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Welcome to this the fourth lecture in our series on fundamentals of transport processes. 

In the first lecture, I tried to give a motivation about why we need to study transport 

processes because transport is essential for all the physical or the chemical 

transformations that take place and in the next 2 lectures, we looked at dimensional 

analysis, what that can do for us, in terms of defining how to get a flux based upon the 

concentration difference, how to get a heat flux based upon the temperature difference. I 

also told you about momentum fluxes and differences in velocities. 
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Last class, we specifically did calculation for specific processes. For example, first we 

looked at the flow in a heat exchanger, where it is of interest to calculate what is the 

transfer rate of heat from the inside to the outside as the function of the temperature 

difference, the speed with which the fluid is moving as well as the fluid thermal and 



mechanical properties and we got a relationship between 4 dimensionless groups. One 

was a non-dimensional flux for heat, then there was Reynolds number which was the 

ratio of inertia and viscosity and other dimensionless number involving the specific heat, 

the conductivity and the viscosity and an aspect ratio which was basically the ratio of 

length to diameter. 
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I said you can reduce to this form, but not further. If you want to go further, you have to 

do experimentation. Change the Reynolds number, change the Prandtl number and see 

how the Nusselt number changes or the average heat flux changes and we get different 

correlation depending upon whether the flow is laminar or the flow is turbulent under 

different conditions and you can actually have diagrams, which actually plot the left 

hand side verses right hand side. 



(Refer Slide Time: 02:10) 

 

Then we looked at the heat transfer and mass transfer from the surface of a catalyst 

particle and there, I told you the fundamental numbers, the non-dimensional mass flux 

Sherwood number, the ratio of a mechanical quantity viscosity and a mass transport 

quantity - the diffusion coefficient and the Reynolds number, basically because the fluid 

flow is what is transporting mass to the surface. 

We looked at two different correlations for laminar flow and for high and low Schmidt 

numbers and I briefly mentioned that for the mass transfer problem, nothing changes in 

these correlations. The numbers are all exactly the same, except you substitute the 

Nusselt number for the Sherwood number and the Prandtl number for the Schmidt 

number and those same correlations will work for mass heat transfer as well. 
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So, there is the fundamental analogy between mass, heat and momentum transfer and we 

looked at the physical interpretation of how that equivalence comes out. From the 

physical interpretation of diffusion, this is the general diffusion equation. This equation 

is a general diffusion equation for any quantity; it can be mass, it can be heat, it can be 

momentum. 

Flux of quantity: This is important. So, we will go through it once again. I have a slab of 

fluid of some length L and cross sectional area S; S is the area and I apply a 

concentration difference across the slab of fluid of length L. The flux, the amount that 

goes through for unit time is going to be directly proportional to the surface area S 

because if you make the slab wider, there is going to be more mass going through. 

The amount is going to be directly proportional to the difference in the concentrations 

because if I make the 2 concentrations difference higher, I am going to have more 

material going through, the amount of material is also going to be inversely proportional 

to the length L because as I make it larger and larger, there is going to be less amount 

that is going through. Rather than write an equation for the amount of material going 

through I can write an equation for the flux - amount per unit surface area per unit time. 

So, since the amount of material going through is proportional to surface area, the flux 

which is the amount per unit area per unit time is independent of the area. It only, is 

proportional to the difference in concentration; it will increase, if you make the 



concentration difference larger, it is inversely proportional to the total length. As you 

make this slab thicker and thicker, the amount of material going through is going to 

become less and less; this is Fick’s law of diffusion and this coefficient here, the 

diffusion coefficient, D is the diffusion coefficient. Heat conduction: I take a slab of 

material. This heat conduction argument actually works for both fluids as well as solids. 

Solids also follow the same conduction equation as fluids do. 

So, heat conduction equation - the heat flux across the material: I have a material with 

area S and I apply a temperature difference across the material, the thickness of that 

material is L. So, the heat flux is the heat going. The heat going through is proportional 

to the surface area of the material, proportional to the difference in temperature, 

inversely proportional to the length of the slag of that material. 

So, the heat flux which is the heat per unit area is going to be independent of area 

because you have already taken the heat transfer per unit area per unit time. It is 

proportional to the difference in temperature. As you make the temperature difference 

larger, more heat is going from the region of high temperature to region of low 

temperature and it is inversely proportional to the length of material. So, it is k delta T by 

L and this is Fourier’s law for heat conduction. 

Now, in my diffusion equation, I said that the flux of the quantity per unit area per unit 

time is equal to a diffusion coefficient times the change in density of that same quantity. 

Density of that quantity is quantity per unit volume, the change in that density of that 

quantity per unit length. So, in this case the density is the energy density. So, I have got k 

times delta T by L, but I have to express it in terms of the change of the density of that 

quantity which is energy itself. 

Energy has to be written as rho C p times T. So, the change in rho C p times T divided by 

L and obviously, if I write it in this form the coefficient that appears in front is k divided 

by rho C p. So, I get this thermal diffusion coefficient alpha times the change in that 

quantity per unit length. So, alpha is the thermal diffusivity and this diffusion coefficient 

as well contains the dimensions of length square per unit time. 
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For momentum, the sheer stress acting at a surface. I take a slab of fluid of length L and 

apply a velocity difference across that. Within the slab itself, I have a linear variation of 

velocity with position. The sheer stress, which is the force per unit area and force is rate 

of change of momentum. So, it is the change in momentum per unit area per unit time. It 

is a flux of momentum and is equal to some coefficient times the change in density of 

that same quantity; that quantity is momentum. So, I have to have a change in density of 

momentum per unit length. 

Momentum is mass times the velocity. That means that the momentum density is the 

mass density times velocity. So, change in momentum density rho times U divided by L 

and the coefficient that appears in front is mu by rho, which is the kinematic viscosity. 

Therefore, these are the 3 diffusivities for mass, momentum and energy. For mass, the 

diffusion coefficient is usual diffusion coefficient in Fick’s law; for energy, the diffusion 

coefficient is k by rho C p; alpha the thermal diffusivity, where k is the conductivity and 

rho and C p are the specific heat and the density respectively. 

For momentum transfer, the diffusivity is the viscosity divided by the density, which is 

referred to as the kinematic viscosity and you can easily verify that both of these have 

length square T inverse. For example, the viscosity is mass length inverse T inverse; the 

density is mass L power minus 3. So, if we take the ratio of these two, we will get L 

square T inverse as the ratio of the viscosity and the density and therefore, all diffusion 



coefficients will have dimensions of length square T inverse. This k was a physical 

interpretation for what all those dimensionless numbers mean. 
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The mass diffusivity d as dimensions of length square T inverse, thermal diffusivity 

alpha k by rho C p has dimensions of del square T inverse and momentum diffusivity nu 

has dimensions of del square times T inverse. 
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Now, let us look at the rate of convective transport. Convective transport is the transport 

due to the convection of material. So, if I have some slab of material of surface area S 



and it has some velocity field here, it is moving with some velocity U, then material is 

transported because there is a velocity for this material. Because material has the 

velocity, it is going to get transported even though there is no difference in concentration 

across two different positions. Even when there is no concentration difference, there is 

still going to be material transported because of mean convection. So, for example, in the 

reactor problem there was convection, which was bringing in mass at the inlet and 

convection taking the product out of the outlet. 

In the case of the heat transfer problem, heat was coming in at the inlet due to 

convection. So, convections transport, even when there is no change in the concentration 

or the temperature or the momentum. What is the amount of material that is transported? 

Let us look at two times; at time t and time t plus delta t. So, at time t, there is certain 

amount of material that has not yet entered, at time t plus delta t, some of the material 

that is here has come down into this differential volume. The distance it has moved is 

equal to U times delta t within a time delta t. 

So, that means that the amount of material that has come in, is equal to this volume that 

has come in times the concentration of that volume. The volume that has come in is 

equal to the surface area times this distance U delta t, volume that has come in is surface 

area times U times delta t. So, the mass that has come in is going to be equal to the 

volume times the concentration, which is equal to C into S into U into delta t. So, this is 

the volume that has come in - S into U into delta t and the mass in - C into S into U into 

delta t. 

Therefore, the total mass in per unit time is equal to C into U into S divided by time and 

the flux is equal to mass in per unit area per time and is equal to this mass in per time 

divided by surface area S, which is just going to be equal to C into U. 

So, the flux is equal to concentration times the velocity - flux of mass. Flux of energy is 

equal to the energy density - the energy per unit volume into velocity. Flux of 

momentum is the momentum density - that is, the momentum per unit volume into 

velocity. Therefore, the conductive transport, the flux will be equal to just the 

concentration of equal to density of quantity into velocity. 
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Now, the flux due to diffusion is equal to diffusion coefficient into the change in density 

divided by length L. The flux of quantity is equal to diffusion coefficient times change in 

density of quantity divided by unit length L; that is the flux due to diffusion. The flux 

due to convection is just equal to the concentration times the velocity. 
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Therefore, the ratio of those two will give you, the ratio of those two will give you, the 

ratio of flux due to diffusion and flux due convection. So, in this case, the Reynolds 

number is the ratio of the flux due to convection U times length divided by convective 

viscosity. 

The Schmidt number that we had seen earlier was the ratio of momentum diffusion and 

mass diffusion. Momentum diffusion coefficient, kinematic viscosity has dimensions of 

L square time inverse; mass diffusion coefficient has dimensions of L square time 

inverse. The Prandtl number, we saw that that is equal to the ratio of momentum 

diffusion and thermal diffusion, both of which have dimensions of L square T inverse. 

The Reynolds number was ratio of convection and diffusion. The kinematic viscosity has 

dimensions of L square T inverse; velocity is length per unit time. 

So, if you take U into D by kinematic viscosity, it will be a dimensionless number - ratio 

of convection by momentum diffusion. One can also write the ratio of convection by 

mass diffusion and convection by thermal diffusion. So, these dimensionless numbers - 

the Reynolds number, the Prandtl number and the Schmidt number give you either the 

two different diffusivities or the ratios of convection and diffusion. 
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So, this will be a recurring theme in the course the ratio of convection and diffusion or 

the ratio of 2 different diffusivities. There are other dimensionless numbers that are also 

important for our course. We have seen already some of those. One could for example, 

have dimensionless numbers involving surface tension. The dimensionless numbers that 

involve surface tension are called the capillary number and the Weber number. The 

capillary number is written as mu U by gamma, where gamma is the surface tension, mu 

is the viscosity and U is the characteristic velocity. So, this is the ratio of viscosity 

divided by surface tension. 

One can also have ratio of inertia and surface tension; that is what is called as the Weber 

number. This is written as rho U square D by gamma, which is the ratio of inertia by 

surface tension. You can have dimensionless groups involving gravity. For example, we 

already see one which is Froude number, which was U D by g, where D is the 

characteristic length. I am sorry, this should go as U square by g D. 

You can also have something called the Bond number, which is rho g L square by 

gamma, which is the ratio of gravity by surface tension. Froude number is the ratio of 

inertia with respect to gravity. So, these are important dimensionless number for 

example, which involves surface tension gravity and so on. 
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There are other problems, where it is not very clear what the ratio they exactly represent 

is. One such important case is actually what is called natural convection and I will take a 

little bit of time to explain what exactly this is because it is important especially in heat 

transfer problem because as you probably know there are 2 main mechanisms of heat 

transfer. 

One is forced convection and the other is natural convection. Forced convection heat 

transfer is where the transfer of heat, the velocity field is basically determined by the 

external action by the pumping, for example, of a fluid through a tube or around an 

object and that velocity field is what convects the heat away from that object. 

Natural convection is the other way. The surface is heated and because the fluid is hot 

near the surface, the density is lower and because the density is lower it tends to rise 

because of buoyancy effects. So, the velocity field itself is created by heating of the 

surface itself and so, in that sense, the natural convection is little more complicated. 

So, let us say that you have a buoyancy force. It is the force acting on the surface. So, for 

example, we had some heated object, you would have fluid rising upwards. If this was 

the hot temperature and this is cold, you would have fluid rising upwards because near 

the surface, the fluid is heated and the density of that fluid is lower and because of that it 

rises upwards. 



If you look at any parcel of fluid here, there is an upward force due to buoyancy that acts 

on this parcel. What is the force due to buoyancy? That force is equal to the change in 

density - the difference in density between this and the outside and the gravitational 

acceleration. So, this is the force per unit volume acting on a parcel of fluid because its 

temperature is higher than the temperature outside. 

What is delta rho, the temperature of that parcel of fluid? This is equal to the density 

times the coefficient of expansion times delta T, where beta is equal to the change in 

density due to unit change in temperature; beta is the coefficient of thermal expansion. 

So, the force is equal to rho beta delta T times the gravitational acceleration. This force 

causes a velocity in the fluid and what is that velocity going to be? 

One can consider 2 different cases: one is where the force exactly due to this is balanced 

by the inertial stresses in the fluid; the second, where it is balanced by viscous stresses 

fluid. It will not make very much difference from the point of view of dimensional 

analysis, which one you consider, but let us for the moment consider that this force is 

balanced by the viscous stresses in the fluid. This object has a diameter D and if this 

force is balanced by viscous stresses in the fluid, then the characteristic velocity with 

which the fluid is moving upwards U c, just from the dimensional analysis will go as f 

times D square by mu, where f refers the force per unit volume. You can very easily 

verify that this ratio as dimensions of velocity itself. So, that is the characteristic velocity 

with which the fluid is raising. 

With this characteristic velocity, I can now write down a Reynolds number because the 

Reynolds number is the ratio of inertia and viscosity and if I write down the Reynolds 

number with that characteristic velocity, it goes by the name of the Grashof number is 

equal to rho U c D by mu and I substitute for you U c here, rho D by mu into U c was f D 

square by mu, which is rho D by mu into D square by mu into rho beta delta T times g. 

So, you assemble all terms together and you will get rho square D cube beta g delta T by 

mu square. 
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So, this is the Grashof number. It is a complicated number; it looks like it has many 

different factors in it, but if you break it down to its basics, it is basically the ratio of 

inertia and diffusivity, where in inertia include the characteristic velocity which is 

obtained by a balance between the applied force, which is the force due to difference in 

density and the viscous stresses. 

So, this is the Grashof number and one can also get a different number called the 

Rayleigh number. The Rayleigh number, you are not balancing taking the ratio of inertia 

and viscosity, but rather you are taking the ratio of convection and thermal diffusion. So, 

the rally number is basically equal to U c times D by thermal diffusion coefficient alpha 

and this is equal to U c times D by thermal diffusion coefficient is k by rho C p. So, this 

is equal to rho C p D by k into U c, which was D square by mu into rho beta delta T 

times g. So, this works out to rho square C p D cubed beta delta T g by mu times k. 

Once again a complicated number, but if you break it down to the ratio of different 

forces, it is quite easy. It is basically ratio of convection and thermal diffusion, where in 

convection, I have taken the velocity that is caused due to the difference in density and 

scaled that by the and use the balance between the force that is caused due to the 

difference in density and the viscous forces in the fluid, 

So, the fundamental numbers for convection are the Grashof number and Rayleigh 

number. So, if I had a heat transfer, a natural convection heat transfer instead of having 



the Reynolds number - the Reynolds number is ratio of inertia and viscosity, where the 

velocity that you take is the applied velocity in forced convection. Natural convection, 

you have to take the velocity is obtained due to the density difference due to the 

buoyancy effects. So, the Nusselt number in that case will be a function of the Grashof 

number and the Prandtl number. 
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Then we have non-dimensional fluxes. You have already seen those - the Nusselt 

number and the Sherwood number. So, for heat and mass transfer problems, the Nusselt 

number and the Sherwood number would be written it in terms of ratio of all other forces 

the Reynolds number, the Prandtl number or the Schmidt number as the case may be and 

surface tension forces, if they are important, gravitational forces, if they are important. 

We will know surface tension is important, if the Weber number or the capillary number 

is small, then surface tension is important and similarly, gravity will be important, if the 

Froude number is small. 

So, that is the reason that in the dimensional analysis that we did earlier, we always got 

these numbers coming out because these numbers are dimensionless fluxes and they are 

written in terms of the ratios of convection and diffusion of different kinds. So, for 

example, we can broadly classify the correlations as flow through pipes and channels. 

We already saw those for the flow through the pipe in the heat exchanger problem. The 

Nusselt number for laminar - the Nusselt number is equal to 1 point 86 R e power one 



third P r power one third D by L power one third mu by mu w power 0 point 14. Two 

things here, first thing is I can write this whole thing 1 point 86, the Reynolds number 

times the Prandtl number is the Peclet number, P e power one third, power 0 point 14. 

So, the Nusselt number depending only upon the ratio of convection and diffusion of 

mass, the ratio of convection and diffusion of momentum is not appearing in this 

correlation, apart from this correction factor that is there. If instead of a heat exchanger 

problem, I had the equivalent mass transfer problem that is the solid flowing through the 

tube and it is diffusing across the surface through a porous surface to the fluid outside, I 

would get exactly the same correlation for the laminar flow, that is, the Sherwood 

number is equal to 1 point 86 R e power one-third Schmidt number power one-third D by 

L power one-third. 

In this case, we have seen the diffusion coefficient does not change across the cross 

section of the tube and the reason is because these transport problems are determined by 

the two effects; one is diffusion and the other is convection. In one case, it is the 

diffusion of mass, the other case is diffusion of heat, but both of those follow the same 

relations for the flux as the function of difference in concentration or the difference in 

energy density. 

For a turbulent flow, the Nusselt number is equal to 0 point naught 2 3 into R e power 0 

point 8 P r power one third. In this case, I cannot reduce it to the Peclet number alone 

because the powers on R e and P r are not the same. So, there is a dependence both on 

mass diffusion and momentum diffusion in this case. So, this is the sieder-tate and if I 

were doing the equivalent mass transfer problem, I get exactly the same. So, that was the 

flows through pipes and channels. 

So, in this case, these correlations are for flow through cylindrical pipes. For flow 

through other kinds of geometries, these coefficients here will change, but the general 

relationships will not change for other kinds of geometries. These powers will remain the 

same; the powers that I have here will end up remaining the same. We will look in this 

course why powers come about. 
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The other broad class of problems is flow around objects and in this case, this is the 

object and this has let us say, temperature T 1 and T 2 far away and there is a flow 

around this object and you want to know what is the average flux either going into this 

object or coming out of this object as a function of temperature difference and the 

velocity, we usually use the velocity far away from the object because obviously velocity 

always changes as it comes near flows around the object. 

The equivalent mass transfer problem C 1 and C 2 and there is a flow around this object 

and in this case, the non-dimensional flux is based upon the diameter of this object and 

for example, for laminar flow and low Peclet number, I will have a correlation of the 

form Nusselt number is equal to 2 plus 0 point 6 R e power half P r power one third. So, 

in the limit of low Peclet number, that is, the Peclet number is the Reynolds number 

times Prandtl number. If both of them are low, that means, the diffusion is dominant. 

Peclet number - ratio of convection and diffusion and so if it is small that means, the 

diffusion is dominant. 

This Nusselt number is going to a constant and that is because the diffusion is large there 

is no convective effect and therefore, if I remove the velocity from my dimensional 

analysis, I can get only one dimensionless group that is q D by k delta T. If velocity is no 

longer affected, this only the dimensionless group that is left. Therefore, it has go to a 



constant value. Similar for mass transfer, the equivalent is 2 point 0 plus point 6 R e 

power half Schmidt number power one third. 
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So these are the correlations for low Peclet number, for laminar flow. In the limit of high 

Peclet number, convection is becoming important. In the limit of high Peclet number, 

convection is dominant and because of that I will have different forms of correlations. 

The Nusselt number is equal to 1 point 24 R e power one third P r power one third. 

You can see that this is equal to 1 point 24 times Peclet number power one third; so, this 

is still in laminar flow. So, Nusselt number goes as the Peclet number to the limit of to 

the power of one third. Peclet number is ratio of convection and diffusions. So, effect of 

convection is large, but still the Nusselt number is depending upon the diffusivity 

depending upon the Peclet number and equivalent for mass transfer Sherwood number is 

equal to 1 point 24 times R e power one third Schmidt number. 

So, these are the kinds of correlation that are available and we will see during this course 

why these kinds of powers come out, why do we get these kinds of power for mass and 

heat transfer. As I already told you, the diffusion mechanisms are the same. So, the 

correlations end up being the same. 
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The other kinds of correlations are for natural convection and in this case, the natural 

convection depends upon the kind of configuration you have. If you have sphere heated 

in a fluid, you will get one kind of correlation; if you have a cylinder the long cylinder 

heated in a fluid, you will get another type of correlation; if you just had a heated flat 

plate, you will get another type of correlation, but they all follow some basic 

relationships. So, for example, if have a sphere in a large body of fluid around which 

there is natural convection going on, I will get Nusselt number is equal to 2 plus 0 point 

59 Grashof number times Prandtl number power one-fourth. 

This is for very low G r times P r - less than about 10 power 4. For Grashof times P r 

between 10 power 4 and 10 power 9, I will get relationships of the form Nusselt number 

is equal to 0 point 518 G r times P r power one-fourth. This is for the limit of P r small 

compared to 1. In the limit of P r large compared to 1, I will get the Nusselt number is 

proportional to P r power half times G r power one-fourth and once again, you can see all 

these power coming - half, one fourth, one fourth here and so on. We will try to derive 

why these relations are of this form in the remainder of this course. 
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So far, I have talked about non-dimensional fluxes for mass and heat. What about the 

non-dimensional fluxes for momentum? Historically, the non-dimensional fluxes for 

momentum have been defined differently. For the flow around on object, the non-

dimensional flux is defined as the drag coefficient. Drag coefficient is the drag force by 

the area of projection. So, if I have a sphere and there is a velocity that is going around 

this sphere with free steam velocity u, sphere diameter D, the projected area is the area 

perpendicular to the velocity vector. 

So, in this case, the projected area is equal to pi times R square, where R is the radius of 

the sphere; so, it is pi D square by 4. So, this is the measure of the stress - the force 

divided by the projected area is the measure of the stress and this is divided by half rho U 

square. So, that is how the drag coefficient is defined. If you recall, we solved the 

problem of the flow past a sphere settling of fluid with diameter R. The drag force was 

equal to 6 pi mu R U. In that problem I set a low Reynolds number, the Stokes drag law 

is equal to 3 pi mu times the diameter times the velocity. 

So, therefore, F D by A b will be equal to 3 pi mu D U by pi D square by 4, which will 

be equal to 12 mu U by D. That is the stress force by unit area. So, C d is equal to 12 mu 

U by D into half rho U square, which is equal to 24 by rho U D by mu, which is equal to 

24 by R e. So, you must have studied the correlation for the drag coefficient, for the 

force on a sphere settling in a fluid. 



In the limit of low Reynolds number, where the forces are primarily viscous, the drag 

coefficient is given by 24 by R e. So, if I plot log C D verses log R e, I get something 

that goes like this, but at some points as the Reynolds number increases, there is the 

transition from the flow around the sphere to a more complicated velocity profile, where 

I have the separation of the boundary layer and the formation of wakes at the back and 

once that happens, this drag coefficient goes to some other constant value; it goes 

towards 2 and we will come back and see why that is a case. 

You can see that if the force is due to the inertial force of the fluid, then the force acting 

is just going to be equal to half rho square acting on the surface. So, the drag coefficient 

has to go to a constant value. So, this relationship, this C D, this drag coefficient is a 

scaled momentum flux, F D by A p is an average momentum - average force per unit 

area acting on the surface perpendicular to the direction of the flow. So, F D by A p is an 

average stress or a pressure acting on the surface. I said stress is nothing, but flux of 

moment; that scaled by half rho U square. Flux of momentum is force per unit area, half 

rho U square; half mu square is kinetic energy; half rho U square is kinetic energy per 

unit volume. So, I am scaling the force per unit area with the energy per unit volume and 

we have the same dimensions because energy is force times length. 

So, force per unit area, the stress being scaled by energy per unit volume and that is how 

you get the drag coefficient. I could very well have scaled this with the viscous scales 

and in mass and heat transfer, the non-dimensional stresses are defined with respect to 

viscous scales with respect to the diffusion coefficients. 
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So, in this case, mass flux, non-dimensional mass flux is defined with respect to a 

diffusion coefficient; heat flux, the non dimension flux is defined with respect to the 

diffusivity of heat and that is traditional. Diffusion is a mechanism, obvious mechanism 

of transport; it is traditional to do that whereas, in the case of momentum flux alone, 

historically, the flux has always been scaled by convective scale. 

I could have scaled it with respect to the viscosity. I could have used viscosity for non 

dimensionalising it, in which case I would have got a diffusion scale, I would have 

scaled the stress by diffusion scale. Traditionally, it is done by a convection scale and 

that is the reason that C D is effectively a non-dimensional momentum flux and goes as 1 

over a Reynolds number in the limit of very low Reynolds number. 
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When it goes 1 over Reynolds number, the force is due to viscosity alone and then at 

some point there is a transition. So, this was the flow around an object; the non-

dimensional momentum flux for the flow around an object is the drag coefficient with 

the difference that the drag coefficient is traditionally scaled by the inertial scales, the 

kinetic energy per unit volume and not the diffusion scales which would have been the 

kinematic viscosity times of velocity. How about for the flow through tubes? For the 

flow through tubes, the non-dimensional momentum flux is defined with respect to the 

sheer stress acting on the wall of the tube. 

So, the wall stress tau w is the sheer stress acting on the wall of the tube. It is the force 

per unit area acting on the wall of the tube and the non-dimension flux is defined as the 

friction factor, which is equal to tau w by half rho U square; tau w is the viscous stress, 

the force per unit area acting on the wall of the tube, force per unit area, half rho U 

square is the kinetic energy density, the energy per unit volume and both have the same 

dimensions. So, this f is called as frictional factor. 

You can also write it in terms of the pressure gradient because whatever the force is 

exerted on the walls of the tube due to the fluid flow, the wall exerts a force backward as 

a fluid is flowing forward, the walls are exerting the backward force and that has to be 

balanced by difference in pressure between the 2 ends. So, you apply a pressure gradient 



across the 2 ends of the tube to balance the force that is exerted due to the stress 

backwards. 

Force exerted due to the stress is equal to stress times the cylindrical area. This is equal 

to tau w into 2 pi R times L; this has got to be equal to the pressure times the cross 

sectional area; that is, equal to the difference in pressure times pi R square. Therefore, 

delta p by L is equal to tau w by R. 

From that, I will get the friction factor is equal to delta p by L D by 2 rho U square. So, 

this is equal to 2 tau w R, which is equal to 4 tau w by D. So, this is the friction factor 

expressed in terms of pressure gradient. Now, what would you expect to happen? There 

are 2 limits: one is the limit of very low inertia; other one is the very low limit of 

viscosity. The ratio of inertia and viscosity is the Reynolds number - R e is equal to rho 

U D by mu. 

When this R e is less than 2100, the flow is in the laminar region; that means that there is 

the balance between the viscous stresses in the fluid and the applied fluid gradient. 

Therefore, the friction factor, the sheer stress should be only a function of the viscosity, 

the velocity and the diameter; that means that tau w is equal to some constant times 

viscosity times velocity divided by the diameter, which means that friction factor is equal 

to this constant into mu U by D into 1 by half rho U square, which will be equal to 2 C 

into mu by rho U D, which is equal to 2 C by Reynolds number. 

So, in the limit of very low Reynolds number, where you have only viscous stresses, you 

do not have inertial stresses, the stress has to depend only upon the viscosity. Therefore, 

the friction factor has to go as one over the Reynolds number and the friction factor 

versus Reynolds number plot log f verses log R e and in the limit of very low Reynolds 

number, this friction factor is the constant divided by R e and this constant is 16. At a 

Reynolds number of about 2100, there is a transition that takes place to a more turbulent 

velocity profile and after that the friction factor depends upon various things like the 

reference of the wall and so on. 

So, the friction factor is the non-dimensional momentum flux in the flow through pipes 

and channels. Just from dimensional analysis, the friction factor in the case of flow 

through a tube for the heat transfer problem, we had scaled the heat flux divided by the 

thermal diffusivity. Here, rather than scaling it by the diffusion coefficient, it is 



traditional to scale it by the kinetic energy density, which is energy per unit volume and 

that is the reason that in the limit of low Reynolds number, the friction factor goes as 16 

over Reynolds number up to a Reynolds number of 2100. After the Reynolds number 

2100, there is the transition to a turbulent flow and the friction factor has a much more 

complicated profile. 
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We have completed our dimensional analysis part of the problem, basically, the take 

away from this section. You can do simple dimensional analysis or you can do more 

sophisticated dimensional analysis based upon what are the dominant forces in the 

system. In all cases in heat mass and momentum transfer, you are interested in predicting 

what is the average transport rate or which depends upon it is an extensive quantity and it 

depends on the system size or the average flux, which is the transport of energy and 

transport of that quantity per unit area per unit time and we can define non-dimensional 

fluxes by using the diffusion coefficient to non-dimensionalise the flux. 

That gives me the Nusselt number, the Sherwood number and these are to be functions of 

other dimensionless group. Those dimensional groups have interpretations. They are 

mostly either the ratio of convection and diffusion - Reynolds number, Peclet number, 

the ratio of 2 different diffusivities - for example, the Schmidt number is the ratio of the 

momentum diffusion and mass diffusion, the Prandtl number is the ratio of momentum 

diffusion and thermal diffusion. 



In the case of natural convection, you have dimensionless group several ratio of once 

again convection and diffusion; expect that convection is costly to buoyancy forces. In 

the case of momentum transfer flow through tubes and flow past objects, it is more 

traditional to define these dimensionless groups in terms of the drag coefficient or the 

friction coefficient; both of these are momentum transport rates scaled by the kinetic 

energy per unit volume. 

In the case of momentum transfer, these dimensionless transport rates are functions only 

of the Reynolds number because there is only convection and diffusion. In the case of 

heat and mass transfer, they can be ratios of both convection and diffusion of heat and 

mass as well as inertia and viscosity because the velocity profile that basically 

determines the rate of transport is determined for the fluid by the ratio of inertia and 

viscosity. So, all of these dimensional groups have this common form. 
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Now, the remaining course: so, I have told you what can be done so for with dimensional 

analysis. In the remaining courses, we are going to try and see, give some motivation for 

why these kinds of things come up. So, for example, for the drag force, the flow around 

this sphere for example, I know that the drag force just from the dimensional analysis has 

to got to be equal to the mu R U times some constant. I do not know what the constant is. 

If I want find out that constant, I have to solve velocity around the object; from the 

velocity solution around the object I can get the stress on the surface; integrate the stress 

around the entire surface in order to get the total force. 
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Similarly, for these flux problems, for example, the Nusselt number is equal to 2 plus 

point 59 times this. I have to solve for the momentum transfer near the surface and from 

that, I have to find out the total flux. 
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So, the entire temperature field around this object as well as the entire velocity field 

around this object. For the flow around objects, why do these kinds of relations come 

about in the limit of high Peclet number for laminar force? 



I have to solve. In the case of forced convection, I am given what is the velocity around 

the object, but I do not what the temperature is. The temperature is transferred by 

convection along with the velocity. It is also the diffusing across the object. I have to 

solve for those 2 independently to find out what the temperature field is. From that, the 

gradient of temperature of the surface times conductivity will give me the flux. 

So, the remaining course will focus on these different forces. We actually try to solve for 

the entire problem around the object; difficult to solve for the entire problem, but can we 

make approximations in regions, where we expect either convection or diffusion to be 

dominant. If the Reynolds number is small, momentum diffusion is large compared to 

momentum convection, viscosity is large compared to inertia; can I neglect inertia and 

solve for the problem by just balancing the viscous forces? 

Similarly, when the Peclet number is small, convection is small compared to diffusion. 

You can solve for the diffusion problem alone, neglect convection and just solve for 

diffusion problem. From that find out what is the temperature profile everywhere. 

Opposite limit: Peclet number is large; convection is large compared to diffusion. 

Simplistically, one would expect that one can neglect diffusion and solve for convection 

alone. It is important to remember however that convection is only flowing material past 

an object; there is no convective transport to the object perpendicular to the surface. 

ultimately convective transport perpendicular to the surface has to happen. Ultimately, 

transport perpendicular to the surface, fluid velocity at the surface is 0; there is no 

transport perpendicular to the surface. Therefore, transport perpendicular to the surface 

ultimately, has to happen due to diffusion. 

So, even if you have the ratio of convection and diffusion to be large, ultimately, very 

near the surface, diffusion has to become important, if material is transported to the 

surface. So, in that limit, we will see, there will be a boundary layer very near to the 

surface, where convection and diffusion is same, even though in the bulk of flow 

convection is larger compared to diffusion. How do we analysis these different 

problems? So, that will be the subject of this course. 

Next class, I will tell you the basic framework of what we are going to do in order to 

analyse these problems and then I will look at a more microscopic description of 

diffusion. How does diffusion raise from molecular scale? How do I calculate the 



diffusion coefficients knowing what the molecular properties are? We will look at the 

class after next. 
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So, next class I am going to tell you briefly, in a brief summary, how we solve this 

problems. Then we will go on to diffusion. So, with that we have completed the basic 

introduction to the course and I will tell you something about the kind of description that 

we will use in the next class. Contrast this with the present description, where primarily 

we are dealing only with the dimensionless numbers for the entire system, average flux 

to the entire system, average temperature gradient for the entire system. In next class, we 

will look at more fundamental quantities. 


