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We are at lecture number seventeen in our course on fundamentals of transport 

processes. And, we have just started looking at transport in curvilinear coordinates. So 

far, everything that we did was in a cartesian coordinate system. 

(Refer Slide Time: 00:40) 

 

Last lecture, we started looking at a cylindrical coordinate system. This cylindrical 

coordinate system is an example of what are called curvilinear coordinate systems. And, 

these are different from cartesian coordinate systems, because the lines of constant 

coordinates in these coordinate systems are no longer straight lines. In a cartesian 

coordinate system, the three axis: x, y and z – they are all straight lines. Therefore, the 

planes of constant x, y and z are also straight lines. Therefore, if I construct a volume in a 

cartesian coordinate system – a differential volume, then all the surfaces of that volume 

are all planes. The surfaces of these volumes are all planes. The surface perpendicular to 

the x direction is in the yz-plane; surface perpendicular to y is in the xz-plane and the 

surface perpendicular to z is in the xy-plane. So, the lines are straight lines and the planes 

are flat. This is a cartesian coordinate system. This is particularly easy to work with, 



because we know that the planes are perpendicular to lines of constant x, y and z. And, 

the lines are straight. Therefore, the planes are flat. 

And, when we did transport in this (Refer Slide Time: 02:35) coordinate system, we got 

equations of the kind dT by dt is equal to alpha times d square T by dz square for 

unsteady transport in only one dimension. Even though this coordinate system is the 

simplest to work with, it may not be a appropriate for all geometries. That is the reason 

that we have curvilinear coordinate systems. For example, if I wanted to analyse the flow 

in a pipe, which has a central axis like (Refer Slide Time: 03:24) this, this pipe is a 

cylinder. Therefore, if I took the coordinate system here – x, y and z, the surface of this 

pipe would have to be described by an equation for the surface containing the x, y and z 

coordinates. So, in this particular case, the surface of this pipe will be described by the 

equation x square plus z square is equal to R square; where, r is the distance from the 

axis. So, that will be the equation for the pipe. 

Whereas, in this (Refer Slide Time: 04:05) case, I had fixed boundary conditions. For 

example, T star is equal to 0 at z star is equal to 1 and T star is equal to 1 at z star is 

equal to 0 in our separation of variables class. In this case, I will have to fix a boundary 

condition at x square plus T star is equal to 1 at x square plus y square is equal to r 

square. And, that makes the situation far more complicated. That is the reason why we 

go to a curvilinear coordinate system – a coordinate system which has the same 

symmetry as the configuration being analysed. In this particular case, we are analysing a 

pipe. So, I could choose a coordinate system in which one of the coordinates is the 

distance from this axis. So, that was the basis for choosing curvilinear coordinate 

systems. 



(Refer Slide Time: 05:10) 

 

For example, if I were to look at this particular pipe, I could choose... This will be the z 

coordinate and one coordinate is r – the distance from the centre from the axis of the pipe 

– the perpendicular distance. Therefore, on the surface of this pipe, the r coordinate is 

just equal to capital R. Let me just make that little more clear. This is the radius r and the 

distance from the centre is R. So, R is the distance from the centre; z is the distance 

along the axis from some origin. In this case, the boundary condition gets simplified in 

the r quadrant. 

In three-dimensional space, I need one more coordinate. In the cylindrical coordinate 

system, that is, the coordinate that goes around the axis. It is an angle for the coordinate 

that goes around the axis. So, if I look at this from the (Refer Slide Time: 06:28) side, if I 

look at this pipe, take a side view of this pipe, what I will see is a circle like this; the z-

coordinate is coming out of the board towards you; r is the distance from the centre; and, 

theta is the angle that distance makes with respect to some axis. So, by fixing r – the 

distance from the centre, theta – the angle that this distance makes with respect to some 

axis, and z – the distance along the pipe have uniquely fixed the position. And then, you 

can express the temperature concentration, velocity fields in terms of this position. 

I went to a curvilinear coordinate system, because the boundaries are more easily 

described in this curvilinear coordinate system. However, there is a price to pay; and, 

that is, that the equations get more complicated. In this particular case, since the 



coordinate system is a curvilinear coordinate system, the coordinates, the surfaces of 

constant coordinate are no longer planes. In this particular case, the surface of constant r 

is a cylindrical coordinate; it is no longer a planar coordinate, it is a cylindrical surface. 

So, the surface of constant r is a surface of (Refer Slide Time: 08:16) constant distance 

from the axis; that is the surface of a cylinder. 

When I write the balance equation, I write shell balance for some differential volume; 

that differential volume in the case of a cartesian coordinate system was bounded. In this 

cartesian coordinate system, the differential volume that I write the differential equation 

for was bounded by surfaces of constant coordinate. The top and bottom surfaces are 

constant z; the left and right surfaces are constant y; and, the front and back surfaces are 

at constant values of x. So, when we write shell balances in a particular coordinate 

system, we choose a differential volume in which the bounding surfaces have constant 

values of one coordinate. In this particular case (Refer Slide Time: 09:18), there are six 

surfaces, because we have a three-dimensional space; the front and back has surfaces of 

constant x; the right and left constant y; and, the bottom and top constant z. 

(Refer Slide Time: 05:10) 

 

In a similar manner, when we choose a surface in a curvilinear coordinate system, when 

we choose a differential volume in a curvilinear coordinate system, that differential 

volume also has to have surfaces of constant coordinate. We saw how to do that in the 

last lecture. Let us say we have a cylindrical coordinate system. Now, I am aligning the 



axis along the vertical z axis (Refer Slide Time: 10:06). The cartesian coordinate system 

was this. So, I am aligning the surface at constant axis. Along the xy-plane, the distance 

of a point from the z-coordinate is given by r. So, if I take the projection of this on to the 

xy-plane, this distance from the z-coordinate is r. And, conventionally, you define theta 

as the angle that the r vector makes with respect to the x-axis. So, that is how it is 

conventionally defined. 

Now, if the problem is axis symmetric – what axis symmetric means that as you go 

around the axis, there is no change in the temperature concentration or momentum fields. 

So, if it is axis symmetric, there is no dependence on theta; in which case, the fields will 

depend only upon r and z. The flow in a pipe for example, is axis symmetric at a given 

distance from the axis. If I go around the axis, there is no change in the velocity. So, it is 

an axis symmetric field. So, in that case, I choose the coordinates to be at constant values 

of r and constant values of z. The differential volume is bounded by surfaces at constant 

values of r and constant values of z. So, how do we write that down? 

Surface at constant value of r is a cylinder around (Refer Slide Time: 12:19). So, that is 

one surface at constant value of r; a cylinder around the axis. And, the volume has to be 

bound by two surfaces in each coordinate. So, I need to define a second surface. This 

first surface is at radius r and the second surface is at radius r plus delta r. Therefore, the 

bounding surfaces are two cylindrical surfaces of constant r at r and r plus delta r. And, 

the region in between these two is the volume that we will write the balance equation for.  

Similarly, you will have a surface in the z-coordinate at z and z plus delta z. Planes 

perpendicular to z are flat. So, in this case, since the z coordinate is aligned, planes 

perpendicular to z are flat. So, we will choose the differential volume to be bound by 

surfaces of constant coordinate. In this case, two surfaces of constant r at r and r plus 

delta r; two surfaces of constant z at z plus delta z and z. If there were variation in the 

theta coordinate as well we would have two surfaces at theta and theta plus delta theta. 

We will see that a little later when we derive differential equations in all three 

dimensions. For now, we will consider only axis symmetric flows. So, this is going to be 

the differential volume that we consider. 



(Refer Slide Time: 14:39) 

 

And, you write a balance equation for this differential volume. And, what you get is an 

equation of the type d c by d T is equal to minus 1 over r d by d r r times the flux j r plus 

a source term. And, if you write the flux as minus D times minus d c by d r, then you get 

this d c by d T is equal to d times 1 over r d by d r of r d c d r. And, as you can see, this 

term is more complicated than the simple second derivative that we had in the case of a 

cartesian coordinate system; just the price that you pay for going from a cartesian to a 

cylindrical coordinate system. This more complicated form of this term is because the 

surface area is changing as the r-coordinate changes. The cylindrical surface area is equal 

to 2 pi r times delta z; that surface area is changing as r changes. So, it is going to be a 

contribution to accumulation within that volume or transport across a surface due to the 

change in the flux as well as the change in the surface area. And, this more complicated 

form – 1 over r d by d r of r d c by d r takes into account the fact that in a cylindrical 

coordinate system, the surface area is changing as the position changes. So, that is the 

reason for a more complicated form in a cylindrical coordinate system. 



(Refer Slide Time: 16:27) 

 

I had also told you that you can also write a similar equation for the temperature field 

and the velocity field. The velocity field is little more complicated than this. I would not 

go into the details right now, but you should also have another term that goes as nu u 

theta by r square. The reason for this additional term we will see a little later; we would 

not go into the details right now. It is a little more complicated to derive. And, in order to 

derive it, you need to do a little more complicated vector analysis. So, the differential 

form for the equation is slightly more complicated in the case of a cylindrical coordinate 

system. A consequence of this – the heat conduction across the wall of a cylinder is not 

the same as the heat conduction at a flat surface. We saw that by looking at steady 

diffusion in the last lecture. 
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In the case of steady diffusion, the equation of motion just reduces to alpha times 1 over 

r d by d r of r d T by d r is equal to 0. We had looked at a problem, where the 

temperature was T i on the inner surface and T o on the outer surface; the radii over R i 

and R o on the inner and the outer surfaces. And, we wanted to find out what is the 

temperature profile throughout the annular region between the inner and the outer 

surfaces. And also, to calculate what is the heat flux due to this temperature difference. 

As I reminded you in the last lecture, this is of consequence especially in heat transfer 

problems. 

Most heat transfer problems involve some kind of transport across the tube of a heat 

exchanger. And, in that case, it is essential to know given a temperature drop across the 

wall, what is going to be the heat flux across. So, we have done the scaling. The scale 

trade is r by R i and T star is equal to T minus T i by T o minus T i. I cannot just scale r 

by the difference R o minus R i, because r star going to 0 gives me a surface of 0 area. 

So, one has to be careful there. Necessarily, the two axis have to be at r is equal to 1 and 

r is equal to something else. In this (Refer Slide Time: 18:47) case, I have scaled it by the 

inner radius, and therefore, the other surface is at r star is equal to R o by R i. 



(Refer Slide Time: 19:00) 

 

We solved this equation and we got a logarithmic temperature profile. It is not a linear 

temperature profile like in the case of flow past of transfer in cartesian coordinate 

systems. Because the surface area is changing with position, the heat that is being 

transported... In this particular case, there is no sources, sink of heat; the system is at 

steady state. So, the heat that is being transported has to be a constant; that means that 

the heat flux has to go as 1 over the area. The area is changing. So, the flux will change. 

And therefore, the temperature will change. 

In a cartesian coordinate system, at every z, the cross-sectional area was the same. And 

therefore, if the heat transported is unchanged, the heat flux is also unchanged. Here even 

when the heat transported is unchanged because the area is changing, the flux will 

change. So, I got the temperature field quite simply as (Refer Slide Time: 20:09) log r by 

R i by log of R o minus R i. And, from that, we got the expression for the heat flux. 



(Refer Slide Time: 20:18) 

 

And, the heat flux had an expression of the form k into T o minus T i by R i r star times 

log of R o by R i. 

(Refer Slide Time: 20:57) 

 

Now, conventionally, what is done in unit operations is to express the total heat 

transported as Q is equal to minus k into T naught minus T i by R o minus R i into an 

area A L. In a cartesian coordinate system, this would be exactly the same area 

everywhere, because the planes have constant area. In a cylindrical coordinate system, 

the area changes. This is obtained just by analogy with the heat transfer in one 



dimension. You would expect that the heat flux is going to be equal to k into the 

temperature difference by the distance. In this particular case, the distance is the distance 

between the inner and the outer surfaces. So, the heat flux that I get will be equal to 

minus k into a temperature difference divided by a distance. 

The total heat is going to be equal to that heat flux times an area. This area (Refer Slide 

Time: 21:51) A L can be determined by comparing it with this equation. Just by 

comparing the two, you can see that A L has to be equal to 2 pi L into R o minus R i by 

log of R o by R i. That is the area. That is the effective area that is required to get the 

correct heat flux in this expression, where I have written it as the temperature difference 

times a conductivity divided by the distance between the inner and the outer walls. So, 

this is equal to 2 pi L times r L; where, r L is the logarithmic mean temperature; where, r 

L is defined as R o minus R i by log of R o by R i, the logarithmic mean radius. So, for 

heat conduction through a cylindrical annulus, we have to use the logarithmic mean 

radius to calculate the effective area if you use an equation of this (Refer Slide Time: 

23:33) kind in order to calculate the heat flux. And, that is because the surface area is 

changing as the radius changes. And, one has to keep that in mind whenever 1 works 

with curvilinear coordinate system. 

Now, this exact same expression between the heat flux and the temperature difference 

will also work for the relationship between the mass flux and the concentration 

difference. The same expression for the concentration profile here, the scaled 

concentration (Refer Slide Time: 24:16) field will also work when we write a relation 

between the concentration and radius for a mass diffusion problem. And, instead of the 

heat flux, we will just get an expression for the mass flux (Refer Slide Time: 24:32). All 

we need to do is substitute. Instead of the thermal conductivity, we substitute the mass 

diffusivity; instead of temperatures, we substitute concentrations. That is the only 

difference. A similar expression will not work for the velocity fields. 
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As I said in the last lecture, one can consider the velocity perpendicular to the surface to 

be in two directions. As I said, we can consider the velocity perpendicular to the surface 

to be in two directions. One is along the axis for a pipe flow. That is, in this particular 

case, the velocity is along the z direction for a pipe flow. In the case of rotating 

cylinders, the velocity is along the theta direction. So, one can write balance equations 

for both of these. We will come back and see why the equation for the pipe flow is 

actually identical to the equations that we get for the mass and heat diffusion problems. 

The equation for the pipe flow is exactly the same. Equation for u theta is a little bit 

different. And, we will come back later and see why when we deal with velocity (( )). 



(Refer Slide Time: 26:17) 

 

In the last lecture, we solved the simplest problem and that is for the steady diffusion in 

cylindrical coordinates. Now, we will go a step further and look at unsteady diffusion. 

When we looked at the unsteady problem in cartesian coordinates with the flat surfaces, 

the first thing we looked at was unsteady diffusion in one dimension using a similarity 

solution. In that particular case, we had a surface at z is equal to 0 bounding effectively 

an infinite fluid. We considered a situation where the penetration depth of the 

concentration or temperature disturbance at the bottom surface is small compared to the 

thickness of the channel. In that case, the condition at the other surface was not really 

affecting the temperature field near this bottom heated surface. So, we had a situation 

like this z is equal to 0, z is equal to H. 

And, in the very initial stages, we considered our... Initially, at time t is equal to 0, here T 

was equal to T naught; and, for at t is equal to 0, we consider that T is equal to T 1 at z is 

equal to 0; and, T is equal to T naught everywhere else. So, initially, the temperature 

everywhere was just 0. At time t is equal to 0, a temperature disturbance T 1 was 

imposed at the bottom surface. And, this propagated through the fluid due to diffusion. 

So, in the very initial stages, the temperature profile looks something like this (Refer 

Slide Time: 28:17). And, as time went on, it looks something like this. When the final 

time, we get a linear profile. In the final steady state, the profile turns out to be linear. 



For the similarity solution, we concentrated on the very early stages, where the 

temperature disturbance had not propagated very far into the channel. So, if this 

penetration (Refer Slide Time: 28:43) depth, a small compared to the height of the 

channel, I can effectively impose a boundary condition of the kind T is equal to T naught 

as z goes to infinity and T is equal to T 1 at z is equal to 0. So, effectively, we assumed 

that the boundary condition at z is equal to H was equivalent to putting a boundary 

condition at z is equal to infinity, because the penetration depth is much smaller than the 

height of the channel. And, in that case, we had no length time scales in the problem. 

And therefore, we were able to define a similarity variable psi is equal to z by square 

root of alpha t. And, we wrote down the conduction equation in terms of this parameter 

psi. 

(Refer Slide Time: 30:14) 

 

Now, it is difficult to have a cylindrical analog for this particular problem. The reason is 

as follows. Let us say I had a cylinder in an infinite fluid. I mean the immediate analog 

that one would think of is to look at a cylinder in an infinite fluid. So, if I had a cylinder 

in an infinite fluid and the fluid is at T is equal to T naught far away; and, it is equal to T 

is equal to T 1 at the surface. Just because the fluid is infinite, I cannot just go and apply 

similarity solution. The reason is because in this problem, there is still a length scale 

present and that is the radius of the cylinder. Because there is a length scale present, 

which is the radius of the cylinder, this radius r also enters into the problem. And 



therefore, you cannot just use a similarity variable, which assumes that there are no 

length scales in the problem. 

(Refer Slide Time: 31:35) 

 

Finite cylinder in an infinite fluid cannot be analysed using a similarity solution. The 

analog of diffusion into an infinite fluid in cylindrical coordinates is actually diffusion 

from a line source – a wire of infinitesimal thickness, which is heated in an infinite fluid. 

I have temperature T is equal to T naught. As r goes to infinity far away from the wire T 

is equal to T naught, at the surface of the wire, there is some heating going on. And then, 

we can find out what is the temperature profile due to this. So, I had used the cylindrical 

coordinate system, where this was the z-axis and the x and y are in the plane; and, the 

distance r is the distance from the z-axis to some position on the surface. 

The analog of this problem is to save that initially at time t is equal to 0 (Refer Slide 

Time: 32:37), T is equal T naught everywhere. So, this is the initial condition for the 

unsteady problem. The boundary condition T is equal to T naught as r goes to infinity, 

the cylinder, the wire in this case is located at r is equal to 0. I said it is an infinitesimally 

a thin wire. And, I required the wire to be infinitesimally thin because if it is a finite 

wire, I will have a length scale in the problem. And then, a similarity solution cannot be 

used. So, I have to consider a wire that is of infinitesimal thickness. 

But, how about the temperature at the surface of the wire? Turns out I cannot prescribe a 

temperature at the surface of the wire. The reason is as follows. At the surface of the wire 



itself, the heat flux coming out is the thermal conductivity times the derivative of the 

temperature. q r (Refer Slide Time: 33:50) is equal to minus k d T by d r. So, that is the 

heat flux that is coming out. So, if I had some temperature profile with the gradient at the 

wire itself, this would give me the heat flux that is coming out. However, the total heat 

coming out is the heat flux times the surface area. For the cylinder, the wire – since it is 

of infinitesimal thickness, the radius is 0 at the surface of the wire. And therefore, the 

surface area is also 0. 

Having a finite temperature would basically tell me that there is no net heat coming out 

of this surface. So, this Q (Refer Slide Time: 34:40) will be equal to 2 pi r L into q r, 

which should go to 0 if the temperature were finite, because the radius r is going to 0 in 

this cylindrical coordinates system. So, basically, I cannot prescribe a temperature 

condition. What I have to say is that what is the total heat coming out of the surface. The 

total heat coming out of the surface... At r going to (Refer Slide Time: 35:35) 0, q r into 2 

pi r L is equal to the total heat coming out per unit time from the surface. That is because 

the wire is of infinitesimal thickness. This problem actually has a lot of physical 

applications especially in heating applications. Very often, in order to convert electrical 

energy into heat, electrical resistance wires are used. And, these wires are very thin. I 

said that the wire has to be of infinitesimal thickness, because only then, can I apply a 

similarity solution, only if the thickness of the wire is small compared to the size of the 

system. So long as the thickness of the wire is small compared to the size of the system, 

the macro scale, I can apply this analysis. 



(Refer Slide Time: 37:06) 

 

Consider the wire to be of infinitesimally thin wire at r is equal to 0. In that case, I cannot 

specify the heat flux itself or the temperature itself at the surface; I had to specify the 

total heat coming out of the surface. We will see that when we solve this problem. So, 

for this particular problem, the energy conservation equation is given by d T by d T is 

equal to alpha times 1 by r d by d r of r d T by d r. We just derived the conservation 

equation. With boundary conditions... T is equal to T naught everywhere at time T is 

equal to 0 – that is the initial condition. Boundary condition is T is equal to T naught as r 

goes to infinity. And, from the wire itself, I know what is the heat flux; that is, the heat 

energy coming out per unit time. 



(Refer Slide Time: 37:46) 

 

Scaling – I can define T star is equal to T minus T naught by t naught, which means that 

T star is equal to 0 as you go far away. So, the differential equation in terms of this scale 

coordinate becomes d T star by d t is equal to alpha 1 by r d by d r of r d T star by d r 

with boundary conditions T star is equal to 0 as r goes to infinity for all time. So, that is 

one boundary condition. The other boundary condition was that q r times 2 pi r L – the 

heat flux times the area has to be equal to Q as r goes to 0. And, the initial condition T 

star is equal to 0 at t is equal to 0 for r greater than 0. That is, everywhere in the fluid, 

except at the wire itself, the temperature is 0, because we switched on the heating at time 

t is equal to 0; that means, the temperature is equal to 0 everywhere, except at the surface 

of the wire. So, these are the initial and boundary conditions. 
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I can expand out this equation – the energy conservation equation as d T by d t is equal 

to alpha into d square T by d r square plus 1 by r into d T by d r. Note that when we did 

the solution in a cartesian coordinate system, this term was not present. This term is 

present primarily, because we are dealing with a curvilinear coordinate system; surface 

area is changing as r changes. So, the argument for similarity transform – there are no 

length or time scales in the problem. Therefore, I can get only one dimensionless group. 

(Refer Slide Time: 40:46) 

 



There are only three dimensional variables left: time, r and alpha. Out of these, I can get 

only one dimensionless group. And, that is the similarity variable – psi is equal to r by 

square root of alpha times t. That is the dimensionless group. I need to express this 

equation in terms of that dimensionless group. Let me just put the non-

dimensionalization here. Therefore, partial T by partial t is equal to d psi by d t into 

partial T by partial psi, which is minus r by square root of alpha t power 3 by 2 into d T 

by d psi. Taking derivatives; and, that should be the factor of 2 here; is equal to minus 

psi by 2 t. So, this is the time derivative. 

(Refer Slide Time: 42:00) 

 

Then, d T by d r will be equal to d psi by d r times d T by d psi. It will be equal to 1 over 

square root of alpha t d T by d psi. And, I can take the second derivative d square T by d 

r square is equal to 1 by alpha t d square T by d psi square. In addition, I have also a term 

that is proportional to 1 over r d T by d r, which will be equal to 1 over r into 1 by root of 

alpha t d T by d psi. Since r is equal to square root of alpha t times psi, I can write this as 

1 by alpha t times 1 by psi d T by d psi. Put all of these together into the differential 

equation. So, I will have minus psi by 2 T into d T by d psi; this is the equivalent of the 

time derivative here – this is (Refer Slide Time: 43L51) the time derivative on the left-

hand side. This thing is equal to (Refer Slide Time: 44:06) alpha by alpha t times d 

square T by T psi square plus 1 over psi into d T by d psi. 



And, note this (Refer Slide Time: 44:22) additional term, which was not present when 

we did the equation in the cartesian coordinate system. And, as you can see, this alpha 

cancels of and T cancels of on both sides. So, I am left with an equation, which is only in 

terms of psi, which is the requirement if the similarity procedure has to work. If the 

similarity solution has to work, once I have changed the equation from r and T to the psi 

coordinate, I should end up with an equation, which does not depend upon individually 

on r, T and alpha, but depends only upon psi. 

(Refer Slide Time: 45:14) 

 

This equation – I can rewrite it as d square T by d psi square plus 1 over psi plus psi by 2 

d T by d psi is equal to 0. This psi by 2 – this term here came from the time derivative; 

whereas, these other two terms – coming from the diffusion terms. These other two terms 

basically come out of the diffusion term. Boundary conditions – T star goes to 0 as r goes 

to infinity or psi goes to infinity, because psi is equal to r by square root of alpha t. So, T 

has to go to 0 as psi goes to infinity. The other boundary condition is that 2 pi r L q r is 

equal to Q as r goes to 0. We will see how to enforce this a little later. And, the initial 

condition T star is equal to 0 at t is equal to 0 at finite r. Note that psi was equal to r by 

square root of alpha t. So, T is equal to 0 is equivalent to psi going to infinity. 

These (Refer Slide Time: 47:10) two: one boundary condition and one initial condition 

turn out to be the same as in the case of cartesian coordinates. So, in common with 

cartesian coordinates, in this case as well, one initial and one boundary condition turnout 



to be the same. So, we can solve this subject to these two constraints. Integrating this 

equation (Refer Slide Time: 47:37) once, I will get d T by d psi is equal to some constant 

by psi e power minus psi square by 4; that is, d T by d psi. Integrating this is equation 

one time. 

(Refer Slide Time: 48:05) 

 

I integrate once more to get T is equal to integral of c by psi prime e power minus psi 

prime square by 4 d psi prime. This integral, we know that the temperature has to go to 0 

as psi goes to infinity. Therefore, I can integrate from infinity to r by root alpha t. The 

upper limit of integration has to be the coordinate; in this case, psi. The lower limit of 

integration can be any value. If I had taken some value as the temperature is not 0; that 

lower limit of integration, I would have to add another constant here. But, since I have 

taken the lower limit of integration to be the value at which psi goes to 0, you can see 

that this integral, if psi is equal to infinity, temperature is equal to 0. So, this satisfies that 

condition. There is only one constant left, because I have adjusted one constant using the 

boundary condition. So, there is only one constant left. That constant has to be 

determined from the total heat output condition. So, let us look at that. 
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The heat flux q r is equal to minus k d T by d r; q r is equal to the heat flux at the surface. 

So, this is equal to minus k times d psi by d r into d T by d psi. And, I have an expression 

for d T by d psi over here; d T by d psi is given by (Refer Slide Time: 50:16) c by psi e 

power minus psi square by 4. So, this is equal to d psi by d r into... d psi by d r is just 

(Refer Slide Time: 50:30) 1 over square root of alpha t into d T by d psi, which is c by 

psi e power minus psi square by 4. Note that psi times square root of alpha t is just the 

radius r, because psi is equal to r by square root of alpha t. So, this becomes minus k by r 

into c e power minus psi square by 4. 

Now, the total heat coming out (Refer Slide Time: 51:07), Q is equal to 2 pi r L q r, 

which is equal to minus k c into 2 pi L into e power minus psi square by 4. Now, the 

boundary conditions set that this Q has going to be equal to 2 pi r L q r for r going to 0 or 

psi going to 0. So, when psi goes to 0, this factor is (Refer Slide Time: 51:45) just equal 

to 1; when r goes to 0 or psi is equal to 0, this factor is just 1. So, this basically enables 

me to find out what the constant is. Therefore, from this, this constant of integration has 

got to be equal to minus Q by 2 pi k L. And therefore, the temperature field (Refer Slide 

Time: 52:10) has got to be equal to minus Q by 2 pi k L integral from infinity to r by root 

alpha t d psi prime 1 over psi prime e power minus psi prime square by 4. 

Note that the heat flux actually diverges. It goes as 1 over r as r goes to 0 as we had 

expected. Because the surface area is going to 0, the heat flux actually goes as 1 over r if 



the heat coming out of this surface has to be finite (Refer Slide Time: 52:45). Even 

though the heat flux is diverging, the total heat coming out per unit time from this wire is 

a constant. And, that enabled us to find out the boundary condition. 

And, you can see here (Refer Slide Time: 53:03) that in this expression for the 

temperature as well, d T by d psi is diverging; the temperature also diverges. 

Temperature has integral from infinity to psi of c by psi prime e power minus psi prime 

square by 4. So, in the limit as psi goes to 0, e power minus psi prime square by 4 goes to 

1, but I have an integral of 1 over psi prime d psi prime. That is logarithmic. The integral 

of 1 over psi d psi is log of psi. So, the temperature is going to infinity logarithmically as 

the radius goes to 0. The heat flux goes as 1 over r. But, when I multiply the heat flux by 

the area in the limit of as r goes to 0, that has a finite value. And, that value essentially 

enables us to find out what is that temperature in this problem. 

This is basically (Refer Slide Time: 54:00) the temperature field around a line source. 

The wire can be considered as a line source. It is of infinitesimal thickness; radius of the 

wire is going to 0. Even though the radius is going to 0, the heat coming out per unit time 

is fixed. If the heat coming out is fixed, the radius goes to 0; that means that if the radius 

goes to 0, the surface area for heat transfer is going to 0. Therefore, the heat flux has to 

go to infinity at the line source. The temperature also goes to infinity at the line source. 

But, we can still get the solution for the temperature field everywhere else using this 

similarity solution. This of course, is an approximation. 

In a real system, the wire will have some thickness; it will not be of 0 thickness. Even 

though it has some thickness, so long as the thickness of the wire is small compared to 

the other length scales in the problem... so long as I can consider for example, if you had 

a wire in a large tank, the wire does has some thickness, but the tank size is much larger 

still. So, I can consider the wire to be of point source. And, we will see that this concept 

of a line source is a line source in three dimensions. If I just looked at it in the plane 

perpendicular to the wire in two dimensions in the plane perpendicular to the wire, this 

would be like a point source in two dimensions. And, these point sources in two 

dimensions as well as a point source in three dimensions – we will see that at a little later 

in the context of spherical coordinate system. These point sources are important later on 

when we look at solutions of the Laplace equation for the transport problem. So, we will 

encounter this once again. 



So far, we have looked at similarity solution for the flow from a wire of an infinitesimal 

thickness. Next lecture, we will look at transport within a domain of finite thickness – 

heat conduction in a cylinder. We will use these methods of separation of variables to 

analyse that problem. So, just as we did in the case of cartesian coordinate systems, we 

started off with similarity solution, then separation of variables, follow the same thing 

here. Next class, we go to separation of variables. So, we will see you in the next lecture. 

Thanks. 

 


