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Welcome to the sixth lecture in this lecture series on fundamentals of transport 

processes. As promised, this lecture is going to be about diffusion. 
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Fundamentals of transport processes - two mechanisms - convection and diffusion. I had 

earlier explained to you, why diffusion is so important. 
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Let us just go over that once again. In the problem of the reactor, solid catalyzed reactor, 

the transport of mass of the reactants to the surface and the transport of products from the 

surface, the transport of heat and without that transport, the reaction is not going to take 

place. 

If you look closely at the surface itself, the fluid flow does not penetrate the surface 

because the surface is an impenetrable surface. Therefore, the fluid flow has to be 

tangential to the surface; a fluid flow tangential to the surface is not going to transport 

mass or heat to the surface. It is going to transport only along the surface. For the mass to 

go to the surface, you need have transport that is perpendicular to the surface; that 

transport can take place only due to diffusion. 
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So, ultimately, there has to be diffusive transport for the material to be transported to the 

surface. In the case of the heat exchanger, there is convection of hot fluid into the heat 

exchanger. So, there is heat coming in with that hot fluid by convection, but that heat has 

to go across the surface to the coolant. Across the surface, there is no fluid flowing. Fluid 

flow is only along the surface. Therefore, transport across the surface ultimately has to 

take place due to diffusion. 
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Similarly, in the problem of spray drier that I had talked about, the mass that is 

transported from the catalyst surface to the outside or the heat that is transported into the 

droplet, both of these had to be transported due to diffusion because there is no fluid 

penetrating the surface. So, there is no fluid velocity perpendicular to the surface. 

Transport perpendicular to the surface has to happen due to diffusion. 

Same is the case of momentum transfer. There is no fluid going in or going out. So, it 

carries no momentum with it. The only force that is exerted is due to the drag force on 

the surface, the shear stress that is exerted on the surface as well as the pressure forces. 

This transport of momentum by shear stresses has to happen due to diffusion. So, 

ultimately, regardless of whether convection is dominant or diffusion is dominant, if you 

go very close to the surface, the transport ultimately has to take place due to diffusion. 
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So, what is diffusion? Diffusion is the transport of material due to the fluctuating motion 

of the molecules without any mean velocity. Convection takes place when there is a 

mean motion of the fluid; diffusion takes place due to the fluctuating motion without any 

net mean motion in the fluid. 

Let us take a simple example of mass diffusion. Let us assume that we had 2 cylinders 

with a stop cork in between it. So, this one was filled with molecules of gas; this one was 



filled with molecules of the same gas, but with a little bit of aromatic molecules added in 

here and there.  

Initially, the 2 compartments are separated, but at some time we remove the separation 

between the 2 compartments. So, if I remove the separation between the 2 compartments, 

these molecules are going to be in fluctuating motion. So, if I look at some local location 

over here and I expand it out. 

I have these black molecules here and I have black molecules below as well with a few 

red molecules thrown in and all of these molecules have fluctuating velocities. 

As time progresses, these red molecules are going to diffuse around and inevitably some 

red molecules are going to cross the surface and go from above to below. There are no 

red molecules above; so, there is no equal transfer down and because of that, there is 

going to be net transfer of molecules from below to above 

So, if I plotted the concentration field as the function of distance, for the red molecules, 

initially there are no red molecules above, so, I will get concentration that looks 

something like this. There is concentration of red molecules below, but there is no 

concentration above. As time progresses, these molecules will slowly diffuse across. I 

will get a field that looks something like this and if I wait for a very long time, the 

system gets completely mixed up and the concentration is the same everywhere. 

As long as there is a concentration difference between below and above, there is going to 

be a flux of molecules. Note there is no mean motion of the molecules themselves; 

molecules themselves are only in a state of random motion. So, there is no change in the 

center of mass. However, there is a flux of molecules because of the fluctuating velocity 

of the molecules coupled with the difference in concentration. 

When you reach the final state, where the concentration is the same throughout, there is 

once again no flux of molecules. So, flux of molecules requires a change in 

concentration across the length. 

At a molecular level, why does diffusion take place? The simplest example to consider is 

that for a gas. So, in this particular case, let us look at the molecular transport. All of the 



molecules are having some random fluctuating velocity and because of that there is a 

constant motion of the molecules across the surface. 

Now, in a gas, the molecules move a distance comparable to the mean free path between 

successive collections. So, molecules that are going above from below are going from a 

distance comparable to the mean free path below the surface whereas, the molecules that 

are coming from above downwards are going some distance comparable to the mean free 

path from above the surface. 
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If I take this as the location where y is equal to 0, the molecules coming from below are 

coming from a distance approximately y minus some lamda times a constant, a distance 

comparable to the mean free path below the surface. Molecules going from above to 

below are coming from a distance comparable to the mean free path above the surface. 

There is a difference in the concentration between these two. The concentration of red 

molecules is higher below and lower above. Therefore, you have more red molecules 

going above and less red molecules coming below and that ultimately is what is causing 

diffusion. So, there are two things: one is fluctuating velocity of molecules and the other 

is the concentration of the molecules at the point from which they come, the point at 

which they originate in the case of gases. 
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So, let us look at it more closely. This is my y coordinate. I have given a location and the 

concentration has some variation about this location. I should draw in the other way. 

concentration has some variation about that location. 

Now, the molecules that are going upward are coming from some distance of the order of 

mean free path below the surface. We can do more detailed calculations and find out 

exactly how much they are coming? It turns out that they come from a distance minus 2 

by 3 times the mean free path lamda. 

So, the molecules from here are the ones that ultimately cross the surface. What is the 

flux of molecules going upwards? The flux of molecules is going to be equal to the 

concentration of molecules at y minus 2 by 3 lamda. This factor 2 by 3 comes from more 

detailed calculation which we shall not concern ourselves over here. We will just assume 

that it is some constant factor; it is comparable to the mean free path of the same order of 

the magnitude as the mean free path. So, that gives me concentration times the root mean 

square velocity of the molecules. 

Molecules are coming from a distance comparable to the mean free path below. So, the 

flux will be this concentration times v rms, not exactly v rms because there will be some 

multiplication factor. So, it will have some factor a in front of it times C times at y minus 

2 by 3 lamda times v rms. Once again, more detailed calculations show that this factor is 



actually one-fourth. I will not able to do the calculation to show that right now, but for 

the present we will just assume that they are coming the flux is proportional to the 

concentration times the root mean square velocity times the constant. 

That concentration is not at the location y, but at a location below the surface. The 

distance between the location and the surface is comparable to the mean free path and 

more detailed calculations show that y is equal to 2 by 3 lambda. 

So, that is the flux going from below to above. What about the flux going from above to 

below? The flux of molecules going from above to below come from a distance of the 

order of mean free path above the surface. 

Therefore, the flux going downwards will be equal to one-fourth C into y plus 2 by 3 

lamda times the root mean square velocity. Total flux - what goes above minus what 

goes below, if the y direction is directed upwards. If you assume that this is positive y 

upwards, y is upwards, positive in the upward direction, then the total flux j in the y 

direction is equal to j plus minus j minus - what goes up minus what comes down. 

So, this will be equal to one by fourth v rms into C at y minus 2 by 3 lamda minus C at y 

plus 2 by 3 lamda. Now, continuum description as I discussed in the last lecture is valid 

only when the macroscopic scale is large compared to the microscopic scale, the mean 

free path in this case. 

So, when the macroscopic scale is large compared to the microscopic scale, then this 

distance which we are interested in, the variation over distances, the distance range over 

which we want to find out variations is large compared to the mean free path. In that 

case, I can do a Taylor series expansion of the concentration about the location y. It is C 

at y minus 2 by 3 lambda is equal to C at y minus 2 by 3 lambda into dC by dy y plus 

higher order terms. 

C at y plus 2 by 3 lamda is equal to C at y plus 2 by 3 lambda dc by dy y plus other 

terms. So, locally over distances comparable to the mean free path, if you assume the 

concentrated field is approximately linear, the variations and concentration takes place 

over much larger distances. So, locally the concentration field looks linear over distances 

comparable to the mean free path. Then we can use this Taylor series expansion and with 



this, the total flux j y take this and dark j y will be equal to one by fourth v rms into C at 

y minus 2 by 3 lambda dC by dy y minus C at y minus 2 by 3 lamda times dC by dy. 
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Finally, this will give me minus 1 by 3 v rms lamda times dc by dy. So, this is the flux 

equation. Compare with the flux equation that we have got in the previous lecture. In the 

previous lecture, we got j y is equal to minus D times dC by dy, D is the coefficient in 

front of the gradient, in front of the concentration gradient; concentration gradient here, 

flux here, the co efficient in between this the diffusion coefficient. 



Therefore, the diffusion coefficient in this case, will be one-third v rms times lamda. 

Two things: one the flux depends upon the variation of the concentration with respect to 

position. Therefore, there is a diffusive flux only when there is a variation of 

concentration with respect position; this is called the gradient of the concentration field. 

I told you that the Fick’s law relates the mass density to the rate of change with position 

of the mass density - the concentration. So, the proportionality constant in that case has 

to have dimension of length square per unit time. You can easily see that v rms times 

lamda has dimensions of length square per unit time. 

Velocity has the dimensions in length per unit time; lamda has dimensions of length. So, 

this is the diffusion coefficient calculated from microscopic prospective with an 

approximation. 

We had made 2 approximations here. One was that flux was equal to this factor of one-

fourth times v rms and the second approximation related to the distance from where the 

molecules came. A more exact calculation can be done and the only thing that changes is 

this coefficient in front here. 

We will discuss this coefficient little later, but the dependence on the root mean square 

velocity and the mean free path in a gas remains exactly the same. So, in all cases, for all 

gases, the diffusion coefficient has to be proportional to v rms times lambda because 

diffusion occurs due to the fluctuating motion of the molecules. That fluctuating motion 

depends upon the root mean square velocity and the diffusion takes place over a distance 

comparable to the mean free path because that is the microscopic scale. 

So, it is going to be sensitive to the variations in concentration over a distance 

comparable to the mean free path. The change in concentration over a distance 

comparable to the mean free path is going to be equal lamda times dC by dy and that is 

why the diffusion coefficient has this form. 

Next, so, how do we estimate this diffusion coefficient? We have to know what is v rms 

and we have to know what is lamda. We will go through that for a gas in order to justify 

why the diffusion coefficient that are actually measured in experiments have the values 

that they have. 
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So, in kinetic theory of gases, you can define mean square velocity in different ways. v 

rms is defined as square root of 3 k T by m; 3 k T - this comes from the equipartition of 

the energy relation, half m v square is equal to 3 by 2 k T. 

So, this is approximately the root mean square velocity of the molecules in a gas. I can 

define a different velocity, which is the mean. This comes out to be is equal to square 

root of 8 k T by pi m. This averaging is done in a spherical coordination system in the 

velocity space that need not concern us too much over here. The constant in both cases 

do not turn out to be very different. 

So, what is the root mean square velocity for normal gases? Let us try to estimate that. k 

is approximately 1.38 times 10 power mines 23 joules per Kelvin. If we take T as 

approximately 300 kelvin at room temperature, then k T will be approximately 4 into 10 

power minus 21 joules; that is an estimate of k T, the energy scale in the system at room 

temperature approximately. 

What about the molecular mass? The molecular mass of course, varies. This is the mass 

of a molecule. For example, if you take the example of hydrogen, the mass of 1 mole is 2 

grams; 1 gram mole is 2 grams. Therefore, the mass is equal to 2 into 10 power minus 3 

kilogram for 6.023 into 10 power 23 molecules. 



From that, you can get the molecular mass is equal to 2 into 10 power minus 3 by 6.023 

into 10 power minus 23 kilograms, which according to my calculation turns out to be 

about 3.32 into 10 power minus 27 kilograms. So, this is the mass of 1 molecule. On that 

basis, I can find out what is v rms; it is equal to square root of 3 k T by m. With these 

figures, my calculation shows me that this is about 1.29 into 10 power 3 meters per 

second. 

So, this is the fluctuating velocity of a hydrogen molecule in a hydrogen gas. If you take 

for oxygen molecule, for example, for oxygen, mass is equal to 32 into 10 power minus 3 

kilograms. So, the mass is 16 times that for hydrogen. Therefore, the rms velocity will be 

about 1 by 4 times that of hydrogen and my calculation shows me about 321 meters per 

second. 

So, this is the magnitude of the fluctuating velocity of the gas molecules. We can see that 

they are quit large. A thousand meters per second for hydrogen, more than a kilometer a 

second for oxygen, it is about 321 for nitrogen and air, it will be roughly about the same 

the numbers, will be approximately the same because the molecular mass of nitrogen is 

not very different from oxygen. 

Your will also notice that these velocities are also approximately equal to the speed of 

the sound. In air, we know that the speed of sound is 330 meters per second and the rms 

velocity turns out about 321; in hydrogen, the speed of sound is about 1290 meters per 

second and that is what we have got for v rms. So, the molecules are fluctuating with 

velocities that are comparable with the speed of sound. So, the rms velocity of molecules 

in a gas is comparable to the speed of sound and the estimates are between 100 to a 1000 

meters per second approximately. 
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So, the next thing that we need is the mean free path. Now, this is a little more 

complicated and I will try to go slowly through it, but it is a useful calculation because it 

gives us some physical insight into why the numbers turn out to be the way they are. 

So, a typical molecule will undergo collision with other molecules and will go along a 

straight line path for some time and it will undergo another collision with some other 

molecule. Now, this molecule will travel in straight line between successive collisions. 

So, as it is traveling in the straight line, it sweeps out a cylindrical volume. 

So, as these molecules travel in a straight line, it sweeps out a cylindrical volume. This 

molecular diameter is d; it sweeps out a cylindrical volume of radius equal to d, such that 

if the center of second molecule is lying within this cylinder, there will be a collision 

between 2 molecules. If the center of the second molecule is lying within the cylinder, 

there will be a collision between the 2 molecules. 

So, as it is traveling with its root mean square velocity, it is sweeping out this distance. If 

it travels some length L, the volume of cylinder swept out is going to be equal to pi d 

square times L and of course, as it sweeps out a longer and longer cylinder, the 

probability that it will collide is going to increase and why is that going to increase? It is 

because the probability of finding the second molecule within the cylinder increases. 



Therefore, let us estimate what is the probability of finding the second molecule within a 

cylinder of the length L. 

The probability of finding a second molecule is going to be equal to the number density 

of molecules times pi d square L and n is number density of molecules - number per unit 

volume - pi d square L is a volume. So, the products of these two becomes just a number 

So, as the number of second molecules is increases, there is a greater and greater chance 

of collision. The probability that the molecule will all most certainly collide happens to 

be 1, when L is equal to the mean free path because it cannot go much beyond the mean 

free path. It is very rare for a molecule to go very much larger than the mean free path 

before it collides. 

Therefore, it is going to reach, it is going to undergo a collision and this probability 

becomes approximately 1, when this distance L is equal to the mean free path lamda. 

Therefore, I have n pi d square times lamda is approximately 1. So, it is going to collide 

it is going to cover its mean free path when this is approximately 1. Therefore, lamda has 

to be approximately one by pi nd square. 

So, this is a simple estimate that was based upon single molecule traveling in a straight 

line between successive collisions. You can do a more detailed calculation and you will 

get the mean free path is 1 over root 2 pi nd square. 
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So, that is the mean free path. Let us try to estimate what is mean free path? The number 

of molecules per unit volume is equal to p by k T, number of molecules per unit volume 

from p v is equal to n k T. So, if you take atmospheric pressure, the pressure is 

approximately 1 into 10 power five Newton’s per meter square divided by k T which is 4 

into 10 power minus 21 joules. 

You can easily see that these has dimensions of one over volume and if I carry out this 

calculation, this number density becomes approximately 2.5 times 10 power 25 

molecules per meter cube at standard temperature and pressure. So, this is the number 

density of molecules. The mean free path is going to be equal to 1 by root 2 pi nd square. 

For hydrogen, d is 1.38 angstroms which is approximately 1.38 times 10 power minus 10 

meters and using this in this formula, I get the mean free path is equal to 0.5 into 10 

power minus 6 meters or approximately 0.5 microns. One micron is 1000 of the 

centimeter. So, this is approximately 1 micron is about 1000 centimeter. 

For oxygen and nitrogen, I think diameter is approximately 3.7 to 3.8 angstroms. If you 

put this into this formula, I will get lamda is approximately equal to 6 into 10 power 

minus 8 meters. So, this is approximately 16 nanometers and you can easily see that the 

diameter is about three angstroms and the mean free path is about 6 nanometer and that 

the mean free path is approximately 100 times the molecular diameters, in the case of 

gases. 

So, this gives a range to the mean free path is between about 0.5 microns to 10 power 

minus 7 to 10 power minus 8. So, diffusion coefficient is equal to some constant; in this 

case, we got one-third v rms times lamda. For hydrogen, v rms was about 12100 meters 

per second and I am getting about 0.5 micron per lambda and on this basis, I can estimate 

the diffusion coefficient as approximately 6 times 10 power minus 4 meter square per 

second for hydrogen. 

This is approximately 2 times 10 power minus 5 meter square per second for oxygen and 

nitrogen. So, this is the range of diffusion coefficient for most common gases. It is 

approximately Diffusion coefficient in all cases is approximately 10 power minus 5 

meter square per second. 



If you look for example, look for values in literature, Kastler reports that H 2 and He 

diffusion coefficient is about 1.132 into 10 power minus 4 meter square per second, 

while for oxygen, it is about 1.8 times 10 power minus 5 meter square per second. 

So, this is the range of diffusion coefficient for most common gases and the reason that 

the diffusion coefficient has this range is because the mean free path goes from about 10 

power minus 7 to 10 power minus 8 meters and the velocity varies between 100 and 

1000 meter square per second. In fact, you can do more detailed calculations to get exact 

results for diffusion coefficient for let us say spherical rigid molecules. 
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This turn out to be of the form D is equal to 3 by 8 nd square into k T by pi m power 

half. This is for a single component, where the number density is where the masses of the 

2 molecules are not very different and if you have multi component diffusion - 2 species, 

this will be 3 by 8 n 1 2 d 1 2 square into k T m 1 plus m 2 by pi m 1 m 2 power half, 

where d 1 2 is equal to d 1 plus d 2 by 2 and n 1 2 is equal to square root of n 1 n 2. So, 

this is for multi component diffusion. 

This explains why the diffusion coefficient have the values they do for gases. How about 

for liquids? So, for gases, I said the diffusion coefficient is of the order of 10 power 

minus 5 meter square per second. For liquids, the thermal velocity is the same. 



The v rms, liquid’s v rms is still equal to 3 k T by m power half. The thermal velocity is 

the same whether it is gases or liquids. Only thing is in liquids, the distance between the 

molecules is small. Therefore, the molecules cannot move very far between successive 

interaction; that is the only difference between liquids and gases. 

On this basis, the thermal velocities are the same, the mean free path in the liquid - 

distance between molecules, is about 100 times smaller than the mean free path in a gas 

as I just told you. Therefore, you would expect the diffusion coefficient also to be 100 

times smaller. So, you would expect diffusion in liquids to be approximately 1 by 100 

the diffusion coefficient for gases. 

Turns out that this is not true; this equation it turns out is not true and the reason is the 

high density of molecules in a liquid. So, if I had molecules in a liquid, the motion of 1 

molecule in any particular direction requires that all other molecules move out of the 

way. 

So, diffusion in liquids is basically what is called cooperative processes. The motion of 1 

molecule requires other molecules to move out. For most of the times, the molecules in a 

liquid are rattling within the cage that is made of the neighbouring molecules and 

occasionally there is a rearrangement, where one molecule moves out because the 

neighbouring molecules are moved in such a way as to permit the passage of the 

molecules. 

Transport of mass requires the motion of molecules, the physical motion of molecules 

and for this reason diffusion in liquid is much slower process. In fact, if you calculate the 

diffusion coefficient in liquids, for small molecules, it is approximately 10 power minus 

9 meters square per second which four orders of magnitude smaller than that in a gas. 

For example, for hydrogen and water, the diffusion coefficient is 4 into 10 power minus 

9. For larger molecules, if you had larger polymer molecules, protein and so on, this 

could be as low as 10 power minus 11 to 10 power minus 13 meters square per second, 

for large. 

So, the diffusion coefficient in liquids is an exceedingly slow process because it involves 

the cooperative motion of many molecules and the diffusion coefficient in liquids is 



difficult to estimate just based on the mean free path consideration alone, but there is 

alternate ways to estimate that. One equation is what is called Stokes Einstein equation - 

k T by 3 pi mu times the molecules diameter. k T is the same k T, the thermal energy that 

we had before, mu is the viscosity of the liquid and D is the diameter of the diffusing 

particle; this called Strokes Einstein relation. 

This relation is strictly speaking valid only for large collidal particles in a liquid, There is 

a requirement in deriving this relation that this diameter D has to be large compared to 

the molecular diameter so that the relaxation time of the large particle is much larger 

than the time scale on which these small molecules impact on the particle, but this can 

still be used to give an estimate of what diffusion coefficient of liquid should be 
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Finally, there is one other point to be noted here. In gases, D is equal to some constant, 

let us call that as a, times lamda times v rms, where lambda is equal to 1 by root 2 pi nd 

square and v rms is equal to square root of k T by m. That means, in gases, the diffusion 

coefficient increases with temperature. 

The reason is because as you increase the temperature, the fluctuating velocity of the 

molecules increases and because of that the diffusion coefficient increases. The diffusion 

coefficient also increases as the number density is decreased; as n decreases, the 

diffusion coefficient increases. 



That is because molecules travel longer distances between successive interactions. So, at 

a given surface, as you decrease the number density, the molecules of that point coming 

from much lower, where the concentration difference is much larger. That is the reason 

the diffusion coefficient increases as you decrease the number density and it increases 

proportional to T power half as the temperature is increased. 
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In liquids, on the other hand, you can see from the Stokes Einstein relation, the diffusion 

coefficient has this form. So, it depends both upon the temperature as well as the 

viscosity. Typically, the diffusion coefficient will decrease as the temperature is 

increased. 

Even though the temperature increases, the viscosity decreases. The diffusion coefficient 

increases as the temperature increases because the viscosity is decreasing fast and the 

temperature is increasing. When the viscosity decreases with increase in temperature, the 

diffusion coefficient will increase with the increase in temperature. 

In this case, the power is actually larger than one because the temperature is increasing 

and the viscosity is decreasing. So, in both cases the diffusion coefficient does increase 

with temperature, but for different reasons in both cases. 
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So, that gives us some physical insight into the diffusion of mass. Now, let us look at the 

diffusion of momentum. That is I am trying to get a relationship between the flux of 

momentum, which is the shear stress and the change in velocity across the surface. So, 

let us consider shear flow in which the velocity, this is the y direction, the velocity u x is 

varying along with position y. So, this is the location y is equal to 0 and I have molecules 

here and all of this have fluctuating velocities. However, there is also a mean velocity. 

So, the molecules on top are moving with a small mean velocity towards the right; these 

molecules below are moving with a small mean velocity towards the left. The implicit 

assumption in all of these cases is that, the mean velocity is small compared to the 

fluctuating velocity of the molecules. As I told you earlier, the fluctuating velocity of the 

molecules is comparable to the speed of sound in the medium. 

So, the assumption in all of these cases is that the mean velocity is small compared to the 

speed of sound. The ratio of mean velocity in speed of sound is called Mach number and 

we deal exclusively with low Mach number flows, where the mean velocity is small 

compared to the speed of sound. 

So, if you take the volume below the surface and try to write an equation for the rate of 

change of momentum. Note that momentum has 3 components, but in this particular case 

you are assuming that the mean velocity is non-zero only in the x direction. So, 



momentum only has an x component; there is no y, z component. However there is a 

fluctuating velocity of the molecules in all directions. In particular, there is a fluctuating 

velocity of molecules in both x and y directions and that will prove to be important when 

we discuss diffusion. 

So, now, what is the rate of change of momentum within this volume? When a molecule 

goes from below to above, the momentum of this volume decreases. When a molecule 

comes from above to below, the momentum of this volume increases. Now, we have to 

find out the flux of momentum from below to above and from above to below. 

Flux of momentum from below to above, I will call this as j y momentum flux and this 

momentum flux is going in the positive direction. This momentum flux is going to be 

equal to the average momentum of the molecules below times the number of molecules 

traveling per unit time per unit area. 

So, the average momentum of the molecules below this surface is going to be equal to 

number of molecules times mass of a molecule times v x at y minus 2 by 3 lamda is the 

value. So, this is the mean momentum. So I have to be careful here. I should use u x n 

into u x y minus lamda times the flux of molecules. 

So, this is the momentum of molecules below times the flux of molecules, which is 

approximately v rms times some undetermined constant a. In the previous case, it was 1 

by 4; you do not worry too much about what the exact numerical value of the constant is. 

So, this is the momentum that is going from below to above. The momentum coming 

from above to below is going to be similar except that this is equal to nm times u x at y 

plus 2 by 3 lamda into v rms times proportionality constant. 
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So, now, what is the rate of change of momentum? One has to be careful here, the 

momentum of this volume is increasing, when the molecules come from above to below 

whereas, decreases molecules goes from below to above. 

So this is going to be equal to j m y minus minus j m y plus because what goes above is 

decreasing the momentum, what comes below is increasing the momentum. And if I take 

this  
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Therefore, net flux of momentum is equal to j y m minus minus j y m plus. This is going 

to be equal to nm u x at y plus 2 by 3 lamda minus nm times u x at y minus 2 by 3 

lambda times v rms times this undermined constant. Once again, I can do the same 

Taylor series expansion. I assume that v rms is not changing too much because the 

temperature is not changing too much and the density - number density and mass of the 

molecules is approximately the same. So, this will give me a v rms nm into u x at y plus 

2 by 3 lamda du x by dy at y minus u x at y minus 2 by 3 lamda du x by dy. 

This is equal to 4 by 3 a v rms nm lamda times du x by dy. So, this is the flux of 

momentum. The flux of momentum is nothing, but the shear stress times tau xy. 

Newton’s law of viscosity - tau xy is equal to mu du x by dy. So, clearly this coefficient 

mu is just everything that is sitting here in front. 

The coefficient of viscosity is just the coefficient that appears in front of the velocity 

gradient; it is this coefficient. Therefore, the viscosity is approximately v rms nm times 

lamda. So, that is the viscosity of the molecular gas. 
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So, therefore, the viscosity is equal to some undetermined constant. Let us call that as A 

nm v rms times lamda. The kinematic viscosity, we have discussed that earlier, when we 

write the diffusion equation. The flux of a quantity per unit area per unit time is equal to 

diffusion coefficient times the gradient of the density of that quantity. In this case, 



momentum; momentum density is just rho times u x in the x direction - momentum per 

unit volume. Therefore, equation that I had earlier is equal to mu into du x by dy. It can 

also be written as mu by row into d by dy of rho u x, momentum density, where mu by 

row is equal to nu is the kinematic viscosity. So, I have an expression for mu here. So, 

mu by row, row is the mass density. In the expression for viscosity here, n is the number 

of molecules per volume times m is the mass of the molecules. So, n times m is just rho, 

the mass density. 

So, therefore, the kinematic viscosity is just some constant v rms times lamda. Kinematic 

viscosity is momentum diffusivity. Diffusivity of all mass, momentum and energy have 

to have dimension of length square by unit time. Clearly this has the dimension of length 

square by unit time, but it is more than that. In the case of mass diffusion, we found out 

that the mass diffusion coefficient was some constant times v rms times lamda; 

momentum diffusion constant is the same in this case, some constant v rms times lamda. 

So, both the mass and momentum diffusion are approximately of the same magnitude in 

gases. That is no surprise. It is because the diffusion process for both mass and 

momentum are due to the physical motion of molecules in a gas. 

So, in both cases we will get the momentum diffusion constant to be roughly of the same 

magnitude. The viscosity in the gas, I got it up to an undetermined constant here in a 

manner similar to diffusivity, I can do a more detailed calculation and that detailed 

calculation will give me the constants in the expression for the momentum diffusivity of 

the gas. 

You can see here that viscosity is equal to A nm v rms times lamda and if I write out the 

expressions for v rms 3 k T by m and this is 1 over root 2 pi nd square. So, you can 

easily see that the number density at the bottom and the top cancel out and the viscosity 

is independent of density in gases. 

If we do a more detailed calculation, we will get the viscosity is 5 by 16 d square into 

mkT by pi power half. So, this is what we get by more detailed calculation. We can see 

the dependencies are all correct. It has mkT power half and because there is mass here, 

one over mass here and this is 1 over d square. If I actually calculate the value of this, we 

will get L inverse T inverse, as we got from dimensional analysis. 



So, for a gas, the viscosity increases with temperature proportional to T power half, for a 

dilute gas. The viscosity is independent of the density for a dilute gas. The reason it is 

independent of the density because the reason is momentum transport is proportional to 

the number of particles, but, the mean free path goes 1 over the number of molecules per 

unit volume; that cancels out and for that reason, it is largely independent on the number 

of molecules. 

Next, we will go kinematic viscosity and the momentum diffusivity in liquids. In liquids, 

it turns out, when we discussed mass diffusivity earlier I told you the mass diffusivity in 

liquids much smaller than the mass diffusion in gases. The reason is because the 

diffusion of the mass requires the physical motion of molecules in liquid and that 

requires cooperative motion because for one molecule to travel, other molecules have to 

move out of the way. 

Momentum diffusion does not require the physical motion of molecules and for that 

reason the momentum diffusion can happen much larger and much faster in liquids than 

mass diffusion. The excess momentum can be transmitted from one molecule to the other 

due to molecular interactions. It does not require the physical motion of molecules and 

for that reason, the momentum diffusion in liquids is much faster than mass diffusion 

liquids. 

We look at the details in the next lecture. I will go through these arguments for diffusion 

of mass and momentum once again, complete the arguments for diffusion of energy in 

the next lecture and then we start looking simple configurations. 
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So, basically in this lecture what I have tried to convey to you is the physical 

understanding of diffusion and why it takes place. Diffusion takes place because you 

have changes in concentration across the surfaces. If I have more molecules below and 

less molecules above, there is no net flow, but because of the difference in concentration 

there is going to be a net motion of molecules. That is true, whether it is mass, 

momentum or energy. In the case of gases, the diffusion mechanisms are the same for all 



cases and we saw already the mass diffusivity and momentum diffusivity are 

approximately the same. 

We will see later that energy diffusivity is also approximately the same. In liquids, they 

can be very different because the mechanisms are different. We will continue this 

discussion in the next class, will see you next time. 


