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Boundary Conditions 
 

So, welcome to this lecture number 12 of our course on Fundamentals of Transport 

Processes 2, where we were just getting into the constitutive relation for this stress in a 

fluid. 
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So, as it is we briefly discussed in the last lecture, the stress tensor T i j, force per unit 

area in the i direction acting at a surface whose unit normal is in the j direction. So, T 1 1 

if we have a coordinate system here, x 1 x 2 x 3, T 1 1 is the force per unit area in the x 1 

direction acting at a surface whose unit normal is in the x 1 direction. T 1 2 is the force 

per unit area in the x 1 direction acting at a surface, whose unit normal is in the x 2 

direction, and so on. 

However it is far more profitable to think in terms of fundamental components of the 

stress tensor itself. From the angular momentum balance equation, I had shown you that 

the stress tensor has to be symmetric. Otherwise the angular momentum will not be 

balanced on individual volume elements. In most cases where there is no microscopic 

torque acting on the system, the stress tensor has to be a symmetric tensor. So, we have 



this 3 by 3 in three dimensions stress tensor a symmetric tensor, as with the rate of 

deformation tensor this can also be decomposed into fundamental components, that is 

one is the isotropic and the symmetric case less compound. 

So, if I have a differential volume, there is one component which is isotropic, isotropic 

means it acts gradually inward or outward with this, so the isotropic component acting on 

this will act gradually inward or outward. It is outward if the force acting outward of the 

volume, inward if is acting inward of the volume, so that is one one part of the rate of 

definition tensor, the isotropic part one third delta i j times T k k. The T k k is the trace of 

this stress tensor T 1 1 plus T 2 2 plus T 3 3 on a differential volume, this basically acts 

outward at all points. 

And the magnitude is the same in all directions for an isotropic you have either isotropic 

outward pressure acting from out to in or in to out, and there is a second component 

which is symmetric traceless. Symmetric traceless and their context of deformations, we 

had said there is a deformation in which there is no net rotation no net change in volume. 

And in this particular case symmetric traceless means at on any differential volume, I 

have the stress that is acting tangential to the surface. 

There is no net rotation because so that the torque due to the clockwise rotation on top 

and below is exactly balanced by that top, due to the anti-clockwise rotation on the right 

and left. There is no net force because the magnitudes are in are all equal, so these are 

the 2 fundamental components of the stress. The symmetric traceless part is 0, if there is 

no fluid flow because for the symmetric traceless part to exist, that means that there has 

been momentum transport that is perpendicular to the direction of flow. 

Momentum transport that is direct perpendicular to the direction of the unit normal, that 

can happen only due to momentum diffusion, momentum diffusion will require a 

gradient of the velocity. So, the symmetric traceless part is non-zero only when there is 

no flow, the isotropic part on the other hand could be non-zero even when there is no 

flow. In a static fluid you do have a hydro static pressure, the pressure acts inward on any 

differential volume at all points and it is along the inward unit normal. 

So, the pressure in a static fluid basically, acts inward the pressure is acting inwards at all 

points within the flow. That means that this first component one third delta i j T k k can 

also be written as minus p times delta i j the pressure times the isotropic tensor. So, this 



is the pressure component which is non-zero even in a static fluid, the second is a 

symmetric traceless part the shear stress which is non-zero only when there is flow and 

there is of course, no anti symmetric component. 

Now, this shear stress has to be related to the rate of deformation tensor rate of 

deformation tensor had 3 components, once again partially u i by partial x j is equal to 

the anti-symmetric part plus the symmetric part plus one third delta i j times the 

divergence of the velocity, one third delta i j times the divergence of the velocity. And 

the symmetric traceless part in the last class I had defined it as E vector where E i j A i j 

is equal to half partial u i by partial x j minus it is transpose half of the tensor minus it is 

transpose. And the symmetric traceless part is equal to half the vector plus it is transpose, 

but I have to remove the trace I have to remove the trace, because this is symmetric and 

traceless. So, I remove the trace so I remove the trace one third identity tensor times the 

divergence of the velocity, so we have the anti-symmetric and a symmetric traceless 

parts. 
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For a Newtonian fluid the relation between the stress and the rate of deformation is a 

linear one, for a Newtonian fluid the relationship between stress and rate of deformation 

is linear so the symmetric traceless part of the stress has to be a linear function of the 

symmetric part of the deformation tensor. If it is linear the only way that you can have a 

relationship between these 2 is if tau i j is equal to some constant times E i j, because the 



left hand side is a symmetric traceless; that means, the right hand side also has to be 

symmetric traceless it is a linear relationship. 

So, it has to be proportional to the first power of E and if it is a linear relationship I 

cannot have a dependence on the isotropic part, because you have dependence in the 

isotropic part and it is a linear dependence. This stress will become will not be traceless 

any more, and this coefficient here this is actually 2 mu times E where mu is the 

coefficient of viscosity. And for a linear stress rate of deformation relationship the 

general expression for this stress tensor is equal to minus p times delta i j, the part that is 

static that is that is non zero even in a static fluid plus 2 mu times E i j. And in general 

you could also have a contribution to the stress due to radial expansion or compression 

that would be the bulk viscosity times partial mu k by partial x k. So, this is the most I 

am sorry that times delta i j in other words the isotropic part could be the pressure plus a 

contribution due to the deformation tensor rate of deformation tensor that isotropic 

contribution to the rate of deformation tensor. 

If it has to be linear in the rate of deformation tensor it should be proportional only to the 

isotropic part of the rate of deformation tensor, so this is the complete expression for the 

the stress tensor for a Newtonian fluid. And if I can expand this out this will be minus p 

delta i j plus 2 mu into half minus one third, that is the complete symmetric traceless part 

of a rate of deformation tensor. Symmetric I take the matrix transpose and divide by 2 

then from that take off the trace, plus mu B delta i j and of course, I can expand this out 

and simplify it to get minus p delta i j plus mu plus mu B minus 2 by 3, so that is 

complete expression for a stress tensor for a Newtonian fluid. Not all fluids are 

Newtonian you could have for example, polymeric solutions suspensions and so on, 

which in general do not satisfy the linearity relationship between the stress and the rate 

of deformation tensor. 

One simple way to extend the the relationship between stress and the rate of deformation 

is to just make the viscosity itself, depend upon the rate of deformation for non-

Newtonian fluids. These fluids are usually incompressible fluids, the velocities are 

usually very small compared to the speed of sound, so for incompressible fluids the 

divergence with a velocity as I said has to be equal to 0. So, usually they have only this 

first part the rate flow of this stress tensor, the second part for these non-Newtonian 

fluids polymer melts polymer solutions, suspensions of particle sum suspensions of 



surfactants and so on. This first part is usually the second part in blue is usually 0, 

because the divergence of the velocity is 0, they are going at sufficiently small speeds 

that the fluid is effectively incompressible. So, in that case if one to want to write an 

expression for this stress tensor in terms of the rate of deformation tensor. 

The simplest way to expand it is to write T i j is equal to 2 mu of the rate of deformation 

tensor, a function of the rate of deformation tensor let us just call it as 2. I will call it as a 

generalized viscosity 2 should not be there, this viscosity the generalized viscosity is in 

general of a function of the rate of deformation tensor, this is generalized viscosity which 

we use in a non-Newtonian relationship between the stress and the rate of deformation 

will in general be a function of the rate of deformation tensor. 

What kind of a function should it be? Usually, it cannot depend upon the rotational part 

of the rate of deformation tensor, because a solid body rotation does not change the 

distance between nearby points, it can depend upon the symmetric traceless part. In 

general the isotropic part will be 0, because the fluid is incompressible, so I said if the 

fluid is incompressible you do not have radial expansion or compression therefore, the 

isotropic part of the rate of deformation tensor will in general be 0. 

(Refer Slide Time: 14:40) 

 

So, in general this can depend upon the symmetric traceless part of the rate of 

deformation tensor, how can it depend upon the symmetric up on the symmetric traceless 

part, because that is the second order tensor. That deforms that that transforms in certain 



ways upon rotation of coordinate systems, whereas mu itself is a viscosity so there are 

some general measures of this symmetric traceless tensor which do not depend up on the 

underlying coordinate system. 

For example, if I had this tensor E which has E 1 1 E 1 2 E 1 3 E 2 1 E 2 2 E 2 3, for this 

tensor there are certain certain quantities, certain properties of this tensor that are 

invariant under coordinate transformation. And therefore, if you want to write a 

constitutive relation which is coordinate frame invariant that constitutive relation can 

depend only upon the invariant measures of this tensor and for this a 3 by 3 there are 3 

frame invariant scalars there are 3 frame invariant scalars. 

The first is just the trace of E the second is equal to the double dot product and the third 

is the determinant is the determinant of this tensor, so these 3 are frame invariant. And 

therefore, any viscosity that I write which is dependent upon these, this mu this mu g has 

to be a function of only these 3, it has to be a function only of these 3 frame invariant 

quantities. It cannot in general depend upon let us say the 1 2 component of this rate of 

deformation tensor, because if I rotate coordinate systems the value of that particular 

component is going to change. 

However, the values on these invariant a scalars scalar measures of this tensor do not 

change, when I change coordinate systems therefore, in general the viscosity has to be 

written in terms of these three. You could have more complicated cases for example, if I 

have polymeric solutions, if have liquid crystalline media the stress in these cases may 

depend upon things like confirmation. For example, in the case of a polymer solution in 

the case of a polymer solution you know that the polymer is basically a long chain 

molecules, consisting of monomers which are covariantly bonded with each other. 

So, it is a long linear molecule, however if you put into a solution, it is going to be in an 

elongated fashion, because the the entropy of stretching that is too much. So, in a 

solution the polymer is going to be in a highly coiled state, the solution will be in a 

highly coiled state, a useful representation for this highly coiled polymer is a bead spring 

model, where I imagine 2 beads and a spring between these two, a linear spring. A linear 

spring between which is between these two beads the beads themselves represents the 

ends of the polymer molecule, it is in a highly coiled state the distance between ends is 

relatively small and therefore, the force. 



So, therefore, the polymer prefers to be in that configuration, if I stretch out the ends 

there is are storing force which tends to draw back the ends towards each other, and that 

restoring force is acting this this this modeled as acting on these beads. Now, the distance 

between ends will roughly scale as square root of the number of monomers that are there 

in a highly coiled state if the polymer actually is is in a perfectly coiled state in which it 

is a random walk. 

The distance it is square root of the total number of monomers in the polymer, in this 

case it is not sufficient to just have a fluid viscosity, you also have a stress which is 

exerted due to the polymer. So, for example, if I have a differential volume there is of 

course, if I take a one particular surface of this volume take one particular surface of this 

volume there is of course, a transfer of momentum due to the mean fluid velocity across 

the surface there is of course, a transfer point into the velocity gradient across this 

surface fluid momentum diffusion. 

However, I could also have a transfer of momentum, because one end of this bead is 

below the surface the other end of the bead is above the surface, so the end of the bead 

above the surface exerts a force and the end of the bead below the surface. And that is a 

net force that is exerted on the volume below the surface, so the presence of these 

polymers is also in an in an additional force that is exerted. There is a stress tensor due to 

this force and the stress tensor due to the force is basically proportional to what is called 

the end to end vector distance, so if I have a polymer and the distance between these two 

ends is x vector. I can create a vector which is related to I can create a tensor by taking 

the direct product of these two ends, I will create a q tensor which is equal to the product 

of x vector with itself of q i j is equal to x i x j second order tensor. 

And there will be an additional stress, which is proportional to this second order tensor, 

in other words if x i and if if the polymer stretches x i and x j are greater therefore, there 

is a greater force that is exerted throughout the surface. And the force the stress tensor is 

usually written in this case for the polymers as proportional to x i x j there are some 

constants here times x i x j minus it is equilibrium value. Let us say it as where q is the 

actual stress within the fluid and q equilibrium is the stress in the absence of fluid, k n is 

a spring constant which basically tells you how much force there is in the polymers when 

you stretch them, tau was a relaxation time for the polymer and k T, is the Boltzmann 

constant time for temperature. So, in addition to writing equations for the fluid velocity 



one would also have to write equations for this polymer confirmation tensor, and couple 

these two because the stress flow in the fluid does depend upon the stress that is 

transmitted by the polymer molecules themselves. 
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So, in those cases it is necessary to write an additional conservation equation for this 

polymer stress tensor itself, in there are various ways that these constitutive relations are 

written so for the polymer stress tensor for the confirmation tensor. For this confirmation 

tensor q, one writes a constitutive relation, in order to determine this confirmation tensor 

in terms of all the other quantities. So, but in this course you will not deal with all of 

these additional complications relating to the presence of polymers within the fluid and 

so on, our attention will be restricted simply to Newtonian fluids, where we have a 

clearly defined relationship between stress and relative transformation tensor. Which, is 

just a brief introduction to how you would extend the formalism, in the case of non-

Newtonian fluids we either have no complicated relationships within the stress and the 

rate of confirmation. 
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So, now putting all these things together, I have an equation for the stress tensor here a 

relationship between the stress tensor and the rate of deformation tensor here, and that 

has to be put into the momentum conservation equation. 
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In order to finally, get a closed set of equations for the density the velocity the 

momentum and in the equation for the momentum I know now have a pressure, which is 

the force exerted in the statistic state. 
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So, let us look at what happens when we put all of these together, first the mass 

conservation equation partial rho by partial T plus the divergence of rho u is equal to 0. 

Momentum conservation equation can be written in one of two ways, the simplest way to 

write it is rho times partial u i by partial T plus u j partial u i by partial x j is equal to 

minus rho a i plus partial by partial x j of T i j. What is the divergence of this stress 

tensor partial by partial x j of T i j is equal to partial by partial x j of minus p delta i j plus 

2 mu E i j plus the bulk viscosity. 

So, that is the divergence of the stress tensor, partial by partial x j of p times delta i j is 

just partial p by partial x i, partial by partial x j of minus p times delta i j is just minus 

partial p by partial x I because delta i j is not 0, only when i is equal to j. If the viscosity 

is independent of position if the viscosity is independent of position then the second 

terms becomes 2 mu partial by partial x j of the symmetric traceless part of the rate of 

deformation tensor symmetric traceless part of the rate of deformation tensor. And of 

course, I have this other term here which is mu b partial by partial x j of partial u k by 

partial x k, so that is the complete expansion of the divergence of the stress tensor let us 

simplify this a little bit the first term is minus partial p by partial x k x i. 
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Second term is mu partial by partial x j of partial u i by partial x j plus viscosity into of 

partial u j by partial x i, so as the first and second terms in this these first 2 terms in this 

expansion. Then I have the isotropic part once I have separated out the isotropic part 

from to get a traceless tensor, so this will give me minus 2 by 3 mu delta i j times partial 

by partial x j is just partial by partial x i of partial u k by partial x k plus mu b, there 

should be delta j. Now, in this term you can interchange the order of differentiation you 

have partial by partial x j of partial u j by partial x i, since x i and x j are independent 

coordinates i can interchange the order of differentiation i can write this as partial by 

partial x i of partial u j by partial x j. However, partial u j by partial x j is identical to 

partial u k by partial x k, because it is repeated index both are equal to partial u 1 by 

partial x 1 plus u 2 by partial x 2 plus partial u 3 by partial x 3. 
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So, that is a common factor between these 3 terms here, there is a common factor 

between all of these 3 terms here, and I can add all of those up to get partial T i j by 

partial x j is equal to minus partial p by partial x i plus mu. This is partial by partial x j of 

partial u i by partial x j del dot del u, that is partial square u i by partial x j square, the 

second term I have plus mu minus 2 by 3 mu. So, there is a plus mu here minus 2 by 3 by 

mu plus mu b, so all put together this becomes equal to mu b plus one third mu partial by 

partial x i of partial u k by partial x k, so that is the divergence of a stress tensor. 

So, putting all these into the momentum conservation equation I get rho into partial u i 

by partial T plus, so that is the final expression often written in short form as follows. In 

vector notation this is often written as rho times partial u vector by partial T plus u dot 

grad u minus gradient of p plus, this is mu del square u vector the Laplace an acting on u 

vector plus mu b plus one third mu, the gradient of the divergence of u vector. 
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Note the difference between these 2 terms here, here I have divergence of u which 

becomes a scalar and then I have taken the gradient of that one, in this case there is a dot 

product between the j here and j the here, therefore, I get u dot grad. Three index belong 

to this vector i the 3 index belongs to this vector this this i index is the 3 index, so this is 

the momentum conservation equation written in vector notation, this coupled with the 

mass conservation equation gives me the complete set of equations. 

The mass conservation equation partial rho by partial T plus partial by partial x i of rho u 

i is equal to 0, note that the mass conservation equation is a scalar equation, because a 

rho is a scalar the density is a scalar, momentum conservation equation is a vector 

equation. One equation for each value of phi i going from 1 to 3 therefore, there are 3 

equations in the 3 scalar equations contained within this one vector equation, put 

together I get a total of 4 equations, one mass conservation equation and 3 momentum 

conservation equations. 

Now, what do I have to solve for here let us write that clearly for you, now what do I 

have to solve for here, I have to solve for the density rho 3 components of the velocity u 

one u 2 u 3 as well as for the pressure. So, one density one pressure 2 plus 3 components 

of the velocity 5, so I have total 5 scalar quantities to solve for I have 4 equations here, I 

need one more equation that equation will be a relationship between the pressure and the 

density. 



That is an equation of state for the pressure density relationship for the ideal gas for 

example, the equation of state is basically p is equal to n k T is equal to rho by m times k 

T, where rho was the mass density and I was the molecular mass k is the Boltzmann 

constant. So, I need one more relationship between pressure and density, and we need a 

constraint here, because even though I have got this relationship between pressure and 

density, I have to specify, whether the flow is isothermal or adiabatic. 

For those two situations from knowing that relationship between temperature and 

pressure, I am going to get one relationship between pressure and density. So, that 

equation of state along with one mass conservation equation and one vector or 3 scalar 

momentum conservation equations gives me 5 equations, which can be solved to 

determine the density, the pressure and the 3 components of the velocity. So, in general 

you need to know equation of state, for a ideal gases it is just this ideal gas law, for 

liquids you need to know how the density varies with temperature and pressure for the 

liquid state itself. So, that relationship is required in order to be able to completely 

specify the equations. A considerable simplification can be made for fluids that are 

called incompressible, for incompressible fluids the density is invariant, the density is a 

constant, incompressible fluids the density is equal to a constant. 

Now, if the density is equal to a constant as I said I can also write the mass conservation 

equation in terms of the substantial derivative of the density by using chain rule for 

differentiating this term. So, if i use the chain rule for differentiation this becomes partial 

rho by partial T plus u i partial rho by partial x i plus rho partial u i by partial x i equal to 

0, and these first 2 terms put together is d rho by d t. If rho is a constant then d rho by d T 

is equal to 0 and what; that means, is that partial u i by partial x i is equal to 0, so in that 

case the divergence of the velocity is equal to 0. 

So, this is the mass conservation equation velocity is divergence free if the fluid is 

incompressible divergence free; that means, if I take any differential volume since the 

density is a constant it has no source of mass within that volume. Since, density is a 

constant there can be no net flow of fluid outside, because from inside to outside because 

the density is a constant. So, this divergence of u is equal to 0, is itself a mass 

conservation equation this divergence of u is equal to 0 is itself a mass conservation 

equation, and if the divergence of u is equal to 0, you can see that in this momentum 

conservation equation, there is this piece here related to the bulk viscosity which is 



proportional to the divergence of u. As this piece here which is the divergence of a 

velocity and that is equal to 0 therefore, that little bit which is proportional to the 

divergence the velocity disappears. 

And finally, what I get is an equation which goes as rho times partial u i by partial T plus 

u j partial u i by partial x j minus partial p by partial x i plus mu. So, that is the 

momentum conservation equation for an incompressible fluid, and these two equations 

put together are what are called the navios stokes equations, is the navios stokes 

equations mass and momentum conservation equation for an incompressible fluid. 

Now, these equations as you can see there is one scalar mass conservation equation, 

there are 3 scalar or one vector momentum conservation equation, and what are the 

unknowns here. That is pressure, there is a pressure gradient in this terms, so there is 

pressure and there are 3 components of the velocity, now I have 4 amounts density itself 

now is invariant, density is a function of the fluid. There is the density and both the 

density and the viscosity are not fluid properties, which are specified it is independent of 

pressure it is invariant and it is specified fluid property. 
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Therefore, I have one mass conservation equation scalar and one vector momentum 

conservation equation, which contains 3 momentum components and from these I have 

to determine now, 4 variables one is the pressure and the other 3 are the 3 components of 

the velocity. So, in that sense this is completely well specified system of equations, 



which can be solved in order to determine the velocity and the pressure field, note that 

this has a form that is very similar to the concentration and the temperature equations 

which we had derived in part one. So, if you recall my conservation equation for the 

concentration field was partial c by partial t plus del dot u c is equal to T del square c. 

So, here if I divide throughout by the density if I divide throughout by the density in my 

momentum conservation equation, I will get here minus 1 over rho and this is mu over 

rho mu by rho is the kinematic viscosity, momentum diffusivity. So, it has exactly the 

same form, so this has exactly the same form as the diffusion term here, and the left hand 

side actually looks similar there is small difference, but it looks very similar to the left 

hand side the convictive terms and the time derivative in the concentration equation. 

A big difference here two big differences, one is that we have a pressure in the 

momentum conservation equation, for which there is no analog in the mass and energy 

conservation equations. The diffusion term has an analog it is kinematic viscosity times 

the Laplacian of the velocity is analog that is to the diffusion coefficient times del square 

c, but there is no analog to the pressure. And the pressure in this case is required to 

ensure that the divergence of velocity is equal to 0 or that the incompressibility condition 

is identically satisfied. So, that is why we have a pressure term because I have to satisfy 

an additional equation, so an even additional variable. 

So, the pressure at every point in the fluid is no longer something is determined from the 

equation of state, as it was originally for a compressible fluid but rather it takes whatever 

value locally is required or rather the pressure gradient takes, whatever value is required 

locally to ensure that the divergence to the velocity is always equal to 0. So, this pressure 

ensures incompressibility at every point within the fluid, and the pressure and the 

velocity 3 components of the velocity, 4 unknowns are determined from these 4 

equations. 

So, these are the navios stokes mass and momentum conservation equations, the other 

big difference is that you have a term here, which is a non-linear term u dot grad u it is 

non-linear in the velocity, you have no equivalent term in the mass and energy 

conservation equations, because this term here is linear in the concentration field, it is 

linear in the concentration field. So, the big difference is that the convictive term in the 

concentration equation is linear in the concentration field, where as the convective term 



in the momentum conservation equation is non-linear. If you have a linear equation 

subject to well posed boundary conditions, you have guaranteed that a solution exists and 

that the solution is unique for a non-linear equation it is no longer show. 

And because of this the navios stoke equations mass and momentum conservation are 

considerably more difficult to solve than a concentration equation. In the concentration 

equation if I if you have a certain concentration field, which solves this equation which 

satisfies the mass conservation equation. If I multiply the concentration by a factor of 2 

at every point, it stills satisfies the concentration equation, because each term in this 

equation gets multiplied by 2 and the result is still satisfying the mass conservation 

equation. 

On the other hand if I have a velocity field and if I multiply the velocity vector by 2 at 

each and every point the linear terms, all get multiplied by a factor of 2 whereas, there is 

one non-linear term, which is not multiplied by a factor of 2. If I multiply the velocity 

everywhere by a factor of 2 the non-linear term gets multiplied by a factor of 4, so 

because of this the momentum equation is no longer linear in the velocity field. And 

when an equation is not linear in the velocity field then there is no guarantee that a 

solution exists, even if a solution does exist there is no guarantee that it is unique. So, 

that is why the momentum the the navios stokes equations are considerably more 

difficult to solve, and as you will seen in this course there are specified there are 

specified there are the, the ways that we use to solve these equations are based upon a 

physical understanding of the problem that we had considered. 
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But, first these are the equations one also has to specify boundary conditions, these 

equations are second order in space and first order in time I have one time derivative 

here one time derivative here. And a second order derivative in the spatial coordinates 

for the velocity, the diffuse of term as always has the highest derivative, highest spatial 

derivative. That means that I need to specify two boundary conditions in each direction 

for the velocity field, two boundary conditions in each direction for each component of 

the velocity field. 

So, in order to solve these equations in order to get a well posed set up equations, which 

can be solved any two boundary conditions in each direction for each component of the 

velocity. So, let us briefly discuss that boundary conditions in physical systems for 

example, if I have the flow between two flat plates or the flow in a pipe or something. 

For the flow between two plates not only the boundary condition at solid surfaces that 

you specify, is that the fluid velocity at the surface is exactly the same as the velocity of 

the surface itself, it is called the no-slip condition. 

So, in this case if the bottom surface is stationary the fluid velocity is also 0 on that 

bottom surface. The top surface is moving with a velocity some velocity u, the fluid at 

that surface is also moving with exactly the same velocity, these conditions are general 

applicable to most cases unless, you have what is called slip at the boundaries, when the 

distances are sufficiently small that they become comparable to the mean free path. 



In that case what happens if my system is sufficiently small in in micro-scale and nano-

scale devices, of course, I have particles that are whose mean free path is comparable to 

the distance. And in that case you should look carefully at the wall itself, if you look 

carefully at the wall itself, you would expect that the molecule that is reflected off the 

wall has the same velocity, as the wall itself because when it is collided into the wall it is 

equilibrated with the wall. So, once I thus equilibrated with the wall it is going to come 

out with a velocity which is the same as the velocity of the wall itself. 

However, the molecule that is incoming before collision, it need not have the same mean 

velocity as the velocity of the wall itself, and because of that one could end up having a 

net slip at the surface, but this happens only in micro-scale devices and for gases, where 

the length scale is comparable to the mean free path. For most macroscopic applications 

one can safely use the no-slip condition that is that the velocity of the fluid at the wall is 

equal to the velocity of the wall itself. 

Important to note when you say the velocities are equal it means that each component of 

the velocity is equal, the x 1 component of the velocity of the wall of the fluid is equally 

the x 1 component of the wall velocity, x 2 component is also equal to the x 2 component 

of the wall velocity. In this particular case the top wall is moving only in the x 1 

direction; that means, that the x 2 component of the wall velocity is equal to 0. There is 

no motion of the wall perpendicular to itself, that means that the x 2 component of the 

fluid velocity is also equal to 0, similarly for the x 3 component which is pointing into 

the plane of the wall that is also equal to 0. Similarly, if I have a fluid if I have a 

spherical particle for example, settling within a fluid that means that every point on the 

surface of the particle is moving with an equal velocity downwards. 

The particle itself is a rigid object therefore, every point on that particle is moving with 

equal velocity downwards, that means that every point in the fluid on the particle surface 

is also moving with that exact same velocity downwards. So, in this case you enforce 

velocity boundary conditions you do not enforce stress boundary conditions, particle is 

sufficiently rigid that it can balance any stress, any fluid stress, that is exerted on it 

without deforming. So, you enforce velocity boundary conditions, you do not force stress 

boundary conditions at solid surfaces. 



Similar, to in the case of for example, heat transfer you would enforce temperature 

boundary conditions at the surface, when you enforce the the temperature at the surface 

is equal to the temperature of the fluid. There is now no further necessity to say anything 

about the flux, we will just require the temperature at the boundaries has to be equal, so 

similarly, here if we are dealing with solid surfaces you require that the velocity vector at 

the surface is equal to the velocity vector of the surface itself. 

The other kind of boundary condition that one can enforce is the stress boundary 

condition, analogous to the flux boundary condition in heat and mass transfer problems, 

these are the appropriate. For example, if I had rather than a particle, if I had a bubble 

had a bubble that is rising through the fluid so that there is gas inside which was rising 

through the fluid. And because the bubble is rising through the fluid I have some fluid 

flow around this bubble, I have some fluid flow that is around this bubble, now what are 

the boundary conditions at the surface of the bubble itself, inside the bubble there is gas.  

So, if I look at the bubble surface, if I expand out one of the surfaces with a bubble, I 

have the surface of the bubble here, on this side is liquid and the other side is gas. 

Liquids typically have a viscosity that is about a thousand times more than gases, and at 

the surface of the bubble itself you require that the stresses have to be balanced that is the 

normal stress. In the liquid is equal to the normal stress in the gas the shear stress, in the 

liquid is equal to the shear stress in the gas, here you cannot enforce continuity of 

velocity boundary conditions because the gas itself can move. 



(Refer Slide Time: 45:36) 

 

So, one can have a motion in the liquid motion in the gas such that at the boundaries the 

velocity is equal, so we do not straight away know the velocity in the gas of the of the 

bubble as it is moving. For a solid object of course, the velocity of the surface has to be 

the same velocity as the object for a gas it does not have to be same, so in this case you 

enforce zero stress boundary conditions. If you if there is a shear stress that is exerted by 

the gas on the liquid, if there is a share stress exerted by the gas on the liquid there is 

going to be a deformation within the gas itself. So, any shear stress that is exerted by the 

liquid on the gas is going to result in a deformation rate of deformation within the gas, 

rate of strength within the gas. However, the viscosity of the gas is significantly smaller 

than the viscosity of a liquid, so I need liquid stress that is exerted will result in an in an 

enormously large rate of deformation in the gas. 

However, one cannot generate a rate of deformation that is significantly larger, because 

you require the velocities to be equal therefore, at the liquid gas interface it is the good 

approximation to state that the shear stresses, with unusual stress exerted by the liquid on 

the gas has to approach 0. As, you go from the liquid to the gas that is because if the 

stress were non zero the stress in the liquid is proportional to the viscosity of the liquid 

times the rate of deformation stress, in the gas is equal to viscosity of the gas times the 

rate of deformation. If there is some deformation are comparable the liquid viscosity is 

much larger than the gas viscosity the only way you can maintain a balance, in the limit 



as the gas viscosity goes to 0, compared to the liquid viscosity is if the shear stress in the 

gas the tangential stress acting at the surface if the gas goes to 0. 
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If I had perfect vacuum here, the probably we would not be able to exert any tangential 

stresses therefore, the tangential stresses in the liquid has to go to 0 as you approach the 

surface. So, at a liquid gas interface you have 0, tangential stress boundary condition, 

there is at the surface itself the tangential stresses have go to 0, as you approach the 

surface from the liquid side. And the difference in normal stress, the surface itself can 

exert a normal stress and that is what is called surface tension, the difference between the 

the the normal force per unit area outside and inside is equal to the coefficient of surface 

tension times the sum of the principle curvatures. So, the pressure outside so minus the 

normal stress inside is equal to the surface tension force which is gamma times 1 by r 1 

plus 1 by r 2 where 1 by r 1 and one by r 2 are the 2 principle curvatures at the surface. 
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Let us make this a little bit more definite, I have the surface and I have the unit normal 

here, a component a force acting in the i direction at this surface force per unit area in the 

i direction is equal to T i j times n j, the force unit area acting at the surface the force 

itself were unit area is in some direction F i. The contribution to the force along the 

normal direction along the normal direction the contribution to the force is going to be 

equal to n i times F i is equal to n i T i j times n j. 

So, the difference between the normal force on the two sides n i T i j n j in the liquid 

minus n i T i j n j in the gas, this has to be equal to gamma times 1 by r 1 plus 1 by r 2, 

where 1 by r 1 and 1 by r 2 are the radii in 2 orthogonal directions on the surface, so 

there is an some normal force balanced relation. What about the component of the force 

that is perpendicular to this, that is tangential to the surface, which is perpendicular to a 

normal. 

So, if I have a force F i if i have this force fi the force fi, if I take the dot product of this 

with n i will get n i F i this is the force along the normal there is a remaining force, which 

is acting perpendicular to the normal. What is this force, this force the most general 

expression for this force is delta i j minus n i n j times F j, this is a vector could be in any 

direction along the plane. You can see that if I take this and dotted with n i will get 0, n i 

times delta i j minus n i n j gives me n i times n i n j square n i times is equal to n i minus 

n i n j square n j square is n dot n which has to be 0, because n is a unit vector therefore, 



this has no component along the unit normal it is always perpendicular to unit normal. 

So, the component of the stress in the liquid perpendicular to the unit normal or the 

tangential direction in the liquid phase has to be equal to 0, at a liquid gas interface 

therefore, this can be written as delta i j minus n i n j t F j is equal to delta i j minus n i n j 

T j k n k this has to be equal to 0. 

A component of the force tangential to the surface in the liquid side has to be equal to 0, 

because the viscosity of the gas is very small, so this is how you would enforce the force 

the stress boundary conditions at a liquid gas interface. Next class we will continue with 

this we will briefly review this material the derivation of the equations, and then will go 

on to analyzing how to solve this equation in different limiting cases, convection 

dominated diffusion dominated as was the case in our previous fundaments of transport 

processes one. 

Thank you. 


