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Welcome to this the fundamentals of transport processes. This is lecture number fifteen, 

and we are well on our way to solving problems in unidirectional flows. We had looked 

in series at series of problems of increasing complexity. The first few were just flow 

transport between 2 flat plates, where the temperature the concentration of the velocity 

was at 2 different values between the 2 plates, and so there was a transfer of momentum 

energy or concentration from the region of higher velocity temperature or concentration 

to a lower value.  
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And then we were looking at some problems where there is a source or sink within the 

flow. In this case there is momentum generated due to forces acting on the fluid itself. 

Alter natively, there could be a source of mass due a to reaction taking place within the 

fluid or a source of heat due to various reasons, one could be because of reactions 

exothermic or endothermic resulting in an increase or decrease in temperature. There 

could also be phase transformations which result in release of latent heat, and I had also 



briefly told you that there could be viscous heating due to the shear stress and the fluid 

itself. 

So, in this series of problems where there is a source or sink of mass momentum or 

energy within the flow. The first situation we had considered was a body force. A 

gravitational force acting on a fluid that is flowing down an inclined plane. So, the 

problem we considered was the flow down an inclined plane and there is a gravitational 

force acting on every element of fluid within the flow. That gravitational force has a 

component along the flow direction. This component is of course, if I resolve it into 

components along in perpendicular, I will get a component both along and perpendicular 

to the flow direction. The component of the gravitational force along the flow direction is 

what results in the fluid flow. And that exerts a force within the fluid itself. And 

therefore, we have an equation with inhomogeneous term here this is an inhomogeneous 

term. which is generating the fluid flow within the due to the force exerted on each 

volume element of fluid within the flow.  
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So, this is like a source of momentum and from that we had calculated what was the 

velocity field due to that at Steady state we get the solution quite easily. The important 

point is we have to impose a 0 shear stress condition at the surface if the surface is 

between liquid and air then the viscosity of air is much smaller than the viscosity of 

liquid. Due to that the air cannot exert a shear stress on the liquid and due to that we have 



to ensure that the shear stress at the surface is equal to 0 and on that basis we had got this 

velocity profile for the flow. 

Now, another case where there is a force exerted on every volume element of fluid is the 

pressure driven flow in a channel. Pressure driven flows in channels in pipes are widely 

encounter. For example, if you want to pump fluid to an over head tank. There is a 

pressure gradient there is generated which results in the pumping of fluid to that tank. Of 

course, that pressure difference has to account for the potential energy of lifting the water 

all the way to the tank, but also for the friction losses due to the flow in the pipe. So, 

because of that you will have a pressure gradient which exerts a force on the fluid and we 

will look it how to analyze that situation in two respects one is the flow itself the flow 

profile itself and the second is the viscous heat generated due to the velocity profile.  
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So, this is a Pressure driven flow in a channel this channel is in between 2 flat plates. So, 

let us draw the configuration here, you have 2 plates one is at z is equal to 0 the other is 

at Z is equal to H. and these are solid plates we will assume that they are of infinite 

extent into the boat. This is the x coordinate this is the z coordinate. And then we have to 

do find out what is the velocity profile within this channel. Now; obviously, this flow is 

being generated because there is a difference in the pressure between the inlet and the 

outlet there is a difference in the pressure between the inlet and the outlet and that is 

what is generating a velocity profile.  



So, the pressure at each and every cross section in the x direction is not a constant the 

pressure is steadily decreasing as you go downstream. So, how do we do the momentum 

balance we use a shell balance once again of thickness delta x delta y delta z. And the 

balance equation is the same. The rate of change of momentum is equal to the sum of 

forces previously, I had separated out forces into 2 types one was body forces and the 

other was surface forces. In this particular case for simplicity, we will assume that there 

are no gravitational forces exerted on the fluid. So, we will neglect body forces for the 

time being and consider only surface forces the rate of change of momentum within this 

differential volume is given by rho u x at x y z t plus delta t minus u x at x y z t this is the 

momentum per unit volume. And therefore, I have to multiply this by the volume. So, the 

rate if change of momentum changes in momentum per unit time multiply it by the 

volume this is equal to the sum of forces. 

Now, what are the forces that are active on the fluid. Let us go back to the configuration 

first thing we are in a steady state configuration. So, there is no time variation. And. 

secondly, the flow is fully developed; that means, that the velocity profile is the same at 

each and every cross section within the flow. The velocity profile does not change 

therefore, u x is independent of x it depends only upon z. Since we have assumed that the 

plate is infinite in the perpendicular direction in the y direction there is no variation in y 

either. This is different from the flow in a pipe, which was we will see a little later. In a 

pipe its cylindrical and therefore, there is a variation from the center of the pipe towards 

the wall in this case the variation is only in the x direction and not in the z direction.  

So, if I take this differential volume here if I take this differential volume delta x delta y 

delta z. The shear stress is acting in the x direction. So, tau x z which is equal to mu 

times d u x by dz is equal to force in x direction at surface with normal in z direction is 

the force per area acting at a surface was unit normal is in the z direction at the upper 

surface the unit normal is in the plus z direction. Therefore, the force exerting here is tau 

x z i had explain to you earlier that when you reverse the direction of the unit normal the 

direction of the force also reverses. So, at the bottom surface unit normal is in the minus 

z direction therefore, the force is minus tau x z. So, I have the shear stresses acting on the 

top and the bottom surfaces. 

So, the force exerted due to the shear stresses is going to be equal to tau x z at the top 

surface into the area. The area of the top surface is delta x times delta y. Delta x delta y 



at the bottom surface the shear stress is minus tau x z if I will get minus tau x z at z delta 

x delta y. So, that is the force acting on the top and the bottom surfaces. However, I told 

you that there is a pressure gradient along the pipe as well. The pressure at each location 

is not the same pressure is higher on the left hand side its lower on the right hand side 

and that is what it is driving the flow through the tube. 

So, in addition there are also pressure forces acting on these differential volumes. There 

are pressure forces acting on every surface on all six surfaces of this differential volume 

you will have pressure forces. However, for the top and bottom there is no difference in 

pressure because I have not imposed a pressure gradient there. For the front and back 

there is no difference in pressure because there is no pressure gradient. However, along 

the pipe along the x direction there is a pressure gradient therefore, the pressure at x is 

different from the pressure at plus delta x. 
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So, therefore, for this differential volume, I also have pressure forces acting there is a 

pressure acting at x and the surface at x there is a pressure acting. That is acting in the 

plus x direction. Pressure always acts invert to the differential volume that I am 

considering it is a compressive force that acts invert. So, the pressure acting invert at x 

which is in the plus x direction there is a pressure acting invert at x plus delta x which is 

acting in the minus x direction. So, these 2 pressure forces also enter into the momentum 

balance equation. So, the pressure force at x is in the plus x direction p at x. times the 



surface area which is delta y delta z minus p at x plus delta x delta y into delta z. So, in 

addition to the shear stresses whenever I have flow in a pipe or a channel there are also 

pressure forces acting and these pressure forces are what are driving the flow, in this 

case. 
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So, to get the balance equations I once again Divide by delta x delta y delta z. And then I 

will get the differential equation rho times u x at t plus delta t minus u x at t by delta t is 

equal to p at x minus p at x plus delta x divided by delta x plus the shear stress tau x at z 

plus delta z minus tau x z at z by delta z. So, that is now my momentum balance equation 

and taking the limit delta x delta y delta z and delta t going to 0. The balance equation 

becomes rho times d u x by dt is equal to. The second term here is p at x plus delta x 

minus p at x. So, this is equal to minus dp by dx and the last term is tau x z at z plus delta 

z minus tau x z x z which is partial tau x z by partial z. 

So, that is my momentum balance equation. Rho times d u x by dt is equal to minus dp 

by dx this is the additional term that comes in due to the pressure gradient. This is the 

additional term that into the pressure gradient previously, we had a body forced term in 

this case there is a pressure gradient because the applied pressure on the 2 ends of the 

tube are different. 

So, and then I can use Newton’s law for viscosity tau x z is equal to mu times d u x by 

dz. To get rho d u x by dt is equal to minus dp by dx plus mu d square u x by dz square. 



So, this is the balance equation and it contains this pressure gradient which is an imposed 

pressure gradient. It is an imposed pressure gradient which is a constant along the length 

of the tube and this is what is driving the flow. Note that the effect of the pressure 

gradient is remarkably similar to the effect of a body force. If we go back to the equation 

for the flow down of plane. I have a similar equation d u x by dt is equal to the convict 

viscosity times d square u x by dz square plus an additional term which is g times sin 

theta in the case of a pressure driven flow I get a term that is exactly similar to this. 

Except that it this is a pressure gradient and not a body force. 

So, the effect of a pressure difference across the tube is similar to the effect of a body 

force acting on each element of the fluid. I could also write this in terms of the kinematic 

viscosity d u x by dt is equal to minus one over rho dp by dx plus the kinematic viscosity 

d square u x by dz square. 
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And that steady state At steady state d u x by dt is equal to 0 and therefore, my equation 

just becomes minus 1 over rho dp by dx plus mu d square u x by dz square is equal to 0. 

So, this is the momentum balance equation. And I had 2 boundaries for the channel this 

is at z is equal to 0 z is equal to H and the center line of the channel was at z is equal to H 

by 2. So, my Boundary Conditions require that the velocity is equal to the wall velocity 

at the 2 surfaces. At the 2 surfaces at u x is equal to 0 at z is equal to 0 u x is equal to 0 at 



z is equal to H. So, those are the boundary conditions that I have to solve this equation 

subject to. 

Note that once again this is an inhomogeneous equation. It contains an inhomogeneous 

term here. So, there is no forcing at the walls. The velocity at both the boundaries are 

identically equal to 0. So, both the boundary conditions are both homogeneous; however, 

there is a steady forcing within the equation itself due to the pressure gradient that is 

applied across the length of the tube. Scaling obviously, z star is equal to z by H. How 

about the velocity u x once again the velocity u x has to come from the conservation 

equation itself. 
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Because if I write down minus 1 by rho dp by dx plus mu by H square d square u x dz 

star square is equal to 0 and then I can divide throughout by this term here and set it 

equal to 1. 

So, therefore, I will get minus 1 plus minus 1 plus u I have write this there is total 

viscosity mu by H square into dp by dx whole inverse d square u x by dz star square is 

equal to 0. Therefore, I can define a non dimensional velocity u x star is equal to mu u x 

by H square into dp by dx whole inverse. That is my definition of a non dimensional 

velocity in terms of the pressure gradient as I said there is a constant pressure gradient 

along the entire length of the tube  



So, therefore, the velocity has to be scaled by that pressure gradient to get a non 

dimensional velocity. So, this gives us the scaling for the velocity; that means that the 

velocity will go as dp by dx times H square by mu. So, if I apply a pressure gradient the 

velocity along the tube is going to go as the pressure gradient times H square divided by 

mu.  
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So, this gives me a scale for the velocity. And once I put that in the equation just 

becomes d square u x by dz square minus 1 is equal to 0. With Boundary Conditions u x 

is equal to 0 at z is equal to 0 and u x is equal to 0 at z is equal to 1. This equation is 

easily solved. The second order differential equation which solution is quiet easy to get 

the solution is just of the form u x is equal to z square by 2 plus C 1 z plus C 2. where the 

constant C1 and C 2 are to be determined from the boundary conditions say z is equal to 

0 and z is equal to 1. and this C 1 and c 2 can be determined quiet easily and finally, I 

will get an expression for u x which will be equal to z square by 2 minus z by 2. 

So, that is the final equation for the velocity profile. It is a parabolic velocity profile 

within that within the channel. The velocity is equal to 0 at both z is equal to 0 and at z is 

equal to one. So, the velocity is equal to 0 at both z is equal to 0, and z is equal to 1 at the 

center of the channel at z is equal to half the derivative of the velocity is equal to 0. So, I 

get a parabolic profile that looks something like this in the channel. And this parabolic 



profile is characteristic of all pressure driven force we will see a little later then when we 

do the flow in a pipe that you get a parabolic flow in that case as well. 

So, now I can express this back in terms of a dimensional velocity. To get a dimensional 

velocity all I need to do is multiplied by dp by dx times H square by mu. So, my 

dimensional velocity will just be equal to dp by dx into H square by mu into z star square 

by 2 minus z star by 2 and this is equal to minus 1 by 2 mu dp by dx into z into z minus 

H. So, this is the parabolic velocity profile for the flow in a channel. It is called the plane 

poiseuille flow the parabolic profile for the flow in a channel. 
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Now, this can also be written in terms of mean velocity. if I take for example, the 

maximum velocity of the center of the channel. So, at the center of the channel z is equal 

to H by 2. So, u x will be equal to minus 1 over 2 mu into dp by dx into H square by four 

which is equal to the velocity u at the center of the channel. So, this is the maximum 

velocity at the center of the channel the Maximum Velocity u is equal to is given in 

terms of pressure gradient by this expression. 

So, I could also express the velocity u x in terms of the velocity at the center of the 

channel the maximum velocity. So, u x in terms of the maximum velocity is equal to four 

U into z by H minus z by H the whole square where U is equal to this expression the 

maximum velocity at the center of the channel. So, that is the velocity profile under a 

pressure gradient, for the flow in a channel. And as I said the velocity is remarkably 



similar to the velocity under they under the application of the gravitational force. If you 

go back to the previous example, the velocity in this case was also parabolic the velocity 

in this case was also parabolic. Accept that it had a derivative equal to 0 at the top 

surface It had derivative equal to 0 at the top surface. That is because we had imposed a 

0 shear stress condition at the top surface. Where as for our flow in a channel, the shear 

the velocity was equal to 0 on both sides the solution was parabolic except that it came 

back to 0 at both walls that is the only difference. If, instead of having a free surface at 

the top if I had had a flat solid wall at the top I would have got the exact same velocity 

profile except that you parabolic and come back to 0 because I require to enforce the 0 

velocity condition at the top surface if the flow is in between 2 flat surfaces. 

So, instead of the gravitational force here between 2 flat surfaces tending to flow the 

fluid down the slope I instead have a pressure difference which is trying to flow fluid 

down the slope. So, that is the only difference. So, pressure differences and body forces 

act in a very similar manner. Now this problem of the flow in a channel we have used it 

to determine what is the velocity profile in this flow another situation we could consider 

is the effect of viscous heating due to viscosity within the flow. So, in that case because 

of the flow there is a source of energy and that tends to heat up the channel. And the 

objective is to find what is the temperature due to this viscous heating within the 

channel?. 

So, let us look at that problem which is now a problem of a source of heat within the 

channel. So, this is the problem of Viscous heating in the channel. So, I am given a 

velocity profile. This is x this is z i know that the velocity profile is given by this profile 

and I want to know what the temperature. So, we are maintaining for example, in a heat 

exchanger problem we maintain the temperature T is equal to T naught on both walls and 

we would like to know what is the temperature within the fluid due to the viscous 

heating? 
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So, that is the problem. We will not derive in detail here, but the source of energy due to 

viscous heating is given by the source per unit volume is equal to the shear stress times 

the velocity gradient. The source of heating per unit volume energy generated per unit 

volume per unit time is the product of the shear stress and the strain rate. And we will 

assume that this formula for the shear stress and strain rate is given to us. So, you do not 

try to obtain it. 

So, with this expression for the rate of viscous heating the heat transfer equation is of the 

form d T by dt is equal to the thermal diffusivity d square T by dz square plus S e. With 

boundary conditions T is equal to T naught at z is equal to 0 and is equal to T naught at z 

is equal to H. So, those are the boundary conditions. So, using these I have to solve this 

equation scaling as usual we can define the z coordinate as z star is equal to z by H what 

is the scaling for the temperature? 

So, for simplicity I will define the scaling here for the temperature as T star is equal to T 

minus T naught divided by T naught the fractional rise in temperature due to the viscous 

heating we will work with this and then we will see that we will get a dimensional less 

number which gives you the rate of viscous heating as compared to the temperature rise. 

So, inserting this into this equation and assuming steady state. So, at Steady state d T by 

dt is equal to 0. So, this is a steady configuration and there is viscous heating. So, my 

differential equation becomes alpha d square T by dz square plus S e is equal to 0. Now 



what is the source I told you that S e was equal to tau x y times be careful here tau x z 

times d u x by dz, but from Newton’s law of viscosity tau x z is equal to mu times d u x 

by dz fine. So, I can write this as mu times d u x by dz the whole square. So, that is my 

expression for the viscous heating per unit volume per unit time in the energy balance 

equation. This becomes k is the thermal conductivity. 

Now, we know that u x is equal to four U into z by H minus z by H the whole square 

which means that d u x by dz is equal to sixteen U square by H square sixteen u by H 1 

minus 2 z by H. 
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Therefore, s e will be equal to (( )) 16 U square by H square into 1 minus 2 z by H the 

whole square is equal to 16 U square by H square into 1 minus 2 z star square. 

So, that is the final expression for the rate of production of energy. And if I put that into 

by configuration equation I have k times d square T by dz square plus 16 U square by H 

square into 1 minus 2 z star the whole square is equal to 0. So, this is my energy 

configuration equation in the presence of viscous heating within the flow. Scalings I 

defined z star is equal to z by H and T star is equal to T minus T naught by T naught.  

So, that I have T star is equal to 0 at both boundaries with that scaling you can write this 

as k T naught by H square d square T star by dz star square plus 16 U square by H square 

1 minus 2 16 mu is equal to 0 and I can divide throughout by this first factor in order to 



get an equation of the form d square T by dz square plus a dimensionless number times 1 

minus 2 z star square is equal to 0. This number is usually defined with a pre factor there 

I will just leave that definition of the pre factor there. I will leave that definition of pre 

factor there this must (( )). So, I will define it with pre factor well this thing this 

dimensionless number is given by mu U square by k T naught. sometimes called the 

brinkman number. I will just live it as a dimensionless number here. 

So, this basically gives me the ratio of viscous heating to the temperature rise due to a 

temperature difference proportional to T naught. The mu u square is the rate of energy 

generation per unit volume due to viscous heating mu U square by H square and k T 

naught by H square is a rate of change of energy within a volume if there were 

temperature gradient of magnitude T naught over a distance H. So, that is physical 

significance of this dimensionless number. This equation can be easily solved to get the 

temperature profile. 
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The final solution for this equation is T star will be equal to this Brinkman number into 

eight z 1 minus z star 1 minus 2 z star plus 2 z star square by 3 that is the final solution 

for the temperature increase. And if you actually plot out this temperature profile this 

temperature across the channel it has to come to 0 at the 2 walls. At the center of the 

channel itself it is very flat the temperature actually looks something like this. So, this is 

the temperature as a function of the height function of z this shows you the temperature 



profile. It is much flatter than the parabolic profile for the velocity itself. The reason is 

because at the center of the channel the shear stress goes to 0. The slope of the velocity is 

equal to 0 at the center of the channel therefore, d u x by dz is equal to 0 at the center of 

the channel. Therefore, at the center of the channel there is no viscous heating and 

because of that you do not have any variations in temperature right at the center at the 

walls of course, the shear stress is nonzero. In fact, the shear stress the slope of the 

velocity profile is largest at the walls because of that the heating is also largest at the 

walls and therefore, you have the largest temperature difference at the walls. 

Now, one can define calculate the heat flux q z is equal to minus k times d T by dz. This 

is true of any location q z is equal to minus k times d T by dz. I can write this in terms of 

the dimensionless variables T star and z star as minus k T naught by H d T star by dz star 

and if I put in my expression for the heat for the temperature profile here, if I put in this 

expression for the temperature profile, what you get is that q z is equal to eight k T 

naught by 3 H into 1 minus 2 z star the whole cube into the Brinkman number. 

alternatively, I can write it in terms of viscosity and the velocity of the fluid just from the 

definition of the Brinkman number mu u by k T naught as eight mu U square by 3 H into 

1 minus 2 z the whole square whole cube I am sorry.  

Clearly this is a maximum at z is equal to 0 and at z is equal to z star is equal to 1 at the 

top and the bottom surface is where z star is equal to 0 and at the top surface by z star is 

equal to 1. This heat flux is the maximum is going outwards; that means, that it goes 

downwards at z star is equal to 0 and therefore, I should go up at z star is equal to plus 1 

at the center itself the flux is equal to 0 at the center z star is equal to half and therefore, 

the flux is equal to 0 at the center itself and that was because the velocity gradient is 0 at 

the center as I had explained to you little earlier. 

So, the maximum heat flux due to viscous heating q z is equal to 8 mu U square by 3 H 

that is the maximum heat flux due to viscous heating and this heat flux actually has 

relevance in the context of the heat exchanger problem that we had solved in the second 

or the third lecture. If you recall we had solved this problem using dimensional analysis.  
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Yeah in this problem when we did that dimensional analysis we had separated out the 

quantities into thermal and mechanical quantities we had said that there is no inter 

conversion of energy from thermal to mechanical energy. Strictly speaking I had 1, 2, 3, 

4, 5, 6, 7, 8, 9; 9 variables and 4 dimensions. So, I should have been able to get 5 

dimensionless groups in this problem. However, I said if there is no conversion inter 

conversion of energy from thermal to mechanical then I can consider heat energy to be 

separate from mechanical energy and if heat energy is considered to be separate from 

mechanical energy then I have five dimensions because heat energy is a separate 

dimension and I have five dimensions nine dimensional groups; that means, that I have 

only four dimensionless groups which ultimately, we identified as Nusselt number the 

Reynolds number Prandtl number and the ratio of d by l. So, the assumption here is that 

heat and mechanical energy are separate there is no inter conversion and therefore, I can 

write a balance for the heat energy alone. I do not need to consider the fact that 

mechanical energy can be inter converted into heat energy. 

In the problem that we just solved in the problem that we had just in the problem that we 

have just solved I told you what is the heat energy generated due to viscous heating this 

heat energy generated due to viscous heating represents an inter conversion of energy 

between mechanical energy and heat energy. Therefore, I can consider heat energy to be 

separate only if this flux due to viscous heating is small compared to the flux due to 

temperature difference across the wall across the tube wall. So, it is only under these 



conditions that I can consider the heat energy and the mechanical energy to be two 

different things and write different balances for this  
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What is the flux due to the temperature difference q z is equal to k delta T by delta z 

where delta z is the thickness of the tube. Therefore, I require that mu U square by 3 H is 

small compared to k delta T by delta z. In order to be able to neglect the viscous heating 

in comparison to the actual energy transfer across the tube wall the energy transfer across 

the tube wall just depends upon the wall thickness. So, this is just equal to the thickness 

of the wall whereas, the viscous heating energy depends upon the thickness of the entire 

tube the thickness of the entire tube is usually small compared to the wall thickness and 

therefore, my requirement is that delta T has to be large compared to mu U square H w 

by H times k. So, only if this temperature difference is large compared to the temperature 

that is generated due to viscous heating will I be able to neglect viscous heating in 

comparison to the heat exchange due to the temperature difference across the tube. And 

it is only in that case that the assumption that the heat energy is separate from 

mechanical energy is a valid one. 

 So, that depends upon as I said on the Brinkman number this number that I had if I 

assume that delta T is of the same magnitude as T w then the Brinkman number gives me 

the ratio of viscous heating and the heat generated due to temperature differences if, delta 

T is of the same magnitude as T w and if the brinkman number is small then I can 



neglect the heating due to viscous friction in comparison to the heating due to the heat 

flux due to a temperature difference across the tube. 

So, we solved the problems where there are sources and sinks for momentum transfer. 

We solved 2 problems one is where there is a body force which tends to force the fluid 

and the other is where there is pressure difference across the ends which results in a 

pressure gradient along the tube. I showed you that the effect of the pressure gradient is it 

can is this effectively is equivalent to the pressure due to a body force acting on the fluid 

and then we solved a problem here of the temperature the heat generated due to the 

viscous flow within the channel. 

In a similar manner one can write down the equations for the concentration field as well. 

we had seen the concentration equation a little earlier d c by dz is equal to D d square c 

by dz square plus any Source or Sink. In the concentration equation the source of mass or 

the sink of mass is due to chemical reaction and therefore, the source or sink will depend 

upon the reaction rate and the concentration. The source and sink are usually of the form 

Source is equal to either k c a minus k c if c is concentration of a reactant or will be equal 

to plus k times c if c is the concentration of a product. 

So, this is for first order reactions. If the reaction is second order then you will go at c 

square if it is an nth order reaction will go c power n. The equation continues to be linear 

only if the reaction is first order. So, reaction is second order the equation is no longer a 

linear equation. So, you had to have some special ways of solving the equation if it is a 

higher order reaction. However, if the reaction is first order there is an easy way to solve 

it. The reaction at Steady state D d square c by dz square minus k c is equal to 0 and 

from the reaction rate and the diffusion constant you end up getting a length scale out.  



(Refer Slide Time: 53:14) 

 

So, if I divide throughout by diffusion constant I get d square c by dz square is minus k 

by d c is equal to 0. if I define c star is equal to c by c naught I get a length scale out of 

here z star is equal to z times k by D power half this is non-dimensional because k is a 

reaction rate it has dimensions of time inverse and d is a diffusion coefficient it has 

dimensions of length square per unit time. So, this z star has is a dimensionless number. 

So, this dimensionless number comes out of the analysis and the equation becomes 

partial square c star by partial z star square minus c star is equal to 0. So, this has 

exponentially increasing and decreasing solutions this equation has exponential 

solutions. 

So, this length scale is effectively a Penetration depth, the depth to which a perturbation 

to the concentration at a given surface will penetrate within the flow. So, if this 

penetration depth is small compared to the microscopic length scale then the effect of 

any concentration field at the bottom will be felt only to within a finite depth within the 

fluid. So, this thing acts as a penetration depth within the flow important point to note is 

that in this case where we have a reaction and a diffusion system simultaneously, the fact 

that you have reaction as well and that reaction rate depends upon concentration. In the 

previous case for viscous heating the heating rate did not depend upon temperature. So, it 

was independent of temperature in this case reaction rates usually depend upon 

concentration of reactants or products  



So, if it depends upon concentration you get out penetration depth from this exercise. So, 

there is an additional length scale that comes into play apart from the length and the 

length and from the width of the channel. In the case of flow in a channel that was the 

only length scale in the problem in this case there is an additional length scale which is 

the which is related to the ratio of the reaction rate and the diffusion coefficient 

physically the system the concentration diffuses from the surface, but it is also getting 

consumed within the flow and therefore, because of that it will penetrate only to a finite 

depth within the fluid. So, that is the characteristic of diffusion problems in diffusion 

reaction problem in mass transport. 

There is an additional complication in mass transport problems and that is that one has to 

account for center of mass velocity. The flux if the concentration of the mass being the 

transported is small then its transport does not result in a velocity of the center of the 

mass, but if it is finite there is a center of mass velocity we look briefly at that center of 

mass velocity in the beginning of the next lecture and then we will go on to analyzing 

problems in cylindrical coordinates. So, this completes sources and sinks within the flow 

for unidirectional transport in cartesian coordinates the next is to go to cylindrical 

coordinates before that we will just briefly look at mass transfer problems. So, we will 

see you in the next lecture.  


