
Fundamentals of Transport Processes 
Prof. Kumaran 

Department of Chemical Engineering 
Indian Institute of Science, Bangalore 

 
Lecture No. # 38 

High Peclet Number Transport  
Heat Transfer from a Spherical Particle - II 

 

So, welcome to lecture number 38, where we were of the course on fundamentals of 

transport process, where we were looking at transport in the limit of high Peclet 

numbers, where we expect convective transport to be dominant compared to diffusive 

transport. We had first solved the case of transport near a flat plate in the previous 

lecture.  
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A flat plat with a heated section starting at x is equal to 0, T is equal to T naught for x 

less than 0 and T is equal to T1 for x greater than 0; the fluid that is incident on that plate 

has a temperature T naught, and we assume a linear velocity profile at the surface, the 

velocity u x is non zero, its equal to the strain rate times y, whereas u y is equal to 0. 
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And in that case, if you just scale all length scales by the length of the palate capital L, 

the Peclet number becomes gamma dot square by alpha, where gamma dot is the strain 

rate at the surface.  

(Refer Slide Time: 01:32) 

 

And the equation ends up becoming of this form P e times y star times d T d x is equal to 

d square T by d x square plus d square T by d y square simplistically if you neglect the 

diffusion terms in the limit of Peclet number becoming large. 



(Refer Slide Time: 01:55) 

 

We just get the solution d T d x is equal to 0; that means, T has to be independent of x 

since T star at the inlet is 0 the only solution is that T star is equal to 0 everywhere. The 

flow in this argument obviously, was that we had scaled both the x and the y coordinates 

by capital L. If we convection is dominant, then there is flow sweeping past, the heat 

generated from the surface and that is the convective effects become larger and larger the 

whatever diffusion of heat takes place from the surface is going to get swept back faster 

and faster and therefore, its going penetrate only to a very small distance within the fluid. 

This penetration depth within the fluid of course, is determined by a balance between 

convection and diffusion, but this is the penetration depth is the length scale, which I 

should use for scaling the length in the cross stream direction.  

So, the flow in the argument was that the length in the y direction is actually small 

compared to the length in the x direction, when convective effects are large compared to 

diffusive effects, and if the length scale is small the derivatives are large and therefore, if 

I scale my y coordinate by a length scale l, which is small compared to the total length of 

the plate. 
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I can then get a balance between convection and diffusion provided this capital L is equal 

to p power minus one-third times smaller. So, this small l goes to 0 as Peclet number will 

goes to infinity in such a way that if I scale y by this small l, then the diffusion the cross 

stream diffusion continues to be of the same magnitude as convection even as the Peclet 

number becomes large. And then we had used physical arguments to determine, what 

that length scale should be at a given location x.  
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The velocity and the temperature fields should not depend upon the total length of the 

plate, but only upon the length from the beginning of the heated section. So, it is only 

from the length from the the the start of the heated section. The distance from there that 

should effect the temperature fields, because what happens at downstream will not really 

effect, what happens at a give location because convection is going downstream and we 

have neglected diffusion in the streamwise direction.  
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And using that argument, we manage to get a solution in terms of a similarity variable 

eta. The similarity variable eta was defined as y by alpha x by gamma dot power one-

third in terms of this similarity variable, I got a solution for the temperature field.  
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And from that I got the heat flux.  
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And finally, at correlation between the Nusselt number, the fractal number and the 

Reynolds number.  
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In last lecture, we were looking at the slightly more realistic case of the diffusion from a 

spherical particle, we have a particle at temperature T naught in a fluid, whose 

temperature is T infinity faraway and there is flow past this particle this flow is laminar 

flow low Reynolds number flow, the flow was of curse uniform is equal to capital U in 

the stream wise direction. So, in this direction in this z direction the velocity is capital u 

for upstream of the sphere however, the streamlines gets distorted as it approaches the 

sphere because the flow it has to go around this spherical particle which is at rest and if 

we uses cylindrical coordinate system r theta coordinate system. There is an axis for this 

flow there is z axis as shown in such a way that there is no dependence on the angle phi 

around this axis.  

So, this is a two dimensional problem, it depends only upon r the distance from the 

origin and theta, which is the angle from the z axis; there is no dependence, there is no 

variation in either the velocity or the temperature as you go around this axis at constant r 

and theta. So, the velocity fields that you get by solving the Navier-stokes equation for 

this particular case, I have written them down for you here.  
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These are given to us the velocity fields the solution is outside the scope of this course, 

we will assume that these velocity fields are known, and then try to determine what is the 

temperature fields due to these velocity fields. We had defined the scaled temperature, 

distance as well as u r and u theta scaled by the obvious scales, the radius by capital R 

and the velocity is by capital U and the boundary conditions are T star is equal to 1 at the 

surface itself. So, you have a surface that is at a higher temperature and T star is equal to 

0 far from the surface in the limit as r goes to infinity. So, those are the two conditions 

and I had written down the scaled velocities for you.  
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The convection diffusion equation at steady state del u T is equal to alpha del square T, 

when expressed in terms of the r theta coordinates scaled coordinates, I have the Peclet 

number times u dot grad u is equal to del square u, where the Peclet number is u times 

capital R by alpha in this case the velocity scale is u the length scale is the radius capital 

R.  

If I consider the limit of very high Peclet number and neglect the diffusion terms all 

together, then I get an equation of the type u dot grad T is equal to 0 or u r d T by d r plus 

u theta by r d T by d theta is equal to 0 u dot grad is equal to 0 means, there is no 

variation of the temperature along the streamlines. Since there is no variation in 

temperature along the streamlines, the temperature far upstream is T infinity and there is 

no variation in temperature along streamlines; that means that the temperature 

everywhere along the streamlines has to be T infinity. So, there is no variation anywhere 

in the temperature. So, that is the result that you get just by neglecting the diffusion 

terms all together in the limit of high Peclet number.  
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And as usual, the problem is that when I neglect diffusion, since there is convection only 

along the flow, there is no diffusion perpendicular to the flow at the surface itself the 

velocity is equal to 0. That means, when we neglect diffusion there is no heat transfer 

from the sphere surface to the flow, physically in the limit of high Peclet number there is 

heat being convicted downstream there is diffusion from the surface as the convection 



velocity increases, their downstream transport gets larger and larger. And therefore, the 

temperature the heat that is diffusing from the surface gets restricted to a smaller and 

smaller distance from the surface the boundary layer thickness. 

The boundary layer thickness becomes smaller and smaller and as the boundary layer 

thickness becomes small the gradients the temperature field become large and at some 

point, there will be a balance between convection and diffusion, when the boundary layer 

thickness is sufficiently large sufficiently small. To capture this we expand it we focused 

our attention on a thin region near the surface of the sphere on a thin region near the 

surface of the sphere, and define the distance y times delta as the distance from the 

surface y times delta is the distance from the surface delta is a constant a small number 

which decreases as the Peclet number increases, y is a coordinate a scaled coordinate 

which is order 1 it continues to be order 1 in the region, where the temperature 

disturbance is significant even as the Peclet number becomes large. So, therefore, I 

define r star is equal to 1 plus delta y and substitute that into the differential equation for 

temperature field.  
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Since I am focusing attention on a thin layer near the surface, I do not need the 

complicated expression for the velocity components, I can use an expression for the 

velocity components, which is accurate near the surface and that velocity expression you 

get by writing down r is equal to 1 plus delta y and then expanding in a series in delta 



that series expansion tells us that u r star the dimensionless velocity in the r direction is 

equal to cos theta times 3 by 2 delta square y square. So, this velocity goes as delta 

square this is the radial velocity the velocity perpendicular to the surface. The velocity in 

the theta direction is obtained by a similar expansion.  
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This velocity goes as minus sin theta into 3 by 2 delta y. So, this velocity goes as delta y 

in the limit as delta goes to 0, whereas if you recall u r was proportional to delta square 

times y square in the limit as delta goes to 0. 
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This was inserted into the conservation equation, this was inserted into the conservation 

equation and we did an expansion in delta y wherever we had 1 plus delta y, we 

neglected delta y in comparison to 1. 
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In this case as well, we found that the cross stream diffusion is actually large compared 

to the streamwise diffusion; in this case, r is the cross stream direction theta is the 

direction tangential to the surface as the boundary layer thickness becomes small. The 

boundary layer thickness proportional to delta the cross stream diffusion term goes as 1 

over delta square, whereas delta, whereas the length scale in the streamwise direction is 

still capital R. So, the streamwise diffusion remains the same and as delta goes to 0 the 

cross stream diffusion becomes large compared to the streamwise diffusion and in this 

case we get a simplified equation is P e times delta (( )) times 3 by 2 y square cos theta d 

T by d y minus y sin theta d T by d theta is equal to d square T by d y square. So, this is 

the simplified equation that we have to solve in order to find out what is the temperature 

field very near the surface.  

So, last lecture we started solving this problem by defining a similarity variable eta is 

equal to y by h of theta, where h is right now some unknown function. Now I can 

substitute for y and theta in terms of eta. So, I can substitute partial T by partial y is equal 

to partial T is equal to 1 by h of theta partial T by partial eta in similar manner partial 

square T by partial y square is equal to 1 by h square partial square T by partial eta 



square. So, these are the two derivatives with respect to y in the conservation equation in 

this conservation equation.  

Now, I also have a derivative with respect to theta, I also have a derivative with respect 

to theta partial T by partial theta is equal to partial T by partial eta times partial eta by 

partial theta is equal to partial T by partial eta into minus y by h square d h by d theta 

differentiating by chain rule is equal to partial T by partial eta into minus eta by h d h by 

d theta. So, we put this all into this original differential equation 3 by 2 y square cos theta 

d T by d y minus y sin theta d T by d theta is equal to the second derivative. So, I have 3 

by 2 into y square cos theta into d T by d y which is 1 by h of theta d. (No audio 16:59 to 

17:43). 

So, this is the equation that I get and I can multiply throughout by h square I can multiply 

throughout by h square, and substitute in for y in terms of eta, and I will get eta square 2 

this is equal to d square t by d eta square . So, I just substituted in terms of the similarity 

variable, recall that I had used the similarity variable eta is equal to y by h of theta and 

use this in this original equation, I just substituted within this original equation and I 

ended up with this equation.  
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Now this equation has a this equation admits a similarity solution only if this term here is 

a constant, it admits a similarity solution only if this term here is a constant; if it is not a 

constant, it does not admit a similarity solution; if this a constant, then there is a the then 



the equation that results the equation that results is an equation, which depends only 

upon eta it does not depend individually on y and theta it depends only upon eta. So, this 

gives us the form of the function h this is the equation, which this function h has to 

satisfy if we are to get a similarity solution for this equation. What should be the value of 

this function? First of all it should of course, be negative, because if it were positive for d 

t by d eta, it get an exponentially increasing function temperature cannot increase 

exponentially as you go faraway therefore, this has to be a negative function.  

Further note that this is a solution a function for this is a function h in the similarity 

variable, this is a function which is scaling the variable y which is the distance from the 

surface. As we have discussed, before if I change this is of course, this this is this is a 

boundary layer thickness this function here is some kind of a boundary layer thickness, if 

I change this function by a constant factor, then the result for the temperature field in 

terms of eta will change, where the temperature field in terms of the original variable r 

will not change, because this is a scaling that I am using in order to get reduced variable.  

If I change that the solution that I get in terms of eta will change with the solution that I 

finally, get in terms of r will not change . So, I can choose any constant value provided it 

is negative for this function. So, long as I choose a negative constant value for this 

function, Ii will always get the same solution which is a positive value of course, I get an 

exponentially increasing temperature and so, I cannot choose a positive value, but any 

negative value that I choose, I will end up getting the same value for this function. 
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Now, the simplest negative value that I choose in this case the most convenient one is to 

choose h cube cos theta plus h square sin theta d h by d theta is equal to minus 2 if I 

choose that the equation for the temperature in terms of eta becomes d square T star by d 

eta square minus 3 eta square d T by d eta is equal to 0. This gives a solution for the 

temperature T star is equal to d T star by d eta is equal to some constant e power minus 

eta cubed Ii just integrate this once and I will get d T by d eta is equal to constant e 

power minus eta cubed therefore, T star is equal to c 1 e power minus eta cubed I am 

sorry plus c 2.  

And now I have satisfy the boundary conditions, the boundary conditions are T star is 

equal to 0 as y goes to infinity, which corresponds to eta goes to infinity T star is equal to 

1 at y is equal to 0, which corresponds to eta equal to 0. So, these are the two boundary 

conditions and in terms of these I can get a solution T star is equal to 1 minus integral 0 

to eta d eta prime e power minus eta prime cubed by integral 0 to infinity. So, this is the 

final equation that I get for the scaled temperature field. So, this is a final scaled 

temperature equation.  

In terms of the variable eta, which is y by h of theta, and you can see that this equation 

looks remarkably similar to the equation for that we got for the solution past a flat plate, 

this equation here for the flow past a flat plate, if I just scale eta as eta by 3 power one-

third, I will end up with exactly the same equation for the past a sphere. And in fact, this 



will be the equation for the flow past an object of any shape provided, you have no slip 

conditions at the surface provided; you have no slip conditions at the surface. This is the 

equation that you will get for the flow past an object of any shape what changes is this 1, 

what changes is the form of the function h in the similarity variable. This will of course, 

depend upon the shape of the object as well as the velocity field close to the object.  

So, let us try to solve this equation. The equation that we get is h cubed cos theta plus h 

square sin theta d h by d theta is equal to minus 2. I can write this as sin theta by 3 d of h 

cubed by d theta plus h cubed cos theta is equal to minus 2, just writing in terms of the 

derivative of h cubed with respect to theta. And we can use the usual substitution that we 

have been using before x is equal to cos theta, which means that d x is equal to minus sin 

theta d theta. So, with this substitution, this will become minus sin square theta by 3 d of 

h cubed by d x is equal to plus h cubed x is equal to minus 2 or minus of 1 minus x 

square by 3 d of h cubed by d x plus h cubed x is equal to minus 2.  

So, this is an inhomogeneous equation that we have to solve for h and for h cubed, I can 

separate out this function h cubed in to a general solution plus a particular integral, I can 

separate out the function h cubed in to a general solution plus a particular integral, the 

general solution satisfies the equation 1 minus x square by 3 d g by d x minus x g is 

equal to 0. So, this is the general solution and I can integrate this out quite easily d g by d 

x is equal to 3 x g by 1 minus x square, which will give me the general solution as g is 

equal to 1 by 1 minus x square the general solution is 1 by 1 minus x power 3 half. So, 

this is the general solution.  

Now, the particular integral I can actually write it by integrating by parts I can write the 

particular integral p of x is equal to g of x times other some other function q of x and this 

satisfies 1 minus x square by 3 d by d x of g of x q of x minus x is equal to 2 and I can 

expand out this integral to get 1 minus x square by 3 d q by d x is equal to 2 and this will 

give me d q by d x is equal to 6 by 1 minus x square g of x.  

Therefore, q of x is equal to integral from x from minus 1 to x d x prime 6 by 1 minus x 

square and since g was equal to 1 over 1 minus square power 3 half, this basically 

becomes equal to is equal to integral minus 1 to x d x prime 6 into 1 minus x prime 

square power half therefore, the total solution for h cubed is going to be equal to some 

constant divided by 1 minus x square power 3 by 2 plus 6 by 1 minus square power 3 



half integral minus 1 to x d x prime 1 minus x prime square power half. So, that is the 

final expression for h cubed it has 1 constant in it, it has one constant in it c what should 

the value of that constant be.  

h is a function of theta note that we had taken theta to be 0 along the z axis we had taken 

theta to be 0 along the z axis; that means, that along the minus z axis theta is equal to pi. 

So, the upstream stagnation point for the sphere is at theta is equal to pi the downstream 

stagnation point is at theta equal to 0, the flow is incident on the sphere at theta is equal 

to pi the flow is incident on the sphere at theta is equal to pi; that means, that at theta is 

equal to pi 1 would expect the boundary layer thickness to be its minimum value at theta 

is equal to pi you would expect the boundary layer thickness to be its minimum value.  

Note that here we have used x is equal to cos theta x is equal to cos theta. So, theta is 

equal to pi means x is equal to minus 1. So, at the value x is equal to minus 1 the 

boundary layer thickness should be finite that would require that this constant has to be 

equal to 0 because if this constant is non 0 note that the second integral has an integral 

from minus 1 to x . So, this second term here is finite at x is equal to minus 1 therefore, if 

the boundary layer thickness has to be finite at x is equal to minus 1 or theta is equal to 

pi this constant has to be equal to 0 and therefore, this boundary layer thickness h cubed 

has to be equal to 6 by 1 minus x square power 3 by 2 integral minus 1 to x d x prime 1 

minus x prime square power half.  

So, this is the boundary layer thickness, note that this boundary layer thickness, we fix 

the constant in such a way that the thickness was did not go to infinity at theta at x is 

equal to minus 1 or cos theta is equal to minus 1 or theta is equal to pi, however the 

boundary layer thickness dose go to infinity at x is equal to plus 1, because the 

denominator of this h cubed term goes to 0 the numerator is actually finite and therefore, 

the thickness goes to infinity.  

What that means, physically is that there is a boundary layer around the sphere, but the 

part that I did not continue for you here this is the upstream side here, you have some 

finite value of h on the upstream side on downstream side h actually goes to infinity. 

That means, that the boundary layer looks something like this the value of h actually 

goes to infinity as you go downstream this region here is what is called the wake 

downstream of the sphere there is convection downstream. Therefore, the effect of the 



velocity the the velocity for the stagnation streamline both upstream and downstream are 

identically equal to 0, and because of that there is a diffusive effect downstream of the 

sphere, which gets reflected in wake in a long wake as you go downstream; our analysis 

of the boundary layer thickness has only told us.  

So far that the wake exists it does not tell us any details about the temperature within the 

wake and that is, because I have explicitly assumed that delta is small compared to 1 

when I did the boundary layer analysis. And therefore I require that eta, which was y by 

h of theta has to be order 1 if h of theta becomes large then that condition is no longer 

satisfied and I cannot use the analysis that I have been using. So, far if I really wanted to 

study what was the temperature field in the wake. What I would need to do is to use a 

small angle expand in the angle theta away from this and relax the assumption that the 

radius has to be closed to capital R. So, I will do an expansion in this angle theta about 0 

not in the radius, and if I expand in the angle theta, then I will be able to capture the 

temperature field within this thin wake region downstream of the sphere.  

So, in all flows past bluff bodies, there is going to be wake at the downstream side 

upstream we make, we enforce the condition that the boundary thickness has to be finite 

because the flows is incident on the upstream side of the sphere and it was sweeping the 

heat that is generated from the surface is being swept backwards on the upstream side is 

being swept backwards on the downstream side as well. And that backward sweeping on 

the downstream side is causing a wake on the downstream side of the sphere and the 

boundary layer analysis is able to pick up the fact that the wake exits it has not told us 

the details of the temperature field within the wake, but it at least picks up the fact that 

there is a wake where h is going to infinity and within that region I have to use a 

different scaling to get the details of temperature field within that wake.  

However, as far as the heat flux is concerned this wake is not really important the heat 

flux coming out of the the the surface of the sphere is large compared to the heat flux 

within the wake region. And therefore, I can get the details the the the the the expression 

for the heat flux without worrying about what the temperature field in the wake is. So, 

we can proceed now that we have a solution for both the function h, which satisfies the 

similarity variable as well the temperature field. I can go ahead and calculate what is the 

heat flux the heat flux at the surface of the sphere is given by q r at r is equal to 1 is equal 

to k times make this at r is equal to 1 is equal to minus k into T naught minus T infinity 



by r partial T star by partial r star at r star 1. Now I express r star in terms of y r star is 

equal to 1 plus delta y. So, this is equal to minus k into T naught minus T infinity by r 1 

by delta partial T by partial y at y is equal to 0.  

Note that r star is equal to 1 corresponds to y is equal to 0 and then I express y in terms 

of eta y is equal I am sorry eta is equal to y by h of theta. So, therefore, I can write this as 

minus k into T naught minus T infinity by r delta h of theta partial T by partial eta and 

then I have an expression for T in terms of eta and therefore, in this expression if I take 1 

derivative d T by d eta is equal to minus 1 by integral 0 to infinity and this can be 

substituted there. 

To minus 1 by. So, this is the final expression for the heat flux from the surface I can 

write this as k into T naught minus T infinity by r delta h of theta into 1 by integral 0 to 

infinity d eta prime and eta prime cubed now. So, this is the local heat flux at every 

position on the sphere this is a local heat flux at every position to get the total heat flux 

total heat being emited by the sphere I need to integrate this over the entire surface area. 

So, the total heat coming out is equal to integral of r square sin theta of q r at q r at given 

theta and phi r square because the surface area of the sphere the surface area of the 

sphere is capital r square times the angle sin theta times d theta which is the differential 

element.  

So, r sin theta d theta the differential element of theta direction and r sin theta d phi in the 

phi direction theta goes from 0 to pi and phi goes from 0 to 2 pi there is no variation in 

the phi coordinate of course, and. So, I will just get 2 pi r square integral 0 to pi sin theta 

d theta times q r at theta phi. So, I substitute this expression here to into this to get the 

total heat flux k into T naught minus T infinity by r delta 1 by times integral over theta 0 

to pi sin theta d theta to 1 by h of theta.  

So, I have a functional form for this h of theta it is a complicated form expressed in terms 

of an integral here h cubed is given by this. So, its expressed in terms of integral, but I do 

have an analytical form and I can solve for this in order to get solution for the heat flux 

and if I solve for the heat flux what you get is, this is equal to 0.2491 into 2 pi r k T 

naught minus T infinity divided by delta delta is actually P e power one-third this is 

equal to P e power one-third and so, this gives me the total heat that is coming out of the 

sphere per unit time from this I can get a Nusselt number correlation n u is equal to 2 q 



by 4 pi r square into k into t naught minus t infinity by r and this will be equal to 0.2491 

P e power one-third.  

So, this is the correlation for the Nusselt number as a function of Peclet number for heat 

transfer from a spherical particle once again its equal to some constant times p e power 

one-third. So, it differs from the result that I got from a flat plate only in as far as there is 

a difference in that constant in all cases laminar flow near the solid surface with no slip 

condition at the surface the Nusselt number is always proportional to the Peclet number 

power one-third and this is, because we are we have heat transfer at a solid surface the 

velocity field in the fluid at that surface has to decrease to 0 at the surface itself. So, it 

has to increase linearly with distance away from the surface; and if the boundary layer 

thickness is small compared to the macroscopic scale, I can use a linear approximation 

for the velocity field near the surface. So, this result is a general result which holds for 

any form of of an object with flow past it provided the velocity is 0 at the surface itself 

and it increases from 0 very close to the surface. 

So, let me give you a little bit more of physical insight into why this Peclet number 

power one-third scaling comes there is of course, a constant we evaluated the constant 

exactly for a flat plate and for a sphere where we knew what the velocity profile was that 

constant will change if the object is of different shape, but the scaling remains the same. 

So, let us say I have an odd shaped object with flow past that object and if I look at a 

region which is very close to the surface if I look at a region which is very close to the 

surface and I am focusing on a thin region therefore, locally I can take x as the 

streamwise coordinate, y as the cross stream coordinate, locally at a point because I am 

focusing on a very thin region.  

So, long as the extent of the region is small compared to the radius of curvature that 

region will look like a flat surface to me. So, I focus on this thin region and look at the 

velocity field as the flow goes past this region, the velocity field u x is equal to 0 at the 

surface therefore, this has got to be equal to y times some function of x near the surface it 

has to be increased linearly away from the surface unless for some strange reason the 

strain rate is also 0 at the surface. So, the strain rate is not 0 at the surface then the 

velocity field at the surface has to decrease to 0. Therefore it has to go as a of x times y 

as you go away from the surface very near the surface this is only when the length scale 

for the boundary layer thickness is small compared to the macroscopic scale over, which 



the velocity varies in the case of flow past a particle the velocity was varying over length 

scale capital R. So, long as your boundary thickness is small compared to capital R 

closed to the surface you can make this approximation.  

Now, for an incompressible flow the velocity components satisfy the equation of the 

form d u x by d x plus d u y by d y is equal to 0 this once again is outside the scope of 

the present lectures, but we will assume that this is given this is equal to saying del dot u 

is equal to 0 at the surface itself d u x by d x plus d u y by d y has to be equal to 0; that 

means, that d u y by d y it is got be equal to minus d u x by d x is equal to minus y d a by 

d x where a as I said is some function of x would be the theta coordinate for example, the 

flow past a sphere y would be the radial coordinate. Therefore u y is got to be equal to 

minus y square by 2 d a by d x note that u y also has to go to 0 at the surface. So, if I 

integrate once I will get u y going as y square recall that we got u theta going as delta y 

and u r going as delta y the whole square in the flow past a sphere the reason for that is 

this incompressibility condition u y goes as minus goes as y square and u x goes as y 

from the surface because u x has to be 0 no slip condition at the surface.  

Substitute that into the differential equation u x d T by d x plus u y d T by d y. Note that 

in this diffusion term, I already know that the streamwise diffusion has to be small 

compared to the cross stream diffusion since the streamwise diffusion has to be small 

compared to the cross stream diffusion, I can write this as alpha times partial square T by 

partial y square. So, I will have d T by d x into a y minus y square by 2 d a by d x d T by 

d y is equal to alpha d square T by d y square and now if I scale y star is equal to y by 

delta and x star is equal to x by l where l is the macroscopic scale and delta is the 

boundary layer thickness then in this equation, I get a y star times delta d T by d x star 

minus y star square by 2 delta d a by d x star just scaling the equations and then if I 

multiply throughout by delta square by alpha, if I multiply throughout by delta square by 

alpha, I will get delta cubed by l a by alpha into y star partial T by partial x star minus y 

star square by 2 1 over a d a by d x star is equal to partial T by partial y star square and 

this will straightaway give you because, I have delta cubed there this will give me delta 

goes as p power minus 1 by 3.  

So, that is a common feature of any flow past a surface with no slip condition at the 

surface if a is a velocity scale no a is a a velocity scale for the strain rate if a is the scale 

for the strain rate then straightaway from this equation, I will get this going as alpha by a 



l square delta by l power one-third. So therefore, this boundary layer thickness of order 

Peclet number power minus one-third is a common feature of all flows past solid 

surfaces where the velocity has to decrease to 0 at the surface itself in all such cases the 

boundary layer thickness goes as p power minus one-third and for that reason the Nusselt 

number goes as p e power plus one-third.  

The coefficient in this correlation of course, depends upon the specific problem that you 

are solving it depends upon the specific form of the velocity profile here it depends upon 

the specific form of this velocity profile you have to put in the specific form of the 

velocity profile into this equation and then reduce this 1 using a similarity transform you 

have to reduce this 1 using a similarity transform where use a similarity variable eta is 

equal to y by some function g of x use this similarity transform in the equation and then 

find out the condition on the boundary layer thickness g of x, which satisfies which 

reduces the conservation equation towards similarity equation and then from that you 

calculate the heat flux the way we done for the flow past a sphere, but independent of 

what the configuration is you will always get Nusselt number going as p e power one-

third whenever there is a flow past a solid surface . So, this is one class of boundary layer 

problems transport from a solid surface with no slip boundary conditions at the surface.  

We had already done another problem for the transport from a liquid transport to a liquid 

gas interface we had already done this problem of transport to a liquid gas interface in 

the limit of high Peclet number. If you recall we had solved the problem where there was 

a a liquid film flowing down a channel and we had calculated the velocity profile the the 

the temperature profile in a manner similar to the temperature profile for the flow past a 

flat surface and in that case as well we had got something that look like a similarity 

solution however, in that case if you had gone ahead and calculated the Peclet number 

versus Nusselt number correlation we actually got a result Nusselt number goes as p e 

power half different from the one-third that we got in this case that is another class of 

high Reynolds number high Peclet number boundary layer problems we will see why 

that scaling of P e power plus half comes in that particular case that is because that was a 

film and that was a (( )) between a gas and a liquid and for a gas liquid interface the 

velocity is non 0 at the surface and because of that relations of this kind actually do not 

apply for example, a gas liquid interface and because of that the scaling is different we 



will see that in the next lecture before we close this series of lectures we will see you 

next time thank you.  


