surface I measure 

the force acting on the surface in the x 1 direction divide by the area and I get tau 1 1.  

Similarly, tau 1 2 is equal to force per area in x 1 direction acting at surface with unit 

normal in x 2 direction. So, in this particular case if I want to measure what is tau 1 2 I 

go to this location once again construct a surface with unit normal in the x 1 direction. 

And then I measure what is the force acting here in the x 2 direction divide that by the 

area. So, this basically tau 1 1 gives me the flux of momentum in the x 1 direction, 

through a surface whose unit normal is in the x 1 direction, tau 1 to gives me I am sorry I 

should correct this.  

So, I construct a surface whose unit normal is in the x 2 direction, so I construct a surface 

whose unit normal is in the x 2 direction. So, the unit normal is in x 1 x 2 direction and I 

measure the force in the x 1 direction at this surface, I measure the force in the x 1 

direction at this surface divide that by the area and I get tau 1 2. A general formula tau i j 

is equal to force per area in x i direction acting at a surface with unit normal in x j 

direction and here I should add outward, outward unit normal in the x j direction.  



So, these are what are called second order tensors they have two fundamental directions 

associated with them in the case of the stress, one is the direction of the force at the 

surface itself. However the force does depend on the orientation of the surface. So, the 

other direction is the direction of the orientation of the unit normal to that particular 

surface. So, one is the direction of transport the other is the direction of momentum 

itself. 

So, momentum flux there are two directions one is the momentum direction the direction 

in which the force is exerted. The second is the direction of transport that is the direction 

of the unit normal to the surface across which transport is occurring. So, these are second 

order tensors and once again these will also come into our analysis in this case, as well 

we will treat as objects in themselves rather than worrying about their components. And 

this sort of makes it clear why I emphasize that we will be treating vectors themselves as 

objects because I told you that the velocity vector for which we are writing the 

conservation equation contains 3 components. And you would think in principle that I 

could write equations for each of those 3. 

However, the flux in that equation now contains nine components so I have to have 

constitutive relations for nine of those components separately. If I wanted to write 

equations in component form whereas, the way that we do it here we will treat the 

velocity itself as the vector object the flux itself as a tensor object. And derive relations 

between the flux the velocity, and the flux write down conservation equation constitutive 

relations for these.  

So, that is the major advancement that we will do in this course and for that we have to 

develop the machinery the machinery of vector calculus, I will come back to more 

precise definitions of stress later on, but the reason I am bringing up at this particular 

juncture is to just to emphasize, why we are going to be going through all of the 

advanced calculus that we will be doing a little later. This is one fundamental second 

order tensor, that we will be using throughout the course. Another fundamental second 

order tensor is the gradient the velocity field. 

When I talked about concentration fields we had defined the concentration gradient as a 

vector. So, gradient of concentration, gradient of temperature they are both vectors they 

have 3 components the component in each direction is the partial derivative of the 



concentration with respect to variation in that direction. So, partial c by partial x if I go a 

small distance delta x in the x direction keeping delta y and delta z a constant, the 

variation in delta c divided by delta x. While y and z are kept constant as the partial 

derivative. So, this gives you a vector for a scalar field the gradient, I could also take the 

gradient of a vector field and that would give me a second order tensor. The vector that 

we will use most often trough out this course is the velocity vector because we are 

writing conservation equations for the velocity field.  
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So, I can write the gradient of velocity as a second order tensor, if I write it as gradient of 

the velocity vector then this becomes e 1, e 2 partial u 2 by partial x 1 plus e 1, e 3 partial 

u 3 by partial x 1 plus etcetera plus e 3, e 3 partial u 3 by partial x 3. So, this once again 

has nine components three components of velocity they can vary in any one of three 

directions. This is a second order tensor the gradient of velocity is a second order tensor 

it is not the divergence, which is a scalar it is not the curl which is a vector it is the 

gradient of the velocity, which is a second order tensor. 

Physically what does this represent, what did the gradient of the concentration tell you, 

what did the gradient of the concentration tell you set at one particular point if I go a 

small distance delta x in some particular direction the variation in concentration is equal 

to. So, if I have c and c plus delta c here if I go small distance delta x in one particular 

direction in this concentration field. There is going to be a variation in the concentration 



that variation in the concentration is equal to delta x 1 partial c by partial x 1 plus delta x 

2 partial c by partial x 2 plus delta x 3 partial c by partial x 3 which is equal to delta x 1 e 

1 plus delta x 2 e 2 plus delta x 3 e 3 dotted with e 1 partial c by partial x 1 plus e 2 or I 

can write this as delta x dotted with gradient of c. 

So, the variation in concentration when u move a small distance from x to x plus delta x 

in some particular direction is the dot product of the distance travelled times the gradient 

of the concentration field. The same thing for the velocity field, rather than dealing with 

a scalar I am dealing with a vector, but the principle is exactly the same. I have a velocity 

field velocity vector which is defined at each particular location in this field. 
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At each position there is a single valued velocity single value implying that the velocity 

at each particular location is uniquely specified. I have velocity at one particular location 

u vector, I go small distance delta x in one particular direction. And when I travel this 

distance at this new location the velocity is equal to u plus delta u the velocity has 

changed by an amount delta u. Delta u now is a vector delta u is the change in velocity 

that is the new velocity minus the old velocity.  

So, operationally how you would calculate it is using the rules of vector addition. So, this 

is u and this vector I superpose them at the same initial location, the vector difference 

now is this one the resultant between the two, this vector difference is delta u it has three 

components delta u 1, delta u 2 and delta u 3. It has 3 components delta u is equal to 



delta u 1 e 1 plus delta 2 e 2 plus delta u 3 e 3. Each of these can be defined in terms of 

the gradient of the velocity field. 

So, for example the delta u 1 I can expand it out and write it as delta u 1 is equal to delta 

x 1 partial u 1 by partial x 1 plus delta x 2 partial u 1 by partial x 2 plus delta x 3 partial u 

1 by partial x 3. Or in analogy with the concentration field this is just equal to delta x 

dotted with grad of u 1 the component u 1.  
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Similarly, delta u 2 is equal to delta x vector dotted with grad of u 2, delta u 3 delta x 

vector dotted with grad of u 3 add up all of these delta u is equal to delta u 1 e 1 plus 

delta u 2 e 2 plus delta u 3 e 3. So, that means that delta u is equal to delta x dotted with 

grad of u 1 e 1 plus u 2 e 2 plus u 3 e 3 which is equal to delta x dotted with grad of u 

were this gradient of u now contains nine components. 
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This gradient of u grad u as I would defined it before is equal to e 1 e 1 partial u 1 by 

partial x 1 plus e 1 e 2 partial u 1 by partial, partial u 2 by partial x 1 plus e 1 e 3 partial u 

3 by partial x 1 plus etcetera plus by partial x 3. So, it now has nine components it has 2 

indices 2 directions, the first is the direction of the gradient in all of these cases the first 

one represents the direction of the gradient, the direction of with which you are taking 

the derivative the direction of with which you are taking the derivative. 

The second direction is the direction of the velocity vector itself, this velocity vector. So, 

these are fundamental tensors that we will be dealing with throughout this course. So, I 

thought, I would take this opportunity here to introduce them in order to give you their 

physical understanding. Now, once we have these tensors we now have to write down 

conservation equations as you can see there is already one thing that has already 

appeared here is this gradient this is a vector derivative it contains three components. But 

it can be considered an object in itself the vector derivative the gradient is one such there 

is another one which is the divergence and you already know there is a curl. 

So, that is a way of taking derivatives in three dimensional space vector derivatives 

without reference to the underlined coordinate system, in terms of these vector 

derivatives we can write down our conservation equations. We already did that in part 

one where we wrote down for example, for the concentration field we wrote down an 

equation as partial c by partial t plus divergence of u c is equal to D del square c. 



These are all vector derivatives even though we actually calculated them in terms of their 

components. In this course we will be calculating them as vector derivatives themselves 

without any reference to the underlined components. So, that is one part of it the other 

part of it so once we calculate when once we use these vector calculus, we will be able to 

get equations for the velocity field that are similar to these, they are called the Navier 

stokes equations.  

And I will just write them down here just to introduce them at this point, for an 

incompressible fluid or let us just take it for a gentle fluid. These have the form by partial 

t plus divergence of rho u is equal to 0 and rho into partial u by partial t plus u dot grad u 

minus grad p plus u divergence of you do not really have to have to try to understand 

these equations too much. Except to realize that there is an equation for the density field 

this first one is the equation for the density field. The second one is the equation for the 

momentum field and these contain variables the density rho, the velocity vector u vector 

and there is a also a pressure in this case p. So, they contain 3 variables. 

And they sort of look similar see the left hand side of the momentum equation here, the 

left hand side of this momentum equation looks similar to this one. The right hand side 

looks similar to this one important difference there is a pressure in the momentum 

equations, which is not present in the concentration equations. In the fundamentals of 

transport process one we actually derived the value of this pressure we actually derived 

an equation for the pressure using shell balances for the flow through of pipe, here we 

will do more detailed derivation of the vector equations themselves. 

And once we derive these equations using the vector calculus that you develop in the 

next few lectures, we then have to solve these equations. As usual there is no simple way 

to solve these equations firstly thee equations are non-linear, in this particular case you 

have a term that goes as u dot del u. So, this is a non-linear equation so there is no 

general solution unlike the concentration equation, where you do have a general solution. 

And the strategy that we will use is similar to what we use in the last the fundamentals of 

transport process one, we derive equations in different limiting situations the first 

limiting situation is diffusion dominated. As I said the left hand side of the equation is 

basically the convection term and so, if your system is diffusion dominated then the 

convection terms can be neglected, and you can just solve the diffusion equation itself. 



we did that for the concentration field and temperature field, we found out different ways 

of solving the diffusion equation using separation of variables for example.  

Similarly, in the diffusion dominated regime we will solve the equation for the velocity 

field without taking into count the convection terms. The second is where convection 

dominated, where we neglect the diffusion terms, but we cannot neglect the diffusion 

terms. As we saw in the case of the concentration equation, when you neglect the 

diffusion terms you neglect the highest order derivatives. And therefore, you cannot 

satisfy all boundary conditions, even when convection is dominating. Convection can 

only transport concentration along the flow, whereas for transport of mass momentum to 

a surface at the surface itself there is velocity perpendicular to the flow. So, you cannot 

have convection acting at the surface itself. 

Transport at the surface has to take place due to molecular diffusion and even though 

convection is dominating, still as you go very close to the surface the molecular diffusion 

mechanism has to kick in order for transport to take place. Therefore, diffusion will still 

be important over a small length, whose thickness is determined in such a way that over 

this length scale, there is a balance between convection and diffusion. Boundary layer 

theory that we had used in part one, in this particular case it’s a little more complicated 

because even if you neglect diffusion you can still get non trivial solutions because there 

is a pressure here. 

However with just a pressure field you cannot enforce tangential velocity boundary 

conditions at the surface, for that you still need to postulate a boundary layer. The ratio 

of the convection and diffusion in this case is equivalent of the Peclet number except that 

instead of mass or energy diffusion, you have momentum diffusion kinematic viscosity u 

by rho or u. When the Reynolds number, the Reynolds number is also as you probably 

know the ratio of inertia and viscosity, when the Reynolds number is small, Reynolds 

number is small when the velocity is small the characteristic length is small, or the 

kinematic viscosity is large for highly viscous fluids of a small length scale or velocity 

scales.  

You can neglect the convective terms the diffusion the Navier stokes equations and solve 

for the diffusion terms alone, the viscous terms alone. When the Reynolds number is 

large you can neglect the diffusion terms in most of the flow, except very near 



boundaries because if you neglect diffusion very near boundaries, you cannot enforce the 

tangential velocity boundary conditions just as you cannot enforce the concentration 

boundary conditions, or the temperature boundary conditions at high Peclet number. In 

that case it is necessary to postulate a boundary layer where viscosity is still important 

even though the Reynolds number is high because the Reynolds number is based on the 

boundary layer thickness, is such that there is a balance between the convection and 

diffusion. 

So, all of those techniques that were developed for convection dominated and diffusion 

dominated transport in part one, still apply except that we now have to use it for vector 

fields. So, that is a broad summary of what we will be trying to do in this particular 

course. Methods are different we will deal with vectors and tensors as objects within 

themselves, derive constitutive equations for those objects in themselves, but the 

physical incite is much the same. There is situations where convection dominates there 

are situations where diffusion dominates and the interplay between convection and 

diffusion ultimately determines the rate at which the transport is going to take place.  

So, next class we will start developing the machinery of vector calculus that we will need 

in order for us to derive conservation equations and then solve them later on. So, with 

that I will end this lecture and we will start our analysis of vector calculus, in the next 

lecture. So, we will see you then. 


