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So, welcome to lecture number 32 at the end of the last lecture I told you that we will 

start looking at a point source in the heat conduction equation. Before that if you recall 

we had solved the equation for the Laplace equation in a spherical coordinate system the 

heat conduction equation. 

(Refer Slide Time: 00:42) 

 

And we had got solutions of the general form shown in the red there a summation over 

spherical harmonic expansions Y n m of theta and phi. These are products of the 

Legendre polynomials P n m of cos theta and cos or sine of m phi those are orthogonal 

functions. They are all orthogonal to each other with the inner product defined as an 

integral over phi from 0 to phi and over theta from 0 to pi. And then we have these 

dependencies on the radius r power n plus r power of minus n plus 1.And I had shown 

you that for n is equal to 0 and m is equal to 0 you get spherically symmetric solutions. 

And then we had solved for the effective conductivity of a composite where the 

temperature for this far away from the sphere was proportional to z itself. 
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And in that case we got solutions only for n is equal to 1 in that case we got solutions 

only for n is equal to 1 that was because forcing was of that form. There was a 

temperature which went proportional to z. As you went far away from the particle that 

was what was causing all of the temperature variations around the particle. The forcing 

has that symmetry the one 0 symmetry. Then the solution that you get will also have the 

exact same 1 0 symmetry and therefore, we can just 0 in on the solution we know that it 

has to have 1 0 symmetry. 

So it has to have the form A n a 1 times R power plus 1 plus B 1 divided by R square 

times Y 1 0 of theta and phi. And we had used that usefully to actually get the effective 

conductivity of a composite material in the limit where the composite was dilute in the 

sense that, the volume fraction of the particles was small. 
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So, that the distance between particles was large compared to the particle radius. In that 

case the temperature field around one particle is not significantly distorted by the effect 

of other particles. So, in that case we had actually derived the thermal conductivity in the 

last lecture. 
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And I had briefly discussed for you the symmetries of these polynomial legendary 

polynomial expansions the symmetries of this spherical harmonics. Y 0 0 is a constant, it 

is independent of theta and phi. Therefore, surfaces of constant Y 0 0, there can be a 



variation in Y 0 0 only in the r direction. So, surfaces of constant Y 0 0 are spherical 

shells, Y 1 0 is basically looks like a dumbbell along the z axis. Y 1 0 is p 1 0 of cos 

theta and as cos theta varies as theta varies from 0 to pi cos theta goes from 1 down to 0 

and then minus 1. So, it is often plotted as this way similarly Y 1 1 is along the x axis, Y 

1 minus 1 is along the y axis and then I plotted for you the symmetries of this n is equal 

to 2 Legendre polynomials. 
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Similarly, there are solutions for 3, 4, 5 etcetera. For a value of n there is 2 n plus 1 

solution because for a given value of n, n can vary from minus n to plus n. And I briefly 

remarked in the end of the last lecture that these equations are identical to the solutions 

Schrodinger equation. Because in that case as well you are solving the Laplace equation 

for the theta and phi components of the wave function. And that is the reason that the 

solutions the symmetries of the solutions are exactly the same where there you solve the 

diffusion equation the Laplace equation, equation for the potential in electrostatics. The 

only thing that changes is the dependence on r because in this case I have a potential 

which depends upon r. 

Therefore, the solutions in that I get in this case are what are called Laguerre 

polynomials in the radial direction, for the unsteady heat conduction you get spherical 

vessel functions. In this particular case for the steady diffusion equation I get two sets of 

functions, one of which increases proportional to r power n. The other decreases 



proportional to 1 over r power n plus 1 called the increasing and the decreasing 

harmonics respectively. If you are solving the problem within an object of finite size, 

then the solution would only contain the increasing harmonics because the decreasing 

harmonics actually go to infinity at the origin. 

So, therefore at the temperature is finite throughout the domain we can have only the 

increasing harmonic solution. On the other hand if you are solving a problem outside an 

object such as a spherical particle, we can have only decreasing harmonic solutions. 

Because the increasing harmonics will go to infinity as r goes to infinity. 
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And then I briefly started the discussion of source dipole quadrupole and so on let us just 

continue with that delta function in one dimension this is x. if I take a function(No Audio 

From: 06:49 to 06:56) that looks like this(No Audio From: 07:00 to 07:10). The function 

that looks like this, it goes from along the x axis, it goes from minus h by 2 to h by 2 and 

the height of this function is 1 over h. The total area under the curve is going to be equal 

to 1, the reason is because the width of this function is h the height is 1 over h. I multiply 

the two therefore I will get just one that means that this function f of x satisfies the 

integral condition integral dx f of x is equal to 1 from minus h by 2 to h by 2. 

 However this function is 0 everywhere else, it is non 0 only in the interval between 

minus h by 2 and h by 2 it is 0 everywhere else. That means that I could very easily write 

the same thing as minus infinity to infinity dx f of x is equal to 1. So, this is non 0 



between minus h by 2 and plus h by 2 the height of this is 1 over h therefore, the integral 

is 1. What is the delta function? delta of x is equal to limit as h goes to 0 of f of x, that is 

if I take the limit as h goes to 0 that is the two points minus h by 2 and plus h by 2 as the 

approach the origin. In that limiting case this function is the delta function, limit h is 

going to 0 the height is 1 over h. 

So, as h goes to 0 the width of this function along the x axis goes to 0 the height goes to 

infinity therefore, in the limit as the width goes to 0 and the height goes to infinity I get 

the delta function. So, sharply peaked function it is non zero only at x is equal to 0, 0 

everywhere else the total integral or the area under that function is equal to 1. We have to 

(( )) the limit as the thickness goes to 0 the height goes to infinity such that the product of 

the thickness and the height is exactly equal to 1. That is one formal definition of the 

delta function the one that we will use here for our present purposes. There are other 

functions also that you can define we will not bother with that right here we will use this 

particular formula definition. 
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What are the properties of the delta function, this automatically implies that delta of x is 

equal to 0, for x is not equal to 0. The delta function has the property like whenever x is 

not equal to 0, the delta function is identically equal to 0, it is non zero only at x is equal 

to 0. At x is equal to 0 the value of the delta function is strictly speaking undefined. 

However I have an integral condition integral dx delta of x from minus infinity to infinity 



this has to be exactly equal to 1. So, there is an integral condition stating that the integral 

of delta of x dx has to be equal to 1. In addition there is another property that is that 

integral minus infinity to infinity dx delta of x times any function g of x is equal to g at 0. 

Let me explain this a little bit detail this is x, this is the function g of x the delta function 

is non zero only at the origin so, this is the delta function everywhere else. Apart from x 

is equal to 0, g of x is being multiplied by 0. So, it is identically equal to 0 only exactly at 

the origin g of x is non zero and I am sorry delta of x is non zero. So only at the origin is 

g of x being multiplied by a non zero number therefore, this result is non zero only at x is 

equal to 0. Let us do this limiting a little bit more carefully let us take a finite delta of x 

with height 1 over h and going from minus h by 2 to h by 2 multiply g by this function. 

And then take the limit as h goes to 0 so, this integral dx f of x g of x where f of x was 

this function that I had there. I multiply that by delta of x and take the limit this is going 

to be equal to since f of x is non zero only between minus h by 2 to plus h by 2. I get 

minus h by 2 h by 2 dx between minus h by 2 and plus h by 2 this is equal to 1 over h 

times g of x. Now we are taking the limit as h goes to 0 therefore, in this limit I can write 

this as dx minus h by 2 to h by 2 times 1 by h, expand g of x in a Taylor series about x is 

equal to 0 that is equal to g of 0 plus x times dg by dx, at x is equal to 0 plus x square by 

2, d square g by dx square plus dot dot dot. 
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So, this is the Taylor series expansion of the function g of x and then I can integrate out 

the terms one by one. The first term that is equal to integral minus h by 2 to h by 2 dx 1 

over h g of 0, within the integral the only there is g of 0 which is a constant and 1 over h 

which is a constant. So, I am just integrating a constant from minus h by 2 to plus h by 2 

plus the second term 1 over h is a constant dg by dx evaluated at x equal to 0 is a 

constant integral dx times x plus the third term will be 1 over h d square g by dx square 

at x is equal to 0, dx times x square. So, this first term is just an integral of a constant so, 

minus h by 2 to plus h by 2 integral dx 1 over h this is just equal to g of 0. 

The second term if you see I have an integral of x times dx so, that is going to as h 

square when I integrate it from minus h by 2 to plus h by 2. This particular case it is just 

equal to 0 but, in general it is not equal to 0, the third term I have an integral of x square 

dx from minus h by 2 to plus h by 2. That will give me a contribution which goes as h 

cubed in the limit as h goes to 0, each of these contributions goes to 0 and therefore, I am 

just left to the function g of 0. So, this was when the delta function was at the origin the 

delta function can be at any position. 
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So, if there is a delta function at some position x 0 the delta function will be defined (No 

Audio From: 16:48 to 17:08) at the location x 0, delta of x minus x 0. So, I have just 

shifted the origin of my coordinate system to x 0 and I defined delta the delta function at 

the location x 0 as delta of x minus x 0. So this has exactly the same properties as delta 



of x except that in the case of delta of x x 0 was exactly equal to 0. So the same 

properties carryover here as well, this is not equal to 0 only for x is equal to x naught. 

Integral dx from minus infinity to plus infinity is equal to 1 area under the curve of this 

delta function is independent of where it is located it is always equal to 1. And integral 

minus infinity to infinity dx delta of x minus x 0, g of x is equal to g of x 0. 

So, these are the properties of third delta function. Note that this condition integral dx 

times delta function is equal to 1. That means that the delta function has dimensions of 

one over length in one dimension the delta function has dimensions of 1 over length. 

Because integral dx times delta x is equal to 1, that means that delta goes as inverse of 

length because x is a length in one dimension. One can similarly, define delta functions 

in two and three dimensions. 
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So, let me just briefly take you through the definition in two dimensions it is exactly 

analogous. Delta of (x, y) is equal to 0 for so let us first work with the finite delta 

function. Function f of (x, y) is equal to 1 over h square for minus h by 2 less than x less 

than h by 2 and minus h by 2 less than y less than h by 2 is equal to 0 otherwise this is a 

two dimensional delta function. And the limit h goes to 0, delta of( x, y) is equal to limit 

h going to 0 of f of (x, y). 
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So, to visualise this we can visualise it in three dimensions. So, let us say that I have x y 

this is x, this is y and this is f of x, this f is non zero only when x is between h by 2 and 

minus h by 2. As well as y is between plus h by 2 and minus h by 2 that means that in 

this rectangle. Only within this rectangle between minus h by 2, h by 2 both in x and in y 

this is minus h by 2 and x and h by 2 and x as well as in y it is only within this rectangle 

around the origin that this is non zero. And within this rectangle this function has a 

constant value and that constant value is 1 over h square. This constant value is 1 over h 

square over this rectangle, this rectangle has length which actually a square with length h 

in the x axis and length h in the y axis. 

Therefore, integral dx dy f of (x, y ) from minus h by 2 to h by 2, this has to be equal to 1 

so, this is the total volume under the curve in this case. And since this is non zero only 

between minus h by 2 and plus h by 2 the integral condition could well be written as 

integral minus infinity to infinity dx integral minus infinity to infinity, dy f of (x, y) is 

equal to 1 . 
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So, this is the property of the two dimensional delta function in the limit h going to 0 (No 

Audio From: 23:05 to 23:15) the limit as h goes to 0, f of x y is equal to delta of (x, y). 

Therefore, the two dimensional delta function has the properties (No Audio From: 23:27 

to 23:37) integral minus infinity to infinity, dx this has to be equal to 1. 
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Delta of (x, y) is equal to 0 for x not equal to 0 or y not equal to 0. That is everywhere 

except at both x and y equal to 0 it has to be 0, there is not equal to 0 only for x is equal 

to 0 and y is equal to 0. So, it is not 0 only when both x and y are 0 otherwise it is 0 and 



the area under the curve has to be equal to 1. And we had previously shown you in one 

dimension that integral delta of x times g of x is equal to g of 0. Similar condition can be 

easily derived here integral minus infinity to infinity dx integral delta of (x, y), g of (x, y) 

where g is any function this is equal to g of (0, 0). 

So, this is the equivalent condition for the function g delta times g integrated from minus 

infinity to plus infinity is equal to g of (0, 0). Now the three dimensional delta function is 

the extension of the same thing two three dimensions I cannot draw it for you in three 

dimensions, but I can define it for you. 
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(No Audio From: 25:34 to 25:51) Note before that that in two dimensions the delta 

function integral dx dy delta of (x, y) is dimensionless it is just equal to one. That means 

in two dimensions the delta function has dimensions of 1 over length square, as I said 

this function is equal to 1 over h square between minus h by 2 and plus h by 2 h is a 

length. Therefore, the delta function has to have dimensions of 1 over length square in 

two dimensions. Similarly, I can do it in three dimensions in that case the formal 

definition is of this function is f of (x, y, z) is equal to 1 over h cubed for 0 less than x 

less sorry (No Audio From: 26:44 to 26:51) and and (No Audio From: 26:56 to 27:03) is 

equal to 0 otherwise. So, this is the formal definition of the function f and delta function 

delta of (x, y, z) is equal to limit as h goes to 0 of f of x. 
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And it has the following properties integral minus infinity to infinity (No Audio From: 

27:35 to 27:45) is equal to one (No Audio From: 27:47 to 27:54) is equal to 0 for x not 

equal to 0 or (No Audio From: 28:01 to 28:28) just the analogous conditions from one, 

two down to three dimensions. Now this delta function in three dimensions has 

dimensions of 1 over length cubed because integral of the delta function times a volume 

is equal to 1. Rather than writing it separately in terms of x y and z, I will use a 

shorthand notation I will represent integral dx dy dz as just a volume integral. So, what I 

am going to do is to define the delta function delta of x, this is understood to be delta of 

(x, y, z). 

Since x is a vector with three components this delta function has dimensions of one over 

length cubed. And the properties of this delta function are integral dv delta of x is equal 

to 1, where v is the entire volume which includes the location of the delta function. So, 

the entire volume includes the location of the delta function, then integral of the delta 

function over that volume has to be equal to 1. And delta of x is equal to 0 for x not 

equal to 0 because the vector will be 0 only if all of these it is three components are equal 

to 0. 
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So, for delta of x is equal to 0 for x not equal to 0, integral of volume of delta of x g of x 

where g is some function of the vector is equal to g of 0. So, these are the properties of 

the delta function that I will use. 
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So, back to our heat conduction problem (No Audio From: 30:19 to 30:30) I told you that 

if there is a point source at the origin. We have discussed this in the last lecture which is 

emitting heat, heat per unit time is equal to Q. Then the solution for the temperature field 

is T is equal to Q by 4 pi k r where r is the distance of the observation point from the 



origin in a spherical coordinate system. Turns out that this solution is also a solution of 

the equation k del square T plus Q, delta of x is equal to 0 how does that come about. So, 

first of all if I try to solve this equation note that k del square T plus Q times delta 

function is equal to 0, delta function is non zero only when x is equal to 0. Therefore, for 

x not equal to 0, the equation is k del square t is equal to 0 the solution in spherical 

coordinates. Note that this is a spherically symmetric system there is no variation in the 

theta or phi coordinates. 
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So, for a spherically symmetric system this can be written as k into 1 by r square d by dr 

of r square dT by dr is equal to 0, which means that the solution is of form T is equal to a 

by r plus b. And if I define my temperature in such a way that the temperature goes to 0 

at a large distance from the origin then the constant b has to be equal to 0. Therefore, the 

solution is simply of the form T is equal to some constant divided by r, how do I relate 

this constant to Q? it can be done in the following way. I have k del square T is equal to 

minus Q delta of x. (No Audio From: 33:28 to 33:42) Now delta of x is non zero only 

when x is equal to 0 so, I can usefully obtain a condition for this by taking a volume 

integral over the entire volume.  

I know that delta is equal to 0 for x naught equal to 0, but however instead of equating to 

each and every point I can do it as a volume integral. So, we take integral over the 



volume dV k del square T is equal to integral over the volume of Q times delta of x so, it 

is minus Q integral dV delta of x this is minus Q. 
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Now on the left hand side this volume integral k del square T I can write it as integral 

over the volume dV of the divergence of k grad T. The divergence theorem tells me that 

this can be simply written as integral of the surface of n dot k grad T where n is with the 

surface s is any surface that includes the origin. So, what is n dot k grad T ? the simplest 

thing to solve is for a spherical surface of some radius r. In that case k grad T is equal to 

k times, in this case there is only a variation of the temperature with respect to the radial 

direction. T is equal to A divided by r so, there is a variation of the temperature only with 

respect to the radial coordinate. 

Therefore, this k grad T I can write it as k times the unit vector in the radial direction 

times dT by dr is equal to k was equal to k by r. So, there I will get minus k e r A by r 

square, the unit normal to the surface is also in the radial direction. Therefore n dot k 

grad T is equal to minus k A by r square. 
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Now what is the integral over the surface? Integral ds n dot k grad t is equal to the 

surface area this is equal to 4 pi r square. So the surfaces at constant radius this function 

here is a constant because the surface is at a fixed radius r so, this function is a constant. 

So, I get the surface area times minus k A by r square and this just become equals to 

minus four pi k A. Recall that integral of the volume of k del square T was equal to 

minus Q therefore I will get minus four pi k A is equal to minus Q which implies that A 

is equal to Q by 4 pi k. So, what I have just shown you is that the solution to the equation 

k del square T plus Q delta of x is equal to 0 if this is the equation the solution is T is 

equal to Q by 4 pi k r.  

A by r, A in this case is equal to Q by 4 pi k therefore this is the solution for the 

temperature field from a point source, point source defined as Q times delta of x. Recall 

that in the heat conduction equation when we defined the delta function we noted that it 

had dimensions of one over length cubed or one over volume. In the heat conduction 

equation we previously had an equation of the form plus s e is equal to 0, s e was defined 

as the heat generated per unit volume. In this case Q is the total heat generated delta has 

dimensions of one over volume. Therefore Q times delta has dimensions of heat 

generated per unit volume per unit time, which is a same as the dimension of s e there is 

a source of heat. Heat generated per unit volume per unit time. 
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So, with this definition I get a solution for the point source. This definition can be 

extended quite easily if I have two sources, if I have let us say a source that is not located 

at the origin, but at some position x 1. And if I am observing it from some position some 

x prime is the position from which I am observing I am measuring temperature at x 

prime there is a source of strength Q 1 at x 1. That means that the temperature field at the 

location x prime I am sorry means this is x, that means the temperature field at the 

location x is equal to one by four pi k into r. If you recall r was the distance between the 

position x and the origin in the previous case that was because the source was at the 

origin in the previous case.  

Here the source is at a location x 1 that means that the temperature has to be proportional 

to the distance between these two points. In other words the temperature has to be equal 

to 1 by 4 pi k into x minus x 1. So, this is the temperature field for a source that is not 

located at the origin. I could have multiple sources, I could have an another source at x 2 

simultaneously have two sources, simultaneously one of strength Q 1 at x 1 another of 

strength Q 2 at x 2. The temperature field due to the source of strength Q 1 at x 1 is equal 

to Q 1 divided by 4 pi k into x minus x 1. I have another source of strength Q 2 at x 2 

that means that the temperature field due to that is just Q 2 by 4 pi k into x minus x 2. 

Note the modulus here in these two cases this is the distance between the two locations 

that means that this x minus x 1 is equal to x minus x 1 the whole square plus y minus y 



1 the whole square plus z minus z 1 the whole square to the half power. Just as r was 

equal to square root of x 1 square plus x 2 square plus x 3 square, this is the distance 

between these two locations the length of the vector x minus x 1. So, it is 4 pi k into x 

minus x 1 the whole square plus y minus y 1 the whole square plus z minus z 1 the whole 

square whole under root. So, I could have two sources in this case what I have implicitly 

done is to separate out the problem into two parts.  

(No Audio From: 42:52 to 43:01) One is to have a source here (No Audio From: 43:17 to 

43:27) and then evaluate the temperature field due to this and the other is to have a 

source here and evaluate the temperature at this point due to this source. The sum of 

these two gives you this original problem this original problem is given by the sum of 

these two problems that there is one source in one problem the other source in the other 

problem. I add up the two I get the problem with two sources. So, I can solve for the 

temperature T 1 in this case and T 2 in this case.  

T 1 in the first problem is going to be equal to Q 1 by 4 pi k into x minus x 1 (No Audio 

From: 44:03 to 44:12) and I just add up the two the differential equations are the same 

for both del square T 1 is equal to 0, del square T 2 is equal to 0. The solution for del 

square T 1 is equal to 0 with the point source at x 1 is T 1 solution for del square T 2 is 

equal to 0, with the point source of strength Q 2 at T 2 is of Q 2 by 4 pi k into x minus x 

2. I add up the two and I get this the final temperature field due to these sources I could 

very well do exactly the same thing for any number of sources. Note that this procedure 

will not apply if you have sources of finite size this procedure will not apply.  

This procedure applies only for point sources and that is the big advantage of point 

sources. That is the reason that we defined our delta functions gave a definition of the 

solution for the delta function source. Because this linear super position principle will 

apply only for point sources this principle is called (No Audio From: 46:33 to 46:40) and 

this applies only for point sources if I had a problem. 
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That I had particle of radius R 1 with heat coming out heat generated Q 1, and another 

particle somewhere else of radius R 2 with the amount of heat coming out as Q 2. In this 

case I cannot separate it out into two parts, one consisting of Q 1 and the other consisting 

of heat coming out as Q 2. This is not possible, the reason is because if I add the 

temperature due to this one, due to if I add the temperature due to this one and the 

temperature due to this one I will not get the temperature field here because in this 

particular geometry in this particular geometry this second particle was not present. So, I 

will have some other temperature at the location of the second particle. 

Similarly, in this geometry the first particle was not present therefore I will have some 

other temperature at the location of the first particle. If I add up the two I will not get the 

result that I have the configuration with two particles simultaneously within the field. 

The heat flux on the surface of the second particle here will not be same as the actual 

flux that is coming out because there is some flux due to the field generated by the first 

particle and therefore I will not get the same. You can superpose temperatures on 

boundaries of fluxes on boundaries, but you cannot change boundaries when you do 

linear super position. And the original problem there were two boundaries the two 

surfaces of two particles. I cannot separate that in out into two problems each of which 

contains one surface each the boundary surfaces have to be exactly the same when you 

do linear super position. 
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What I can do is to write this as sum of two problems one with both particles, but with Q 

1 coming out of the first particle, and nothing coming out of the second particle. And the 

second being a problem once again with both particles present with nothing coming out 

of the first particle and (No Audio From: 49:35 to 49:43) Q 2 coming out of the second 

particle. This is a valid way of doing linear super position because the boundaries are the 

same in both problems and if I add up the fluxes coming out from the two configurations 

I get the flux for the original problem. So, long as I do not change boundaries I can 

always do linear super position. Why does it work for the case of point sources? Why did 

this linear super position work for the case of point sources, the reason is because the 

point source has no sides it does not constitute a surface within the flow. It has no sides 

so since the point source has 0 size anyway when I add up the two I will still get the 

correct solution.  

Because there are no boundaries to this point sources it is just a source within the fluid 

therefore, if I add up the two for point sources I can remove one source and leave one 

end because the source that I removed did not have a boundary any way. So, because of 

that I can superpose the solutions due to point sources I could in this problem for 

example, put in a point source which is not generating any heat and similarly, in this one 

and that does not change the temperature field anyway. Whereas, a finite size particles 

will change the temperature field around it depending upon it is thermal conductivity. 



(Refer Slide Time: 51:32) 

 

So, therefore I can use linear super position for point sources. I could also use the 

concept of point sources to solve a problem where I have some distributed source let us 

say I have a source which is generating heat q volume. Within the source heat generated 

is equal to q per unit volume per time, this is what you will have. For example if you 

have an exist thermic or an endo thermic reaction, in that case you will have a certain 

amount of heat generated depending upon the reaction rate and the heat of reaction. You 

will have a certain amount of heat generated per unit volume per unit time.  

And then one can ask the question, what is the temperature field at a location x, due to 

the heat generated from this source in the absence of convection at steady state by 

solving the diffusion equation?. So, how do I use the principle of delta functions in order 

to determine the temperature as follows? I divide this into a large number of volumes 

(No Audio From: 52:52 to 53:00) I will number those volumes as 1 2 3 etcetera. So, the 

volumes have the volume initial these is delta V 1, delta V 2, delta V 3 and so on up to 

delta V n. I have divided into each one into each small differential volumes and delta V 1 

is located at the location x 1, delta V 2 at x 2, delta V 3 at x 3 and so on.  

And I can consider within each of these differential volumes, the source (No Audio 

From: 53:37 to 53:47) heat generated per time in each volume is equal to q at the 

location x 1 times delta V 1, q at the location x 2 times delta V 2 etcetera. The respective 

the heat generated at that particular location times the respective the local volume. that I 



have divided in two what is the temperature at due to source at x 1 will be equal to q at x 

1 delta V 1 by 4 pi k times the distance x minus x 1. 
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Similarly, T at x due to source at x 2 is equal to q of x 2 delta V 2 by 4 pi k x minus x 2 

and so on for each of those differential volumes. That means that the total temperature at 

x is equal to summation overall i is equal to 1 to n, q at x I, delta V i by x minus x i. 

(Refer Slide Time: 55:03) 

 

If you take the limit delta V i going to 0 this T of x is equal to an integral over the 

volume of the amount of heat coming out per unit volume per unit time at the location x 



prime divided by x minus x prime. So, that is the total temperature due to all of these 

small volumes super position principle again. So, I have distributed source I take the 

integral of the temperature field at the observation point. Note that x is the observation 

point, the point at which you are measuring temperature, x prime is the source point, the 

point at which the source is located. When you integrating over all the positions where 

the source is located of their heat flux per unit volume at that source point multiplied by 

the differential volume divided by the distance between the source and observation point. 

 If I integrate that out, I will get the temperature field once again we using linear super 

position except that this is for a distributed source q is per unit volume. So, in the 

previous case I had capital Q which was the heat generated per unit time temperature was 

just capital Q 1 by x minus x 1. In this case small q is heat generated per unit volume per 

unit time and the temperature is integral dV times q at that location divided by x minus x 

prime super position principle once again. So, this was the temperature field due to of 

point under distributed source. In the next lecture first we will briefly discuss the 

relationship between these point sources and the spherical harmonic expansions that we 

had derived in the previous lecture.  

And then we will go on to study some properties of these point sources so, I have solved 

for you the heat conduction equation with a point source. I got the solution as q by 4 pi k 

r and then I told you that linear super position can be used to get the temperature field 

even when there are multiple sources as well as when there are is the distributed source 

in that case it is just an integral equation. Next lecture we will look at the relationship 

between that and the spherical harmonic expansions we did previously so, we will 

continue this in the next lecture and we will see you the next time. 

Thank you.  

 


