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This is lecture number 37 of our course on fundamentals of transport processes and we 

were discussing a general convection-diffusion equation for the concentration or 

temperature field. 
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. 

So, the equation has the general form d C by d t plus the divergence of velocity times the 

concentration is equal to d times the Laplacian of the concentration plus any source or 

sink of mass or energy within the system. When you scale, the length scale where 

characteristic length L and the velocity, where characteristic velocity U, you get an 

equation of the form shown here, where you have Peclet number times the time 

derivative and the convective term on the left is equal to the Laplacian of the 

concentration field plus the source or sink of energy or mass, where the Peclet number is 

U times L by D, U is characteristic velocity, L is length and D is the diffusion coefficient 
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. 

First, we looked at strategies for solving the limit, where the Peclet number is small 

compared to 1. In that case, we are solving D del square C plus S is equal to 0 and we 

looked at various way of doing that; basically, ways of solving the Laplace equation. 

We did it first by separation of variables in Cartesian coordinates, in cylindrical 

coordinates as well as in spherical coordinates and in particular, in spherical coordinates 

we saw that the solution have the form of spherical harmonic solutions. 

We also saw another way of solving the same equation using the frame work of point 

source, a delta function source and that gave as results for a relationship between the 

spherical harmonic expansion on the one side and the distribution of sources in sinks on 

the other side. 

So, those are the 2 strategies that we have looked at so far for solving the diffusion 

equation in the limit of Peclet number being small compared to 1, where the diffusion 

dominated limit. Then, we looked at the case where the Peclet number is large compared 

to 1; P is much greater than 1 and if you just look at this equation, simplistically, one 

might think that all you need to do is to neglect the diffusion terms on the right hand side 

completely and just solve the equations for the convective path alone.  
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Last class, we looked at the simplest case - the flow past of flat plate, where I have a 

linear velocity in the flow past the flat plate. The velocity in the x direction, x is the flow 

direction - the string wise direction, y is the cross stream direction, where there is a 

variation in velocity. 

We assumed a linear velocity profile at the surface. u x is equal to gamma dot times y, 

where gamma dot is the strain rate and at steady state, we were trying to solve the 

equation, the divergence of u times T is equal to the thermal diffusivity times the 

Laplacian of the temperature. 

The configuration was as follows. We have a fluid which is incident on this heated 

surface at a temperature T is equal to T naught. The surface is unheated up to x is equal 

to 0. So, there is a cold section of the surface up to x is equal to 0, which is at the same 

temperature T naught as the incoming fluid and at x is equal to 0, the heated section 

starts - T is equal to T 1 and it continues for some length L. 

As I told you, this is the simple approximation for the flows in heat exchangers, for 

example, where as the fluid in the tube sides flows into the heat exchanger, initially, it is 

at some cold temperature and at the inlet of the heat exchanger, there begins a heated 

section and it continues downstream. 
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So, that was the configuration that we were trying to solve for in the high Peclet number 

limit. In this particular case, the velocity itself is not specified; what is specified is the 

velocity gradient gamma dot. This velocity gradient has dimensions of one over time. 

The only length scale in the problem is capital L, the length of the plate and therefore, I 

can define the Peclet number as gamma dot times L square by alpha. 
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Note also that u x is independent of x is a fully developed flow and u y is equal to 0 

everywhere. So, the flow is only in 1 direction. When we put this into the conservation 



equation, we got an equation of this form and if you scale x and y by L, which is the only 

length scale in the problem, we get a scaled equation with a Peclet number in it, as 

expected with the scaled equation of Peclet number in it. 
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If we just simplistically neglect diffusion, we just get the d T by d x is equal to 0 and the 

only solution of that is T is equal to 0 everywhere within the flow. Of course that does 

not satisfy the boundary condition that T star has to be equal to 1 on the plate surface 

itself and I would explain to you why mathematically that there was this contradiction. 



When we neglected the diffusion terms, the diffusion terms contain the highest 

derivative; they contain the second derivative with respect to the y coordinate and 

therefore, we have two boundary conditions which can be satisfied in general. 

However, when we neglect the diffusion terms, we are neglecting the highest derivative 

and therefore, we end up with an ordinary equation in the y coordinate, which does not 

contain any boundary conditions and because of this, we are unable to satisfy boundary 

conditions. 
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Physically, the reason that we are not able to satisfy boundary condition is because the 

flow is parallel to the surface - it is tangential to the surface. At the surface itself, there is 

no velocity perpendicular to the surface. Convection can transport mass, momentum, 

energy only in the direction of flow. 

Since there is no flow perpendicular to the surface, there is no convection transport 

perpendicular to the surface. Therefore, the only way that heat can be transported from 

the surface to the fluid is due to diffusion due to the molecular motion of the molecules. 

We have neglected the diffusion term in this case and therefore, we are not able to satisfy 

boundary conditions. Since we have neglected diffusion, there is no way for heat to be 

transferred from the surface to the fluid and because of that, we are not getting heating 

anywhere within the fluid. 



So, what is the resolution of this problem? As I told you, when we scaled the x and y 

coordinates by L, we assumed that capital L was the length scale for the variation of the 

temperature field. However, we are looking at a situation where there is convection - 

rapid convection along the flow direction and there is the diffusive effect is small. 

So, you would expect the flow to sweep any heat that is transported from the surface to 

sweep that downstream and physically, one might expect the effect of the plate to be 

restricted to a thin layer near the surface. Diffusion is present, nevertheless and therefore, 

one cannot have discontinuity in the temperature, but that diffusion effect is small 

compared to convection over length scale comparable to the length L and because of this, 

we would expect convection, the heating due to the plate to be restricted to a thin layer 

near the surface.  

If the temperature the length scale for the variation of the temperature field is small 

compared to capital L, then the gradients are large and because the diffusion term has the 

second derivative with respect to y, if the length scale is small, the derivative is large and 

one could still have balance between convection and diffusion. How does one decide 

what is the length scale? We postulate length scale, put it into the equation and see what 

it has to be in order that convection and diffusion are of the same magnitude even as the 

Peclet number goes to infinity. 
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So, that is the strategy that we followed in the last lecture. We postulated a length scale 

small l such that the effect of diffusion is felt only within that length scale near the 

surface. So, we scaled x by capital L, which is the total length of the plate because that is 

the length scale over which there is variation in the x direction and we scaled y by small 

l, which is the smaller scale over which there is balance between convection and 

diffusion and we put that into the conservation equation. 

(Refer Slide Time: 11:25) 

 

Finally, we found that this dimensionless group had to be finite in the limit as Peclet 

number goes to infinity, if convection and diffusion are to continue to be of the same 

magnitude even as the Peclet number goes to infinity. So, if the convection and diffusion 

are to be comparable, even as the Peclet number goes to infinity, Peclet number based 

upon the length scale L, which is the length of the plate. If convection and diffusion are 

to be of same magnitude then we require that this thing has to be order 1 or small l by 

capital L has to go as P e bar minus one third. 
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So, as Peclet number becomes larger and larger, this boundary layer length scale, small l 

becomes smaller and smaller and it decreases as P e power minus one third as the length 

scale becomes large. So, that give us a scaling for boundary layer thickness for a plate of 

length capital L. The microscopic length - the boundary layer thickness has to go as P e 

bar minus one third times capital L. 
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But how do we proceed and actually solve the problem. We still have, in this case, a 

second order differential equation in the y coordinate and a first order in the x 



coordinate. So, it is a second order differential partial differential equation, second order 

in y and first order in x. 
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So, how do we solve this? The solution was based upon little bit of physical insight. At 

any given location x - at a given location x, there is convection, there is diffusion from 

the surface and there is convection downstream from that location. Therefore, the 

temperature field at that location should depend only upon the distance x from the 

upstream and of the heated section and not on the total length L. 

I have neglected in this case, stream wise diffusion. Therefore, whether the plate is of 

length L or of length 2L, that is downstream of the location x and therefore, the boundary 

layer thickness, the temperature at that location cannot depend upon the total length L of 

the heated section. It should only depend upon the distance x from the beginning of the 

heated section. 

So, rather than writing small l by capital L is equal to Pe based upon L to the minus one 

third, what I said based upon physical insight was, at a given location x, the boundary 

layer thickness can depend only upon the distance x itself. In that case, the only form for 

the relation is of this type small l by x is equal to Pe based upon x to the minus one third 

power, where the Peclet number based upon x is gamma dot x square by alpha; we 

substitute x instead of L 



So, now, x is the downstream distance - the coordinate along the stream in x direction 

and since the boundary layer thickness depends only upon x, it already depends upon x. 

When I expressed the equation in terms of scaled coordinate, which is y divided by the 

boundary layer thickness, then I should end up with an equation which depends upon this 

similarity variable alone. 
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It should not depend individually on x and y and it should also not depend upon the 

stream rate or the diffusion coefficient. It should only depend upon x alone I am sorry It 

should only depend upon eta alone. So, this was the similarity variable that we had 

defined based upon our argument that at a given location x, the temperature field 

depends only upon x. 
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So, this was inserted into the conservation equation using chain rule for differentiation 

and as expected, we did in fact, end up with an equation, which depends only upon the 

similarity variable eta alone. It does not depend individually on x and y, but it depends 

only upon the similarity variable eta alone. 
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This is the second order differential equation in eta. We have to prescribe boundary 

conditions for this. Those boundary conditions emerge from the initial boundary 

condition that we had for the x coordinate. At y is equal to 0, T star is equal to 1 implies 



that eta is equal to 0 T star is equal to 1. As y goes to infinity or as eta goes to infinity, T 

star is equal to 0 and at x is equal to 0, for all y greater than 0, T star is equal to 0. x is 

equal to 0; finite y implies that eta goes to infinity. 

As I showed you in the last lecture, these 2 boundary conditions - 1 in the y coordinate 

and the other in the x coordinate reduce to the same condition when expressed in terms 

of eta. That is consistent because I had reduced an initial first order equation in x and the 

second order equation y to just a second order equation in eta.  
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The original equation had 2 conditions in x and 2 conditions in y and 1 in x and whereas, 

the equation that results in terms of the similarity variable can have only 2 conditions and 

these were the 2 conditions. You had solved this equation explicitly and got the 

temperature field. 
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The next task is to get the heat flux. I told you that the heat flux is equal to minus k d T 

by d y at y is equal to 0. That is, the flux that is emerging from the surface is equal to 



minus k times d T by d y at y is equal to 0. I can express that in terms of eta because y is 

related to eta, as eta is equal to y by the boundary layer thickness. 

So I can express that in terms of eta and once I do that, I get an expression for the heat 

flux at the surface which goes as x power minus one third. So, the heat flux of the 

surface decreases as you go downstream. That is because the boundary layer thickness is 

increasing. The flux goes as the temperature difference divided by the length scale. In 

this particular case that length scale is the boundary layer thickness. As the boundary 

layer thickness increases, the heat flux is going to decrease 
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What is the total heat coming out of the surface? I should change this; this is actually and 

the rest of the formula as shown in the slide because I have and the rest of the formula as 

shown in the slide. So, what is the total heat flux coming out of the surface? This is the 

total amount of heat coming out per unit length perpendicular to the plane because as you 

recall, in this case, we are considering a two dimensional problem, where there is the 

plain surface and the fluid is incident on the surface and this is a two dimensional 

problem. Therefore, we are considering two dimensional problem per unit length in the 

third direction perpendicular to the plane of the board. 
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So, the total amount of heat coming out per unit length perpendicular to the plane is 

going to be equal to integral 0 to L dx qy; that is, you integrate the heat coming out per 

unit area at each differential area along the x direction, then at the molar. So, this is equal 

to the total heat that is coming out. This is equal to k into T 1 minus T naught integral 0 

to L dx by x power one third because I have this dependence on x in the equation for the 

heat flux. So, this is equal to k into T 1 minus T naught by alpha by gamma dot power 

one third into 3 power 2 by 3 by gamma 1 by 3 into 3 by 2 times L power 2 by 3. 
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So, this is equal to 3 power five third by 2 gamma 1 by 3 into k T 1 minus T naught by 

alpha by gamma dot L square power one-third. So, this is the final equation for the heat 

transfer from the plate. The Nusselt number traditionally is defined as 2Q by k into T 1 

minus T naught and you can see that this would be given by 3 power five-third by 

gamma of one-third into Peclet number based upon L to the minus one third power. I am 

sorry, this is Peclet number based upon L to the plus one third power. 

So, this gives us the Nusselt number verses Peclet number correlation for the heat 

transfer from a flat plate. When I discussed this initially, when we looked at correlations 

for different situations, I told you that Nusselt number goes as Peclet number goes to the 

one-third power. This is basically 3 power five-thirds by gamma of one-third Re power 

one-third Prandtl power one third because Peclet number is the product of the Reynolds 

number and the Prandtl number. 

So, this is the correlation for the heat transfer from a flat plate. In the limit, where the 

flow is laminar that the velocity is linear at the surface, in that case, the correlation for 

heat transfer goes as a constant times Peclet number to the one third power and the 

reason it goes as Peclet number to the one third power is physically is because the heat 

flux from the surface goes as the temperature difference divided by length scale; that 

length scale goes as P power minus one third from the scaling that we had just derived. 

Therefore, the Nusselt number goes P power plus one third as expected. 
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This we solved for the particular case where the velocity is linear - this the linear 

velocity profile where there is a linear velocity profile at the surface. However, the 

solution is actually more general than that. Regardless of the voltage profile that I have, 

the boundary layer thickness is actually small compared to the length scale. 

So, for the solution to be valid, the only requirement is that the velocity profile has to be 

linear over a length scale comparable to the boundary layer thickness. The velocity 

profile has to be linear over a length scale comparable to the boundary layer thickness. 

So long as the boundary layer thickness is small compared to the macro scale, the 

velocity has to come down to 0 at the surface anyway. So, near the surface, the velocity 

has to increase linearly from 0 and if you are expanding in a thin region, in a Taylor 

series expansion, the first term in that expansion will be the linear term. 

So, this will be the first term in the expansion for any velocity profile, provided the 

region over which I am expanding is thin, small compared to the macroscopic scale. In 

that case, the velocity profile near the surface is going to be linear anyway and therefore, 

I can use an expansion in this velocity profile of this form u x is equal to gamma dot y at 

the surface. This is valid, whenever there is a no slip condition at the surface so that the 

fluid velocity has to come down to 0 at the surface. It is not valid in general, if you had a 

non-zero velocity at the surface. We will see a little later, how to deal with non-zero 

velocities at the surface. 
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So, this is the Nusselt number correlation, for this simple case of the flow past a flat 

plate. Let us now consider a more complicated case - heat transfer from a spherical 

particle. So, this is the case that is actually of practical interest. One might very often 

have situations, where there is transport from a spherical particle or some other shaped 

particle within the flow. So, first, I will consider the case, where there is heat transfer 

from a spherical particle and then we will look at some general results that can be 

obtained for any shape of particle. 

So, we have a particle of radius R, which is at temperature T naught and there is fluid 

flow around the particle and for upstream, the fluid has some velocity U; the fluid 

velocity is U for upstream of the particle. The temperature far away from the particle is T 

infinity and one would like to know what is the heat flux due to the flow as well as the 

diffusion - thermal diffusion from the particles. Let us fix our coordinate system. We 

have a spherical particle and therefore, it is most convenient to consider spherical 

coordinate system. 

This spherical coordinate system has an axis of symmetry. That is, as you rotate around 

this axis, there is no change in the velocity field. So, it is most convenient to consider 

this as the z axis and the angle theta is measured from this z axis, where r is the distance 

from the origin in this coordinate system and in this coordinate system, I would prescribe 

u r and u theta and so on. 
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We assume that the flow is viscous in the low Reynolds number limit and in that case, 

you can get analytical results for u r and u theta. We would not derive here, I will just use 

these results to calculate the heat flux. The analytical results are u r is equal to U cos 

theta 1 minus 3R by 2r plus R cubed by 2 r cubed and u theta is equal to minus U sin 

theta and the rest of the formula as shown in the slide. 

So, these are the expressions for the velocity field everywhere within the flow. u phi is 

equal to 0 because there is no flow in that direction and there is no dependence of either 

the velocity or the temperature on the phi coordinate, which represents rotation around 

the z axis. 

So, this is heated sphere at temperature T naught in a fluid at temperature is equal to 

infinity at T infinity. So, I can define my scaled temperature as usual T star is equal to T 

minus T infinity by T naught minus T infinity and I will define scaled radius as r by 

capital R and u star and the rest of the formula as shown in the slide. So, scaling by the 

obvious scales, the velocity scale is u, the radial distance is capital R and T is scaled as T 

minus T infinity by T naught minus T infinity. So, the boundary conditions are at r star is 

equal to 1, T star is equal to 1 and as r star goes to infinity and the rest of the formula as 

shown in the slide. 
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So, the temperature is 1 at the surface and it goes to 0 as the distance goes to infinity and 

the scaled velocity is expressed in this form. u r star is equal to cos theta 1 minus 3 by 2r 

star plus 1 by 2r star cubed and u theta star is equal to minus sin theta 1 minus 3 by 4r 

star minus 1 by 4r star cubed. 

If you insert these into the steady state convection diffusion equation, u dot grade is 

equal to alpha del square T. What you will get is u r partial T by partial r plus u theta by r 

partial T by partial theta into the Peclet number is equal to 1 by r square d by d r of r 

square d T by d r plus 1 by r square sin theta d by d theta of sin theta. So, this will end up 

being the scaled equation. I just scaled the velocity by capital U the length by capital R 

and the Peclet number is equal to U R by alpha. 
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Now, in this equation, if we take the limit, Peclet number becoming large compared to 1, 

the equation just becomes u r d T by d r plus u theta by r d T by d theta is equal to 0. One 

can also write this alternatively as u dot grade T is equal to 0. So, what this says is that u 

dot grade T is equal to 0; that means, the gradient of T along the velocity is equal to 0. 
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Temperature does not vary along stream lines. Temperature does not vary along stream 

lines, the temperature at the upstream entrance is equal to T infinity. Therefore, the 



temperature upstream is T infinity and it does not vary along stream line; the temperature 

has to be T infinity everywhere.  

So, that is the only solution that you can get - the temperature has to be T infinity 

everywhere. It cannot satisfy this boundary condition. In order to satisfy this boundary 

condition as in the problem of the flow past a flat plate, we have to postulate a boundary 

layer of thickness small compared to r at the surface. 

Previously, we had scaled r by capital R; the assumption there was that the length scale 

for the variation of the temperature field is capital R itself, but when the length scale is 

capital R, the Peclet number is large and diffusion is small compared to convection. 

Diffusion and convection can be of the same magnitude, only if there is a smaller length 

scale, which is small compared to capital R such that the temperature field varies only 

over that small length scale. In that case, the gradients of temperature field are large and 

one could have a balance between convection and diffusion. 
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So, what we have to do now is to postulate the presence of a layer near the surface. The 

presence of a layer near the surface, where there is the effect of heating from the sphere 

penetrates into the fluid. What should be this distance? The length scale, we will obtain 

that from the consideration that convection and diffusion are of equal magnitude within 

this layer.  



So, the surface of the sphere itself is at r star is equal to 1. Therefore I will postulate that 

there is another coordinate r star is equal to 1 plus delta y, where y is a scaled distance 

within the fluid away from the surface. Basically, delta times y is the distance of a point 

from the surface because r star is equal to 1 is the surface. So, r star is equal to 1 plus 

delta y gives you basically, the distance of a point in the fluid from the surface of the 

sphere and that distance has to be small for there to be a balance between convection and 

diffusion. 

So, this y is the variable that I am using. y is the scaled variable that I will use for 

differentiation and delta is the boundary layer thickness. y, I will assume is order 1. It 

remains finite in the limit as Peclet number becomes large; delta becomes smaller and 

smaller as Peclet number become larger and larger in such a way that delta times y gives 

me a region near the surface of the sphere, where there is a balance between convection 

and diffusion. 

So, it is important to note that I will assume that y is a scaled coordinate which continues 

to be of order one. it varies from the temperature The effect of heating from this sphere is 

non-zero, when y is of order 1. Delta is a length scale that is going to 0 as the Peclet 

number becomes large. So, y is the scaled coordinate in our case. First of all, I have to 

substitute this in the equations for the velocity field. 
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Since I am interested in the region near the surface, it will be sufficient for me to find out 

approximate expression for the velocities in the region very close to the surface. It will 

be sufficient to find out approximate velocities in the region very close to the surface.  

(Refer Slide Time: 39:46) 

  

So, velocity field u r is equal to cos theta 1 minus 3 by 2r plus 1 by 2r cubed. I substitute 

r in terms of 1 plus delta y. So, this becomes cos theta 1 minus 3 by 2 into 1 plus delta y 

plus 1 by 2 by whole cubed. Now, I can use a binomial expansion in the small parameter 

delta. So, this is going to be equal to cos theta 1 minus 3 by 2 into 1 plus delta y power 

minus 1 plus 1 by 2 and the rest of the formula as shown in the slide. 

If I expand this out, I will get cos theta 1 minus 3 by 2 plus 3 by 2 delta y minus 3 by 2 

delta y the whole squared plus 1 by 2 minus 3 by 2 delta y and plus 3 delta y the whole 

squared using the binomial expansion and you can see that in this, the leading order 

terms actually cancel out. I have 1 minus 3 by 2 plus 1 by 2; those 3 cancel out. The 

terms proportional to delta also cancel out. I have 3 by 2 delta y minus 3 by 2 delta y and 

the first correction that I get is of order delta y the whole squared. So, this in this limit is 

approximately equal to cos theta times 3 by 2 delta squared y squared. So, the radial 

velocity goes as delta square times y square very near the surface. 
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What happens to the other velocity u theta? u theta is equal to sin theta into 1 minus 3 by 

4r minus 1 by 4r cubed. This can once again be expanded out sin theta into 1 minus 3 by 

4 1 plus delta y minus 1 by 4 into 1 plus delta y whole cubed and if I use a binomial 

series, I will get 1 minus 3 by 4 minus 3 by 4 plus 3 by 4 delta y minus 1 by 4 plus 3 by 4 

delta y. In this case, the terms that are order one, actually cancel out - 1 minus 3 by 4 

minus 1 by 4. 

What I end up with is equal to minus sin theta into 3 by 2 delta y. So, these are the 

velocities u r and u theta. The approximation for the velocity is very close to the surface, 

when delta is small compared to 1 So, these are the approximations for the velocity 

fields. The radial velocity goes as delta square, the velocity in the theta direction goes as 

delta. It is no surprise because at y is equal to 0 itself, both component of the velocity 

have to be equal to 0. 
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So, I now put these into my differential equation. Pe into and the rest of the formula as 

shown in the slide. So, this is the differential equation and I substitute in terms of r in this 

equation and also substitute the velocities that I got. 
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So I put this in and I will get Pe into 3 by 2 delta square y square cos theta into partial T 

by partial r is one over delta partial T by partial y plus u theta is minus 3 by 2 delta y sin 

theta by 1 plus delta y r is 1 plus delta y times partial T partial theta. On the right hand 

side, I have 1 by 1 plus delta y the whole square d by dy is 1 by delta of r square is 1 plus 



delta y the whole square times 1 by delta partial T by partial y plus 1 by 1 plus delta y the 

whole square sin theta d by d theta of sin theta d T by d theta. 

Now delta is small compared to 1. Therefore, I can neglect delta in comparison to 1 - 

here and here, as well as here; I can neglect delta in comparison to 1 and once I do that, I 

get Pe into 3 by 2 delta square y square I am sorry delta y square cos theta partial T by 

partial y minus delta y sin theta partial T by partial theta. The first term here is 1 by delta 

square partial square T by partial y square and the second term is one by sin theta d by d 

theta of sin theta partial T by partial theta, after I have neglected all the terms 

proportional to delta and retaining only the leading order terms. 

Now, in this equation, it is easy to see this first term goes as order 1 over delta square 

whereas, the second term does not contain any deltas. In the limit as delta goes to 0, this 

second term is small compared to the first because we except delta to become a small 

number. Therefore, 1 by delta square will become a large number. Therefore, in the limit 

as delta goes to 0, you would except this to be small compared to the first term. On the 

left hand side of course, both terms are proportional to delta. 

So, both of them are of equal magnitude in the limit as delta goes to 0. So, if I neglect the 

second term and multiply throughout by delta square, what I will get is Pe delta square 

into 3 by 2 into y square cos theta partial T by partial y minus y sin theta partial T by 

partial theta is equal to partial square T by partial y square. 
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Note that at the surface of this sphere or that the flow at the surface of the sphere is in the 

theta direction. So, theta is the stream wise direction, r is the cross stream direction - r is 

the direction perpendicular to the flow at the surface of this sphere and as in the case of a 

flat plate, what we are finding is that the diffusion in the cross stream direction, the first 

term there is large compared to the diffusion in the flow direction - in the theta direction 

along the surface. 

So, diffusion perpendicular to the surface is large compared to diffusion along the 

surface, when the boundary layer thickness is small. So, that is consistent with what we 

have in flow past a flat plate. What is different here - flow past a flat plate is that we have 

convection both in the r and theta directions and both of these are of equal magnitude. 
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So, as I said, within the boundary layer y is order 1, delta goes to 0. In the limit as delta 

goes to 0, if y is finite, this number has to be order 1, if there is to be a balance between 

convection and diffusion and once again, we get delta is equal to Pe power minus 1 by 3. 

So, when delta is equal to minus Pe power minus 1 by 3, we have a balance between 

convection and diffusion in the limit as the Peclet number goes to infinity.  

So, this provides us with the boundary layer thickness. As in the case of a flat plate, the 

boundary layer thickness goes as the Peclet number to the minus one third power - once 

again no surprise. Very close to the surface, if we can approximate the velocity profile as 

the linear function away from the surface, then the velocity increases proportional to the 

cross stream distance. The diffusion coefficient goes as one over the length scale square. 

So, ultimately, I will get Pe times L cubed being order 1. So, in that sense, it is no longer 

a surprise. 

So, if we use delta is equal to Pe power minus one third, then our equation becomes 3 by 

2 into y square cos theta partial T by partial y minus y sin theta partial T by partial theta 

is equal to partial square T by partial y square. So, this is a partial differential equation, 

contains 2 variables: one is theta and the other is y. In the previous case, we had only one 

component of the velocity. 



We assume that the similarity variable does exist. Assume a similarity variable of the 

form y by h of theta, where h is some function of theta. I will put this form of the 

similarity variable into the differential equation, solve it and then try to see whether I can 

get the functional form of this similarity variable in such a way that the resulting 

equation does not depend individually on theta and y but depends upon the similarity 

variable eta alone.  

So, instead of trying to use some physical insight in the case of the flow past a flat plate, 

in order to derive what the similarity variable will be, I will go head and assume a form 

for the similarity variable, I will put that into the equation and the resulting equation that 

I get one can then check whether there is some form of this function h of theta, which 

actually satisfies the condition that the resulting equation is a function of eta alone. So, 

this part, we will continue in the next lecture.  
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To briefly recap what we did in this lecture, first we looked at the flow past a flat plate 

and explained to you how to get a Nusselt number correlation. In this case, the heat 

transfer from the surface, there is a boundary layer of the thickness Peclet number power 

minus one third at the surface because the boundary layer thickness decreases as Peclet 

number to the minus one third power. The heat flux which is the temperature difference 

divided by the length scale is proportional to the temperature difference divided by that 

length scale. There are some constants of course, but in the limit as the Peclet number 



becomes large, the heat flux has to be proportional to the difference in temperature 

divided by the boundary layer thickness. That heat flux goes as Pe power plus one third 

because the length scale is going as Pe power minus one third. 

Once I use that condition, I can then derive an expression for the Nusselt number in 

terms of the Peclet number or the Reynolds number and Prandtl number and then we 

looked at the heat transfer from a spherical surface. This was for a laminar flow. The 

convection-diffusion equation for the laminar flow in the heat transfer past a spherical 

particle. The velocity components are prescribed for us in this case. we will see It is 

outside the scope of this course to derive these velocities themselves, but we will assume 

that these velocities are known and once these velocities are known, we can then insert 

them into the convection and diffusion equation. If you scaled the radius by capital R and 

the Peclet number is large, then you end up with an equation of the form, u dot grade T is 

equal to 0; that means, temperature does not change along stream line and therefore, 

whatever temperature in the inlet continues to be there throughout the domain. 

With this, we cannot satisfy the boundary condition T star is equal to 1 on the surface of 

this sphere. In order to satisfy the boundary condition, we had postulated boundary layer 

thickness and we had calculated the value of that boundary layer thickness. We have not 

yet done the similarity solution for the temperature field. That we will continue in the 

next lecture. So, we will stop here and I will briefly summarize this in the next lecture 

before we continue to determine what is the form of the similarity solution. So, we will 

see you then. 

 


