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Welcome to lecture number sixteen – the fundamentals of transport processes. So far, we 

have been discussing transport in one dimension in Cartesian coordinates, where we 

solved problems using various methods. We started off with just steady diffusion in one 

dimension; in which case the velocity profile or the temperature profile or the 

concentration profile is just a linear function of position. That is because you have 

transport only in one dimension with no generation or consumption of heat, mass of 

momentum within the flow. That was at steady state, where there is no dependency on 

time. 

One could also consider unsteady situations. In this case, we encountered partial 

differential equations – equations which depend both upon position as well as time. And, 

we looked at a couple of ways of solving those equations. The first one was by similarity 

transform. Similarity transform is particularly appropriate for transport it to infinite 

media, because in that case, there are no length or time scales in the problem. And 

therefore, one can use a similarity transform in order to reduce the equation from a 

partial differential equation in position and time to an ordinary differential equation. 

The second method that we looked at was separation of variables. And, I showed you 

how one can write a function of position in time into the product of two functions: one of 

which is only dependent on position; the other is only dependent on time. The variables 

are separated and you get both of two ordinary differential equations: one for the 

function of position; the other for the function of time. These have multiple solutions, 

discrete solutions with discrete eigenvalues and bases functions. And, I showed you how 

to put them all together and use orthogonality relations to find out the solutions. We 

looked at oscillatory flows, where we can use complex variables to simplify the 

equations and then solve them. And finally, we were looking at situations, where there 

are sources or sinks within the floor. And, in that case, one has size of body forces, a 



source of heat as in the case of viscous heating or a source of momentum due to body 

forces or a source of mass due to reactions. 

Now, the next step is to go to balances and cylindrical coordinates. Very often one 

encounters geometries, which are cylindrical, for example, a pipe, a tubular reactor, a 

stirred-tank vessel. These are all cylindrical geometries. One could analyze them in a 

cartesian coordinate system. However, in a cartesian coordinate system, it is very 

difficult to right down the equation for the surface itself. So, for example, a circle in 2 

dimensions will have an equation of the form x minus x c whole square plus y minus y c 

the whole square is equal to r square; where, x c and y c are the centers of the circle; and, 

r is the radius. So, the surface has a complicated definition – the surface of a cylinder in 

cartesian coordinate has a complicated definition; very different from the definition that 

we had for plane surfaces. 

In plane surfaces in all cases, our definition was just at z is equal to 0 and z is equal to h. 

So, if we use a cylindrical coordinate system, the definition of surfaces gets considerably 

simplified in a cylindrical coordinate system. However, the equations are little more 

complicated. They have to take into account the fact that we are actually working with 

cylindrical surfaces and not flat surfaces. So, the next step is to look at how the equations 

are modified when we have cylindrical surfaces. But, before that, I would just like to 

briefly give a warning that much of what we did has to be modified in the case of mass 

diffusion due to the center of mass velocity of the entire system. 



(Refer Slide Time: 04:33) 

 

So, a simple example to illustrate this multicomponent diffusion – let us say that we have 

a glass rod, which is filled with water at the bottom. Then, there is dry air going across 

the top. Because of the dryness of the air, there is going to be a flux of water coming 

from the top water to the top. So, let us take this is at z is equal to 0; this is at z is equal 

to H. Now, this flux of water as it comes up, it is going to get entrained by the air and go 

away. How is this flux related to the gradient in the concentration of water or the 

humidity of water? 

Simplistically, one would write the flux of water as (Refer Slide Time: 05:43) minus D 

times dc of water by dz is equal to minus D times the total concentration dx – the mole 

fraction of water multiplied by dz. However, that is not all. There is also a motion due to 

the center of mass. There is a mean flow. And, the mean flow total is equal to j of water 

plus j of air. So, there is a mean velocity because both water and air together are going 

upwards. So, this mean flow is also entertaining some water with it. There is some 

motion with center of mass. And, because of that, we are going to have an additional 

term, which is equal to the fraction of water times j water plus j air. So, this equal to the 

fraction of water times j water plus j air. So, this now is going to be the equation. 

This term is the diffusion (Refer Slide Time: 07:09) relative to the center of mass; and, 

this term is the entrainment of water due to the fact that water and air are moving. 

Strictly speaking, in this problem, water and air are moving in opposite directions. As the 



water gets evaporated, the surface of the water moves downwards and because of that air 

has to come downwards in order to displace the water that has been evaporated. You can 

imagine that if it was right at the top, as the surface comes downwards, air has to come in 

to fill the gap, because the water is going out. So, strictly speaking, there is actually a 

flux of air, which is actually opposite in direction to the flux of water. 

However, this flux is actually small. The reason is as follows: when water evaporates, the 

volume of water vapour as I told you is about a 1000 times larger than the volume of the 

water; liquids have volumes that are about 1000 times less than the volume of gases; the 

density of liquid is about 1000 times more than the density of gases. So, therefore, the 

volume of water displaced is actually small compared to the volume of the vapour that is 

coming out. And, the volume of air going downwards is equal to the volume of the water 

that is displaced. And, because of that, the volume of air coming in can actually be 

considered to be small compared to the volume of water going downwards. However, 

there is still a mean flux upwards. There is still a flux of water that is going upwards. 

And, that center of mass motion of the water has also to be accounted for when we 

calculate the flux. So, in this equation, if I neglect the flux due to air, then I get an 

equation of the form (Refer Slide Time: 09:16) 1 minus x w times j w is equal to minus 

D c dx w by dz. 

(Refer Slide Time: 09:29) 

 



And therefore, the flux j w is equal to minus D c by 1 minus x w dx w by dz; where, x w 

is the mole fraction of the water. So, note that this now has a different form. It is not just 

the gradient; it has 1 minus x w in the denominator. If the mole fraction is small, then 

this will of course be small; whereas, if the mole fraction is significant, this has to be 

included in the balance equation. The fact that there is a mean motion has to be included 

in the balance equation as well. And, if I write a balance between two locations: z plus 

delta z and z, the balance will just tell me that at steady state, j w at z plus delta z minus j 

w at z will be equal to 0 at steady state. The flux going from one surface to the other has 

to be equal to 0; otherwise, there will be an accumulation within that volume if the fluxes 

on both surfaces are not balanced. Written in differential form, this is dj w by dz is equal 

to 0 or d by dz of 1 by 1 minus x w dx w by dz is equal to 0. 

(Refer Slide Time: 11:19) 

 

One can solve this equation quite easily to get minus log of 1 minus x w is equal to A 1 z 

plus A 2; and then, one has the boundary conditions. What are the boundary conditions 

in this case? At the surface (Refer Slide Time: 11:41) itself, the concentration is equal to 

the saturation concentration of water, so that x w is equal to x ws; the saturation 

concentration of water vapour that is in equilibrium with the air at the temperature. As I 

said z is equal to H, I have that c w is equal to 0 or x w is equal to 0, because it is dry air. 

It is the dry air that is taking the moisture along with it. Therefore, the mole fraction or 

the mass fraction of water in the air is equal to 0 at the top surface. So, I can solve this 

equation subject to these constraints. 



Finally, the solution that I will get is that (Refer Slide Time: 12:35) 1 minus x w by 1 

minus x ws is equal to 1 by 1 minus x ws to the power z by H . So, this is a more 

complicated dependence. And, that more complicated dependence comes about, because 

in multicomponent diffusion problems, one has to take into account the motion of the 

center of mass while defining the flux itself. The motion of the center of mass has to be 

taken into account while defining the flux; and, that accounts for this additional term in 

the conservation equation. Therefore, when the volume fraction, the mass fraction, the 

mole fraction of the two components are roughly the same; one has to take into account 

the motion of the center of the mass. 

Everything that we did for the concentration diffusion assumes that the fraction of the 

diffusing component is actually small. In that case, one can linearize; x w is small in this 

(Refer Slide Time: 13:51) case. One can neglect that and just worry about gradient and 

concentration alone, and only take into account this part of equation. So, when you have 

multicomponent diffusion, one has to be careful about how to define fluxes. So, that is 

one thing to be kept in mind while dealing with mass transfer problems. We will not 

discuss this in further detail; I will only assume that the concentration diffusion equation 

is simply defined as I have done it earlier; the flux is equal to minus D dc by dz; and, that 

is simplifies the problem. 

(Refer Slide Time: 14:33) 

 



The next topic – transport in cylindrical coordinates – let me draw for you a cylinder 

here. You can consider this as a section of a pipe or reactor or whatever. The coordinate 

system that we have been using so far – x, y, z coordinate. Within this coordinate system, 

the definition of the surface of the cylinder… Note that I placed the coordinate system at 

the center point of the cylinder, the access of symmetry. Within this coordinate system, 

the surface of the cylinder, if the radius is r, surface of the cylinder is given by x square 

plus y square is equal to R square. This is inconvenient to apply boundary conditions at a 

surface like this. Therefore, this cylinder has an axis of symmetry. In this particular case, 

it is the z-axis. As you go around the z-axis, nothing changes in the cylinder. And 

therefore, it would be more convenient to define a cylindrical coordinate system and that 

is defined as follows. So, this was the original cartesian coordinate system. 

In a cylindrical coordinate system, any point is defined by three coordinates. If I take this 

(Refer Slide Time: 16:52) as the position vector of this point, I can take the projection of 

this position vector on to the xy plane. So, this distance is r. The distance of the 

projection of this vector on to the xy plane is r; the height is z. And, this angle – the 

angle of the projection from the x-axis is equal to theta. So, these are three coordinates in 

the cylindrical coordinate system. The distance – whether I take the distance of the 

projection or the distance of the point itself from the z axis, both of these are equal to r. 

So, any point in space in a cylindrical coordinate system is defined by three coordinates. 

One is the z coordinate – the z is the height from the xy plane. So, this z coordinate is the 

height of the point from the xy plane. The r coordinate is the perpendicular distance from 

the z-axis. From the z axis, if I draw a perpendicular to cut this point, then that distance 

is equal to r. And, theta is the distance of the projection of this position vector from the x 

direction. It could be taken from any direction. But, in general, as a convention, it is 

defined from the x direction. Therefore, in a cylindrical coordinate system, the 

coordinates are r, theta and z. And, these coordinates can be related to the equivalent 

coordinates in a cartesian coordinate system. 

Clearly, the distance from the z-axis is going to be equal to (Refer Slide Time: 18:46) the 

square root of x square plus y square. The square root of x square and y square is going 

to be the distance from the z-axis. The cylindrical coordinate system, z is just equal to z. 

And, how is theta related? Tan theta as you can clearly see is equal to y by x. So, this is 



the relation between the coordinates in the cylindrical coordinate system and in the 

cartesian coordinate system. 

What is the advantage of using this cylindrical coordinate system? The big advantage is 

that if the z-axis is along the axis of the cylinder, then this (Refer Slide Time: 19:32) 

surface – the entire surface is one along which r is equal to a constant; r is equal to R 

along this entire surface, because it is a cylinder. And, all positions on the surface of that 

cylinder are equidistance from the axis of the cylinder. And therefore, rather than having 

this complicated boundary condition, I get a simple boundary condition of the form r is 

equal to capital R. So, it becomes easier to define the boundaries if the system has 

cylindrical symmetry by using a cylindrical coordinate system. 

(Refer Slide Time: 20:34) 

 

Now, how do I do balances in the cylindrical coordinate system? Clearly, the shell 

balance that I did in the cartesian coordinate system is going to be different here. In the 

case of the cartesian coordinate system, the three coordinate planes were perpendicular to 

each other. So, I managed to take a cubic volume for doing the balances. Clearly, when I 

have a cylindrical geometry, I cannot use that cubic volume. A cubic volume cannot be 

used when I have a cylindrical geometry, because it is not parallel to the coordinates in 

the cylindrical geometry. I have to use a volume that is parallel to the coordinates in the 

cylindrical geometry in order to do the energy balance or the mass balance. 



For definite (( )) let us take the mass balance. I will assume for the present; we will do 

away with that assumption later. But, for the present, I will assume that there is no 

variation in the theta direction. In other words, the temperature, velocity, concentration 

fields do not vary as I go around the z-axis, so long as the distance from z-axis remains 

the same. So long as r remains the same and the z-coordinate remains the same, nothing 

changes as I go around the z-axis. So, that is an assumption that I will make for now. We 

will see a little later how the results change if we relax that assumption. 

Since nothing is changing as I go around the z-axis, at a given distance r, I could use a 

cylindrical shell. This is a cylindrical shell of height delta z. And, it is between radius r 

and r plus delta r. Let me draw it out in detail for you. If I look at this from the top of the 

cylindrical shell, it will look like two circles (Refer Slide Time: 23:20). So, this is a shell 

contained between the radius r and the radius r plus delta r. It is a cylindrical shell 

between the radius r and the radius r plus delta r of height H. So, this is the differential 

volume that I will consider for doing the balance. 

What is the balance equation (Refer Slide Time: 23:52)? The rate of accumulation of 

mass – the accumulation of mass within the cylindrical shell in time delta t is going to be 

equal to input of mass minus output plus any sources. So, that is the balance equation for 

the mass conservation. The volume that we considered for this is this volume (Refer 

Slide Time: 24:40) – the volume between the inner and the outer cylinder – between r 

and r plus delta r. 

What is the accumulation of mass within this (Refer Slide Time: 24:55) shell in time 

delta t? This is going to be equal to the concentration at r, z, t plus delta t minus the 

concentration at r, z, t times the volume. The volume in this case is equal to 2 pi r delta r. 

The area of this (Refer Slide Time: 25:50) cross section is going to be equal to the 

circumference times the thickness. The thickness is delta r; the circumference is 2 pi r. 

Therefore, this area is 2 pi r delta r times the height, which is delta z. So, this is the 

accumulation within the time delta t. 

Now, how about the input and the output of mass? In this cylindrical volume, there is an 

input of mass (Refer Slide Time: 26:20) at the surface at r due to the flux j r at r. There is 

also an output due to flux j r at r plus delta r. So, there is an input at r and an output at r 

plus delta r. And, both of these have to be incorporated in the mass balance equation. 



(Refer Slide Time: 26:50) 

 

What is the input of mass at r? It is equal to j r times the surface area. The surface area 

for the input of mass is this (Refer Slide Time: 27:09) cylindrical surface area. It is the 

cylindrical surface area; it is the surface area for the input of mass. Therefore, this 

cylindrical surface area is 2 pi r times delta z. This at location r. This has to be multiplied 

by (Refer Slide Time: 27:38) delta t, because the flux is mass per unit area per unit time. 

So, for the input of mass, I have to take the flux multiplied by the curved surface area 

multiplied by time. 

The output of mass is (Refer Slide Time: 28:04) equal to j r 2 pi r delta z at the location r 

plus delta r times delta t. Let me point out one thing here itself. The input of mass is 

through this (Refer Slide Time: 28:31) surface area. The output of mass is through this 

surface area. The two surface areas are not the same, because the two radii are not the 

same. In this case of the flow in cartesian coordinates, whether I take the top surface or 

the bottom surface, the areas are the same, because they are in cartesian coordinates. In 

cylindrical coordinates, the surface areas of the two cylinder surfaces are not the same. 

That is going to be important when we do the mass conservation condition. Therefore, 

the equation becomes… I have an accumulation within the volume and I have the input 

and the output. 



(Refer Slide Time: 29:28) 

 

There is an additional source and that is of the form S times the volume. S was defined as 

amount of mass created per unit volume per unit time. Therefore, the source of mass is 

going to be S times the volume, which is 2 pi r delta r delta z times delta t. Therefore, 

this accumulation of mass and time, delta t has to be balanced by the input, output and 

the source. So, I will have c of r, z, t plus delta t minus c of r, z, t into the volume, which 

is 2 pi r delta r delta z is equal to j r into 2 pi r delta z at r times delta t minus j r into 2 pi 

r delta z at r plus delta r into delta t plus S into 2 pi r delta r delta z delta t. Note that I 

have kept the radius within r plus delta r and r, because this is at r plus delta r. This one is 

at r; and, the two are different. 



(Refer Slide Time: 31:57) 

 

We divide throughout by 2 pi r delta r delta z delta t. And, this becomes c at r, z, t plus 

delta t minus c at r, z, t by delta t. This is equal to 1 by r 1 by delta r of r times j r at r 

minus r times j r at r plus delta r plus S. Once again, in this equation, 2 pi is a constant 

(Refer Slide Time: 33:16). So, it can be taken out. Delta z is also independent of r; delta 

z is just the height. It does not matter whether the surface is at r or at r plus delta r; the 

height is the same; it is independent of r. Therefore, delta z and 2 pi can both be taken 

out. However, this r depends upon r. So, it has to be taken into account when we do the 

differentiation; that is the basic issue. 

Now, if I take the limit delta t and delta r going to 0, this equation (Refer Slide Time: 

33:57) becomes dc by dt is equal to 1 by r d by d r of r j r plus S. Note that this is slightly 

more complicated than the form that we had earlier. It is a negative sign, because I am 

taking the value at r minus the value at r plus delta r. This is more complicated, because 

as I said earlier, the surface area (Refer Slide Time: 34:35) is changing as a function of 

position. And, because of that, even if the flux does not change, the mass that is 

transferred will change, because the surface area is changing. The total mass transfer is 

equal to the flux times the area. So, it is one component of the mass due to the change in 

the flux. There is another component of the mass due to the change in the surface area 

and this is inescapable in the case of cylindrical coordinates. You will end up with the 

more complicated form for the mass conservation equation simply because the surface 

area is changing as the radius is changing. And then, I can use the constitutive relation 



for the flux; j r is equal to minus D times partial c by partial r to finally, get an equation 

for the concentration field. 

(Refer Slide Time: 35:35) 

 

Partial c by partial t is equal to D into 1 by r d by d r of r d c by d r plus S. So, this is the 

mass conservation equation for unidirectional transport in a cylindrical coordinate 

system. Contrast this with the equation that I had for the cartesian coordinate system, 

which was of the form dc by dt is equal to D times partial square c by partial z square 

plus S. So, the difference is that this operator, which was just a second derivative in the 

cartesian coordinate system, now, has more complicated form in a cylindrical coordinate 

system. So, that is the big difference between cartesian and cylindrical coordinates. 

One could do this quite easily for the energy balance equation; you will get exactly the 

same result except that you substitute T for c and the thermal diffusivity for the mass 

diffusivity. So, the equation for that will be of the form dc by dt is equal to alpha of 1 by 

r d by dr of r dT by dr plus a source term (Refer Slide Time: 37:07). So, this is for 

thermal diffusivity for the temperature field. It has exactly the same form, except that the 

mass diffusivity is substituted for the thermal diffusivity. 

How about momentum transfer? When we did cartesian coordinates, invariably, we took 

a configuration like (Refer Slide Time: 37:35) this – x, z; the velocity was in the x 

direction. So, velocity was u x and that was the function of the z-coordinate. So, the 

velocity is tangential to the surfaces. So, the variation in velocity is perpendicular to the 



surfaces; whereas, the velocity itself is parallel to the surfaces. In our cylindrical 

coordinate system, there are two possible ways that we could take the (Refer Slide Time: 

38:09) velocity, which is parallel to the surface. One is for the velocity to be in the 

tangential direction along the theta axis. 

(Refer Slide Time: 38:24) 

 

In other words, if I had a cylinder in which there was a swirling flow, then if I look from 

the top, the velocity is in the theta direction. So, I will have a velocity u theta, which is 

nonzero. This is relevant for rotating flows within cylindrical geometries. I could also 

have a velocity, which is parallel to the surfaces, but which is in the z direction. So, there 

are two directions that are parallel to the surfaces. Since the surface is at constant r, there 

are two directions parallel to the surfaces: one along the theta direction; the other along 

the z direction. This is relevant for circulating flows in cylinders. This is relevant for 

example, for a pipe flow. You have a flow along the axis. So, you could have flow either 

along the axis or around the axis. And, one could write different momentum balance for 

each of these. 

The pipe flow along the axis is usually encountered in combination with a pressure 

gradient along the pipe, because the requirement in this (Refer Slide Time: 39:47) case is 

that the flow at the wall itself is equal to 0. Therefore, this is usually encountered in 

combination with a pressure gradient along the pipe axis. The velocity at the wall itself 

has to be 0. If the pipe is bounded by a rigid wall, then the velocity of the fluid at the 



wall itself has to be equal to 0. The velocity will have a parabolic profile as we will see a 

little later. Swirling flows are usually encountered when you have some circulation either 

at the wall or one could also have an annular region; one would have an annular region 

between two plates in which one of them moves with one velocity, the other is moving 

with another velocity. And, one could have a velocity of the fluid in between. So, this is 

another type of profile that is seen whenever you have rotating cylinders. And, one can 

write momentum balance equations for both of these. 

(Refer Slide Time: 41:03) 

 

The momentum balance equation for the swirling flow is actually quite easy; it is just 

analogous to this. Partial u theta by partial T is equal to the kinematic viscosity times 1 

over r d by dr of r d u theta by dr plus any force (( )) direction divided by the density 

itself. So, this is the solution for a swirling flow. The solution for flow along the axis we 

will see when we deal with pressure gradients a little later. We will explicitly look at the 

flow down along a pipe and (( )) momentum balance equation for that flow. So, that we 

will see a little later. 

In cylindrical coordinates, these are the (Refer Slide Time: 41:44) mass momentum and 

energy balance equations. And, they are similar to what you get in cartesian coordinates, 

except that the viscous derivative of operator of the diffusion term is more complicated. 

It contains an additional contribution due to the fact that the surface area is increasing as 



the radius increases. And because of that, we have a slightly more complicated term in 

the diffusion term in the equation. 

Now, let us solve these (Refer Slide Time: 45:26) equations for some simple cases. The 

simplest case to consider of course, is steady diffusion. In cylindrical coordinates, the 

simplest case is to consider is steady diffusion along the wall of a pipe. Let us say that 

the pipe has an inner radius. It has an inner radius, which is R i; outer radius is R o. We 

can consider this as for example, the wall of a shell and tube heat exchanger. There is hot 

fluid flowing inside; there is cold fluid flowing outside. So, the temperature on the inner 

surface is T i; the temperature on the outer surface is T 0 – T out. And, our task is to find 

out what is the heat flux as a function of the difference in temperatures and the radius of 

the two sides. So, you have to solve the mass conservation equation in order to get this 

difference and the heat flux. 

The conservation equation at steady state – if I just neglect variations in time and 

consider steady state alone, the conservation equation is of the form alpha times 1 by r d 

by d r of r d T by d r is equal to 0 provided there are no sources or sinks within the flow. 

And now, I can nondimensionalize the variables. I can choose either R i or R o to 

nondimensionalize the variables, because ultimately what will matter is only the ratio of 

the two radii. So, I can choose either of them to nondimensionalize the variables. So, I 

will choose r star is equal to r by R i and T star is equal to T minus T i by T o minus T i. 

I should note that you cannot just set one boundary at r is equal to 0 at r star is equal to 0. 

So, in this case, the boundary conditions become (Refer Slide Time: 45:06) at r star is 

equal to 1, T star is equal to 0. At r star is equal to R o by R i; T star is equal to 1. So, at 

the outer surface, T is equal to T 0. So, T star becomes 1. At the inner surface, T is equal 

to T i. So, T star becomes 0. The surfaces are at r star is equal to 1 and r star is equal to 

the ratio of the two radii. Previously, we always took one surface at z star is equal to 0; 

and other is at z star is equal to H. Even if the value of z itself was some other value, I 

could just subtract out a constant length and reduce the surface to 1 at z star is equal to 0. 

In this case, I cannot do that. At r is equal to 0, the surface area becomes 0, because 2 pi r 

T r is the surface area of the surface. So, I have to have a surface between two finite 

values of r whenever I do the calculations. 



(Refer Slide Time: 46:21) 

 

The differential equation expression in terms of this is 1 over r star d by d r star of r d T 

by d r is equal to 0 . So, if I integrate once, I will get r d T by d r is equal to C 1, some 

constant of integration or d T by d r is equal to C 1 by r, which implies that T is equal to 

C 1 log r plus C 2. Note that this is a diffusion dominated system; we do not have a linear 

profile in this case. The reason is because the surface area is changing as a function of 

radius. And therefore, if you have diffusion dominated transport in a cartesian coordinate 

system, we just got a linear variation. In this case, we do not get a linear variation. It is a 

logarithmic variation. And, C 1 and C 2 can be solved subject to boundary conditions to 

get T star is equal to log of r by log of R o by R i. 

You can easily see that when r star is equal to 1, T star is equal to 0. When r star is equal 

to R o by R I, then T star is equal to 1 (Refer Slide Time: 47:52) as required by these 

boundary conditions. This solution (Refer Slide Time: 48:02) satisfies these two 

boundary conditions. So, I have chosen C 1 and C 2 in such a way that these two 

boundary conditions are satisfied. So, this is the temperature profile. If I express it back 

in terms of dimensional variables, this is T minus T i by T o minus T i is equal to log of r 

by R i by log of R o by R i. So, that is the dimensional solution. 



(Refer Slide Time: 48:54) 

 

What we were ultimately after was the heat flux. So, how do we calculate the heat flux in 

this case? The heat flux q r is equal to minus k times d T by d r. And, using 

nondimensionalization, this is equal to minus k into T naught minus T i by R i into 

partial T star by partial r star, And, using this expression for (Refer Slide Time: 49:37) T 

star, I can easily get the final solution as minus k into T naught minus T i by R i r star 

into log of R o by R i. And, since r star is equal to r by R I, this is also equal to minus k 

into T naught minus T i by r log of R o by R i. So, this is the heat flux. 

(Refer Slide Time: 50:25) 

 



Total heat coming out of the cylindrical surface – the total heat is going to be equal to the 

surface area; the total heat coming out of any surface is going to be equal to the surface 

area (Refer Slide Time: 50:51) of that surface times the flux. The surface area is equal to 

2 pi r times the height in the perpendicular direction of this. So, if I take a height length L 

of this tube of the heat exchanger, then the total heat coming out is going to be equal to 2 

pi r L into minus k T naught minus T i by r log of R o by R i. And, you can see that the r 

cancels out; and, I just get minus k T naught minus T i times 2 pi L by log of R o by R i. 

Note: this total heat coming out is independent of r. The heat flux that I had was 

dependent upon r. The expression for the heat flux that I had was dependent upon r 

(Refer Slide Time: 52:07). In fact, it went as 1 over r. The heat flux went as 1 over r; the 

surface area is proportion to r. So, the total heat coming out of any surface is exactly the 

same. It is independent of the radius. 

(Refer Slide Time: 52:29) 

 

Now, one can use this to define an average flux. As I told you, the flux itself is 

dependent upon r. In this expression, the flux (Refer Slide Time: 52:41) depends upon r. 

But, the total heat coming out is not dependent upon r. So, I can define an average flux as 

q r average (Refer Slide Time: 53:01) is equal to Q by 2 pi L into some average. And, 

this I can write it as k times T naught minus T i by R naught minus R i times some 

function. Therefore, this average radius is effectively going to be equal to the logarithmic 

average of the inner and the outer cylinder radii. So, if I define the average heat flux as Q 

by 2 pi r into R naught minus R I, then I will get the average area coming out as (Refer 



Slide Time: 54:18) Q by A. Then, it implies that the area is equal to 2 pi times L into R 

naught minus R i divided by the log of R naught by R i. Therefore, the actual radius of 

the surface at which the average flux is calculated is actually the logarithmic mean of the 

surface. So, this is the log law for heat transfer from a cylindrical pipe. So, logarithmic 

law for the heat transfer from a cylindrical pipe. 

And, this logarithmic mean (Refer Slide Time: 55:03) is simply because I showed you 

that the heat flux goes as log of r. The reason is because t he surface area is changing. So, 

instead of having a dependence on r itself, the heat flux goes as log of r. And, because of 

that, when you calculate the average area, it is not the mean area of the surface itself for 

the transfer, but rather logarithmic mean of the area for transfer. So, this briefly is the 

fundamentals of the transport in cylindrical coordinate systems. 

I derived for you the transport equation and I showed you the complication is because in 

a cylindrical coordinate system, the surface area changes with radius. And, because of 

that, the conservation equation has a more complicated form in this case (Refer Slide 

Time: 55:48). The conservation equation has a more complicated form. Instead of having 

the d square c by dz square, which I had earlier, I get a more complicated form of the 

conservation equation. And, in cylindrical coordinates, if I have two surfaces at two 

different radii with the temperature difference between them, the temperature profile in 

between these two is not linear, it is logarithmic. And, because of that, the flux equation 

for the flux, the area that you take should be the logarithmic (( )). 

Next class, we will go back to looking at how we do unsteady problems. Start with the 

simplest case for cartesian coordinates, the similarity solution; and then, I will show you 

how to do separation of variables in cylindrical coordinates. Methods are exactly the 

same; the functions are more complicated. In the previous case, I just had a second 

derivative, and therefore, I got sine and cosine as the bases functions. In this case, I do 

not have a second derivative; the bases functions will be more complicated. Then, we 

will look at pipe flows and look at how to study oscillatory flows. So, will continue our 

discussion of cylindrical coordinates in the next class; we will see you then. 


