
Fundamental of Transport Processes 
Prof. Kumaran 

Department of Chemical Engineering 
Indian Institute of Science, Bangalore 

 
Lecture No. # 14 

Unidirectional Transport Cartesian Co-ordinates - VII (Momentum Source in the 
flow) 

 

Welcome to our continuing discussion on unidirectional flows, unsteady flows where we 

were looking at different solution methods for flows that depend upon position and time. 

Variation in position is only along one direction what I have called so far the z direction 

and there could be a variation in time as well. We looked at two solution procedures; one 

for transporting to an infinite fluid where we looked at the similarity solution procedure 

where we could reduce from two variables time and z to just one similarity solution 

based on upon dimensional analysis alone. And that reduce the equation from a partial 

differential equation to an ordinary differential equation and that we were able to solve in 

order to find the profile of the concentration temperature or momentum. 

When the diffusion is in a finite channel, the thickness of the layer of fluid also is 

important and one could use scaling on that bases of that thickness as well. In that case I 

showed you how to use separation of variables where we write the conservation the 

dependent field temperature concentration or momentum as the product of two functions; 

one only a function of space the other only a function of time. Separate out the two and 

get individual equations for each of these two components. Each of these can now be 

solved in order to get a solution for the entire concentration temperature or velocity 

fields. 

And this solution procedure we had to have homogenous boundary conditions in one 

coordinate in this case the special coordinate. The temperature concentration and 

velocity were both 0 on both bounding surfaces, but, there were and some initial forcing 

at initial time and I showed you how to get all the constants in those equations. So, that 

was the separation of variables technique and last lecture we discussed how to analyze 

oscillatory flows. In this particular case we had a channel in which the top plate was 

stationary the bottom plate was oscillating with well defined frequency. And there is an 

imposed time period in this case in contrast to the previous problems where we just 



impose an additional condition and then let the system evolve in time all the way to t 

going to infinity. 
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So, in this particular case we do have an imposed frequency. The momentum 

conservation equation was identical to what we had for all other cases. There is no 

source or sink. So, we had this momentum conservation equation where nu was the 

kinematic viscosity. The boundary conditions where that velocity 0 at the top plate, 

velocity is sinusoidal at the bottom plate with a very well defined frequency. We have 

defined scaled variables z star is equal to z by H. H is the natural length scale because it 

is the width of the and u x star is equal to u x by capital u where u is the velocity with 

which the bottom plate is being oscillated. 
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We also have an intrinsic time scale in the problem. So, we can define a non-dimensional 

time as t star is equal to omega times t and when we put all of these into the differential 

equation we ended up with a dimensionless number R e omega which was defined as 

omega H square by nu where H is the thickness and nu is the kinematic viscosity. And 

the boundary conditions are at z star is equal to one u x is equal to 0 and at 0 u x is just 

equal to cos t. So, this cos function varies between minus one and plus one and it is 

sinusoidal in time and we looked at a simple way to solve it. This cos function at the 

boundary is inconvenient in general to deal with. So, we defined a complex velocity field 

such that the actual velocity which you would like to obtain is the real part of this 

complex velocity field. 

In terms of the complex velocity field, the equation the governing equation is exactly the 

same because the Renold’s number is dimensionless number, it is real. At the boundaries 

we have the complex velocity is 0 at z is equal to 1 but there is no motion there and z is 

equal to 0 the complex velocity is e power i t. The real part of e power i t is the same cos 

t with which you are forcing the real velocity field. So, therefore, if I take the real part of 

the equation I get the equation for the real velocity field. If I take the real part of the 

boundary conditions I get the boundary conditions with the actual velocity field. 

So, if I can solve the equation for this complex velocity field and take its real part, I will 

get the actual velocity field. That was the first simplification. The second one was that 



the equation is linear in u x plus. So, the equation that I have is a linear function of u x 

plus and it is being driven by a sinusoidal velocity profile at the boundaries u x plus is 

equal to e power i t. So, the equation is linear, the driving is sinusoidal, the response also 

has to be sinusoidal with exactly the same frequency. 

So, that was the second simplification that I used. That straight away permitted me to 

write u x plus as e power i t star times something that is only a function of z. So, that was 

a significant simplification. u x plus I separated out into two parts; one which is 

dependent on time and the other which is dependent only on space. Implication of that is 

that at every point within the flow the velocity is oscillatory with exactly the same 

frequency as the frequency of the bottom surface. It can have a phase that is different 

from the phase of the bottom surface, but, it is oscillatory at exactly the same frequency. 

There can be a phase shift. The phase shift can be different at different locations, but, the 

frequency is exactly the same. 

And since I know the dependence on time exactly, I can do the time derivator and I 

finally, get an equation which is an equation dependent only upon the z coordinate. It is a 

second order differential equation can be solved quite easily as we saw in the last class. 
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The boundary conditions since the boundary condition for the complex velocity is e 

power i t at the bottom surface for this u x tilde, the boundary condition has to be u x 

tilde is equal to 1 because this this time c power omega t is the complex velocity field. 



So, now both the differential equation and the boundary condition are independent of 

time when expressed in terms of this variable u x tilde. They depend only upon space. 

So, once again I have reduced the equation from a partial differential equation in time in 

z to just an ordinary differential equation in z alone knowing that the variation in time is 

going to be sinusoidal with the given frequency at all instance of time and at all 

locations. 

So, we solve this quite easily and subject to the boundary conditions to get a solution and 

we took the real part of that solution to find out what is the actual velocity field. This of 

course, has to be solved numerically as function of time. However, you can get some 

additional physical insight into this by just looking at the limits. One the limit where R e 

omega is small compared to one and the other is the limit where R e omega is large 

compared to one because that is the only parameter in the problem. 
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And we look looked at the physical meaning R e omega small compared to one. In that 

case you just kept the solution as the steady solution, one minus z times cos t. 

If the steady velocity your u x is equal to 1 on the bottom surface the steady solution 

would have been 1 minus z. However, the solution is varying in time and. So, I am just 

getting 1 minus z times cos t. So, basically the solution in the limit R e omega small 

compared to 1; it is the same as the steady solution except that the velocity the bottom 

surface is the instantaneous velocity, a function of time at that particular instant whatever 



the velocity is. That is the maximum velocity at the bottom and you get a linear velocity 

profile. And we looked at physically why that is so. One can interpret the Reynolds’s 

number R e omega, omega H square by nu as the ratio of H square by nu divided by 1 

over omega. H square by nu has dimensions of time it is the time it takes approximately 

for momentum to diffuse over a length H. So, it is the time it takes for a momentum 

disturbance generated at the bottom to diffuse all the way to the top of the channel. 

One over omega is the time period of the oscillation. So, when the Reynolds’s number is 

small compared to 1, the time required for momentum diffusion is small compared to the 

period of the oscillation. So, whatever the velocity at the bottom plate the momentum 

diffuses instantaneously because a velocity is varying much slower than the time than the 

rate of diffusion of moment and because of that at every point in the oscillatory cycle the 

momentum field equilibrates to the steady value it would have had for that particular 

bottom velocity. So, in the case of R e omega small compared to 1, we recover the linear 

velocity profile except that the velocity at the bottom surface of that linear velocity 

profile is the instantaneous velocity of the bottom plate. That that is restricted to the case 

where the time required for momentum diffusion is small compared to the time required 

for the period of oscillation. 
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The opposite case when R e omega’s large compared to 1; we saw that there is an 

exponential decay in the velocity field into the fluid. That decay takes place over a length 



scale which is approximately square root of nu by omega. Nu is the kinematic viscosity 

has dimensions of length square per time, omega is the frequency. So, square root of nu 

by omega is the time it takes, the square root of nu by omega is the distance to which the 

momentum diffuses within a time period of two pi by omega or within the time required 

for the oscillation. 

So, this is the distance over which the diffusion takes place over the time period two pi 

by omega and the Reynolds number can also be interpreted as H by nu by omega power 

half the whole square which is the square of the ratio of H and the distance to which 

momentum diffuses. So, if Reynolds number is large; that means, H is large compared to 

the distance over which the momentum diffuses. It looks like momentum diffusion into 

an infinite fluid and because the distance H is large, the momentum diffuses only to a 

finite distance before the plate stops its forward motion and comes backward. So, over a 

time period comparable to two pi by omega the distance is the momentum diffuses is 

given by square root of nu by omega and that is the distance the penetration depth or the 

boundary layer thickness over which this velocity is finite. 

And we got a solution also for that For that velocity field in the limit of R e omega large 

compared to one and this solution is not in phase. It has both sine and cosine functions in 

time. So, this solution is not exactly in phase with the driving frequency even though the 

frequency of oscillation of the velocity at every point is exactly the same. 
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So, one last comment about the discussion on oscillatory flows; so, far we have solved 

only for u x at the bottom being oscillatory in time. Ah what we actually solved for was a 

cos function solution what we actually solved for was a cos function, sine function will 

be exactly displaced by pi by 2. But, what we solved for was a cos function. One could 

have an a forcing which is not exactly a sine function or a cos function. For example, one 

could have a forcing that took something like that, but so long as it is periodic in time 

with a frequency omega. So, long as it is periodic in time, the frequency omega this thing 

can always be written as the sum of cos and sine functions which are the lowest 

harmonic and its submultiples. There is the period, is the frequency is equal of this is 

omega this is two times omega three times omega and so on. 

So, any function can be written as can be decomposed into its fundamental mode the 

frequency of the largest oscillation omega plus its entire harmonics and so, I can solve 

individually for each of these. I can solve individually for this function, this function and 

all other harmonics. Solve the equation get the solution here for each of these harmonics 

get the solution for each of these harmonics and then add them all up and I will get the 

solution for this more complicated form of the wave ok. That is because in Fourier 

transforms we know that any function that is periodic with the frequency omega can also 

be can always be decomposed into a fundamental mode plus all of its higher harmonics. 

It is an infinite series, but, still the decomposition is always possible and because the 

decomposition is possible this procedure for an oscillatory flow can be applied to any 

wave form not just a sinusoidal wave form, but, to any wave form. So, in that sense it is 

more general. All I require is that there should be bottom plate velocity should be 

periodic in time with the frequency omega. Once that condition is satisfied does not 

matter what the wave form is I can always apply the solution procedure. 
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So, that completes our discussion on oscillatory flows. We will come back and see later 

on oscillatory pressure driven flows, but, before we go there I would like to first spend 

some time on what happens when there are sources or sinks within the field. So, far we 

always took two plates; one had one temperature the other had another temperature and 

there was no generation or destruction of mass momentum energy within the domain. 

What about sources where there, what about cases where there are sources or maybe 

there are forces acting on the fluid within the domain? In that case how do us solve these 

problems? So, we will just look at a few brief examples of this. In the case of momentum 

transfer the simplest case that you can think of is the flow of a fluid layer down an 

inclined plane. So, I have an inclined plane, inclined at some angle theta to the horizontal 

and the acceleration due to gravity is acting downwards and I have a layer of fluid 

flowing down the plane. We will get a velocity profile that looks something like this. 

So, I, as usual I take x as the flow direction and z as the direction in the perpendicular to 

the flow. Fluid velocity is in the x direction and the velocity is varying only in the z 

direction. There is no change in velocity as you go along the x coordinate. So, if I were 

to write from momentum balance equation for this I would have to write it of the form; d 

u x by d t is equal to nu times d square u x by d z square. However, there is also a force 

acting on this due to the gravitational field. There is a force acting on this along the x 



direction due to the gravitational field because it is inclined at a fixed angle to the 

horizontal. 

Once again I will take the layer thickness as H and I would like to find out what is the 

velocity profile as a function of H. What are the boundary conditions for this case at the 

bottom surface there is a solid wall which is not moving? Therefore, I require that at z is 

equal to 0; u x is equal to 0. What about the top surface? At the top surface, the fluid 

layer is in contact with a gas or with vacuum. Even if it is in contact with a gas, the 

viscosity of the gas is much smaller than the viscosity of the liquid. Liquids usually have 

viscosities of two to three orders of magnitude higher than gases. Therefore, the viscosity 

of the gas is much smaller than the viscosity of the liquid. 

The shear stress applied by the gas is much is negligible compared to any stress that 

would be exerted by the liquid. Therefore, at the free surface itself since the viscosity of 

the gas is small. The sheer stress exerted by the gas is small at the interface you require 

continuity of stress between the liquid and the gas. That means, that at z is equal to H 

you require that the sheer stress in the liquid go to 0 because the viscosity of the gas is 

small compared to the viscosity of the liquid. That means, if the shear stress that is 

exerted in the gas is small compared to the internal stresses within the liquid. So, as you 

approach the interface from the bottom, you require that the internal stresses in the liquid 

should go to zero. So, that they match with the stress in the gas. 

Tau x z is equal to 0 implies that mu times d u x by d z is equal to 0 or the boundary 

condition is d u x by d z is equal to 0. So, the derivative of the velocity with respect to z 

has to be 0 at the top surface. We should put in here force per unit volume. So, what is 

the force acting in the horizontal direction? This is as I said a force per unit volume f x is 

a force per unit volume acting along the x direction. The component of the gravitational 

acceleration is g times sine theta along the x direction. The component of the 

gravitational acceleration along the x direction is equal to g times sine theta because 

theta is the angle of the inclined plane with respect to the horizontal. Therefore, the force 

per unit volume acting on every volume of fluid has to be g times sine theta times the 

density. 

So, this is the force acting along the x direction on every differential volume of the fluid. 

So, therefore, if I put this into the governing equation I get d u x by d t is equal to nu 



times d square u x by d z square plus g sine theta. So, that is my equation for the velocity 

field. How do I non-dimensionalize my variables? Once again H is the natural length 

scale in the z direction. So, I can define z star is equal to z by H. What about u x? In the 

previous examples there was a well defined velocity of the boundary. I had the boundary 

condition u x is equal to capital u at z is equal to 0 and u x is equal to 0 and z is equal to 

1. In this case the boundary conditions are both homogenous. There is no velocity at the 

boundary u x is equal to 0 on one surface and the derivate is 0 on the other surface. So, 

there is no velocity scale emerging from the boundaries. 

However there is a velocity scale that emerges from the fact that there’s a body force 

acting on the fluid. So, therefore, what I can do is to divide throughout by g sine theta 

and use that to scale the velocity. So, if I divide throughout by g sine theta, I will get one 

by g sine theta partial u x by partial t is equal to mu by H square g sine theta partial 

square u x by partial z star square plus one. Now, this thing gives us a clue about how we 

should scale the velocity because if I define u x star is equal to u x times nu by H square 

g sine theta. 

If I define it this way then that entire term becomes dimensionless. One is dimensionless 

anyway. So, this gives us a way to scale the velocity and you can easily see that it is 

dimensionally consistent. On the top we have velocity which is length per unit time, 

kinematic viscosity is length square per unit time. So, you get length cubed by time 

square. On the bottom H square length square and g is length per unit time square. So, 

length cube by time square. So, it is dimensionally consistent. 

So, therefore, in this case the velocity scale is coming from the forcing within the fluid 

not from the boundaries. So, if I put this in then I will get an equation of the form partial 

u x star by partial t star is equal to partial square u x star by partial z star square plus 1 

where z star is equal to z by H and u x star is equal to u x nu by H square g sine theta and 

you will find that t star is the same that I had earlier t star will be equal to t nu by H 

square. So, the time scale is once again scaled by the time. It takes for momentum to 

diffuse across the entire channel the distance is scaled by H itself and u x star has a 

scaling which is given by a balance between the body forces. So, the scaling for u x star 

that we got was by taking a balance between the body forces which are here and the 

viscous stresses over a layer of thickness each. 



(Refer Slide Time: 28:00) 

 

So, this has given us the scaling for u x star. So, what are the boundary conditions? u x 

star i equal to 0 at z star is equal to 0 at z star is equal to 0 and d u x by d z is equal to 0 

at say this star is equal to 1. So, these are the boundary conditions for the flow and let us 

solve this differential equation subject to boundary conditions. Note that the boundary 

conditions are homogeneous. The boundary conditions do not contain any 

inhomogeneous term in them. So, far whenever we have solved diffusion in the channel, 

the boundary conditions have contained an inhomogeneous term. There was a velocity u 

at the boundary there was a temperature t star is equal to 1 at the boundary or constasion 

c star is equal to 1 at the boundary. In this case the boundary conditions do not contain 

any homogenous terms. The driving of it comes from the source within the equation 

itself. In case the driving comes from the existence of a source within the equation itself. 

So, first thing steady solution; in the absence of a time dependence the equation becomes 

d square u x by d z square plus 1 is equal to 0 and the solution is quite easy to get. The 

solution for this is u x is equal to z minus z square by 2. It is easy to verify that this 

solution z minus H square by 2 satisfies both of these boundary conditions at z is equal to 

0 u x is equal 0 and at z is equal to 1 the derivative is equal to 0. So, this satisfies both 

boundary conditions. 

So, this is the final solution for the velocity profile at steady state. I express this back in 

terms of the dimensional velocity u x is equal to u x star into H square g sin theta by mu 



and this will be equal to g sin theta by mu into z H minus z square by 2. So, this is a 

parabolic velocity profile. So, velocity profile for the flow down in an inclined plane this 

quadratic in the velocity z it starts out with 0 then you get a parabolic velocity profile and 

at z is equal H the derivative of the velocity with respect to z is equal 0. The sheer stress 

is 0 and therefore, it satisfies the stress balance condition between the fluid and the gas 

that is in contact. So, this is the velocity profile for the flow down inclined plane. 
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Now, this is the steady solution. Now what about the n steady solution? So, we can 

consider for example, get the flow down inclined plane. This is the final steady solution 

and the solution satisfies the boundary conditions at z is equal to 0 and z is equal to H. 

So, the equation is d square sorry d u x by d t is equal to d square u x by d z square plus 1 

in non dimensional terms. The boundary conditions are u x is equal to 0 at z equal to 0 

and the stress is 0 at z is equal to 1. 

Now, we want to solve for the unsteady case. So, the idea is as follows: initially the film 

is horizontal. So, that the velocity is identically equal to 0. At time is equal to 0 you tilt 

the film to this angle you tilt to an angle theta and the fluid starts to flow. The flow is still 

fully developed in the sense that there is no variation in the x direction. However, the 

flow does increase with time to reach the final steady sate. So, because of that you 

require to find out what is the profile at intermediate times as it is evolving to the final 



steady state. Similar to the problem that we solved for the instantaneous start up of a 

plate at using separation of variables. 

So, this is also an initial condition which is that at t is equal to 0 u x star is equal 0 for all 

z star. At time t is equal to 0 the velocity is 0 everywhere. So, we have to solve this 

equation subject to the initial length boundary conditions. The solution procedure is 

similar to the separation of variables solution procedure that we had earlier. So, we have 

to follow the same steps in order to get solution for this as well. There is a complication 

when you have body forces and it is in order to point that out I am going through this 

solution procedure. 

So, as in the previous case I will separate u x into a steady part plus a u transient part. So, 

I separate the velocity profile into a steady part plus a transient part. The steady part I 

already know what the solution is. The steady part satisfies the differential equation d 

square u x by d z square plus one is equal to 0. The steady part satisfies this equation and 

I got the steady solution is equal to z minus z square by 2. So, we already got the steady 

solution. 

Now, the total differential equation satisfies this equation satisfies this equation and the 

steady part satisfies this equation. Subtracting the two, I can find out what is the equation 

for the transient part. So, from the equation for the total velocity profile, I subtract out 

the equation for the steady velocity profile and note that d u x s by d t is equal to 0 

because it is steady. It does not depend upon time and then I will get an equation for the 

transient part alone, d u x t by d t is equal to d square u x t by d z square. So, that is the 

equation for the transient part alone. Note that the equation for the transient part does not 

contain an in homogenous term similar to this form. The equation to the transient part 

does not contain this in homogeneous term. 

Once I have the equation I also should impose the boundary conditions. For the total 

velocity field I have u x is equal to 0 at z is equal to 0, derivate is 0 at z is equal to 1. For 

the steady part I have exactly the same boundary conditions. u x is equal to 0 at z is equal 

to 0 and u x is the derivative is 0 at z is equal to 1. That means, that the equation for the 

transient part will also have boundary conditions and d u x by d z. So, it has the same 

boundary conditions as the steady part and the total velocity profile. However, the initial 



condition is different. Initial condition for the total velocity field is u x is equal to 0 for 

all z at t is equal to 0. 

The steady part of course, is independent of time. It is the same at all times. Therefore, 

the initial condition for the transient part has to be u x transient is equal to minus u x 

steady at t equal to 0. Only if u x transient is equal to minus u x steady, the sum of the 

two will be equal to 0 which means that the total velocity u x will be equal to zero. So, 

one has to careful while defining the initial length of boundary conditions. In the 

equation itself when I subtract out the equation for the steady part from the total equation 

since both of them contain the in homogeneous term, the equation for the transient part 

does not contain any in homogeneous term. So, this equation for the transient part does 

not contain any in homogeneous term. The boundary conditions were homogeneous for 

both cases. But, we have to be careful about the boundary condition for the transient I am 

I am sorry you have to be careful about the initial condition for the transient part because 

it will contain a contribution due to the initial condition for due at time it is equal to 0. 
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So, to summarize the equation for the transient part is d u x transient by d t is equal to d 

square u x transient by d z square. The boundary conditions are u x transient is equal to 0 

at z is equal to 0 and u x transient, the derivative 0 at z star is equal to 1 and the initial 

condition was u x transient is equal to minus u x steady is equal to minus of z minus z 

square by 2 at t equal to 0. So, we have to solve this equation with these initial and 



boundary conditions. The method is exactly the same, separation of variables. Note that 

now I have an equation which is entirely homogenous. That is essential for the separation 

of variables procedure as I will show you. 

(Refer Slide Time: 41:16) 

 

If I have, if I substitute u x transient is equal to theta of t times z of z star into the 

differential equation; then I get partial theta is equal to theta times t square z by d z star 

square and if I throughout by theta times z, I get one by theta partial theta by partial t is 

equal to one by z partial square z by partial z star square. 

Once I have this, the left hand side is only a function of time the right hand side only a 

function of z and I can effect a, I can set both of those equal to constants. If on the other 

hand I had an in homogeneous term here, which would look something like plus one in 

the present case. In this case I would have got something that goes as one over theta 

times z and then I could not have done a separation of variables because the right hand 

side also contains the function of time. So, it is essential when we do separation of 

variables that the equation be homogeneous. It should not contain any in homogeneous 

terms and you reduce it to homogenous equation by subtracting out the steady part which 

already has the in homogeneous term in it. Because we do not have these terms, we are 

able to do a separation of variables solution. So, it is a essential, if you recall when we 

did the flow between two flat plates we had in homogeneous boundary conditions u z 

was equal to 0 at z equal to 1 I am sorry t was equal to 0 at z is equal to 1 1 at z is equal 



to 0. However, when we subtracted out the steady part for the transient part alone we had 

temperatures equal to 0 on both surfaces and a similar reduction and and because of that 

we got homogenous boundary conditions on both surfaces. A similar reduction has to be 

done when there are in homogeneous terms in the equation as well due to sources, sinks, 

body forces and so on. 

Once that is done then I can set both of these equal to constants. What constant should 

they be? Once again one by z d square z by d z star square if it were a positive constant I 

would get exponentially increasing and decreasing functions and it would not satisfy 

boundary conditions. If it were negative constant I would get sinusoidal solutions and 

then there is a chance to satisfy boundary conditions if I chose the constant appropriately. 

So, this I can write it as a negative constant beta n square. That means, that z is equal to a 

sin beta n z star plus b cos beta n z star and then I have the boundary conditions on the 

velocity at z is equal to 0 capital z is equal to 0 which means that b is equal 0. At z is 

equal to 1, I have at z is equal to 1 I have the boundary condition d u x by d t is equal to 

0 I am sorry I have d u x transient by d z is equal to 0. Since all of the dependence on z is 

contained within the function capital z itself if I want to satisfy the boundary condition; I 

need to a ensure that d z by d z star is equal to 0 at z equal to 1. Because the derivative of 

velocity with respect to the z coordinate has to go to 0. Velocity is the product of two 

functions; one is the function of time, the other is a function of z. When I take the 

derivative of velocity with respect to z. This first theta is independent of z and therefore, 

I just get d z by d z star and if d u x by d z star has to be 0. That means, d f capital z with 

respect to d z star has to be equal to 0 and this implies that beta n has to be the slope of 

the sin function is equal to 0 sin beta and z star d by d z star of that is equal to 0. That 

means that cos beta and z star has to be equal to 0. That means, that beta n has to be 

equal to half 3 by 2 5 by 2 etc to infinity. Only f beta n is these values will you have the 

slope of the sine function being 0 at z is equal to 1. I can write this compactly as n plus 1 

2 n plus 1 by 2. So, for n is equal to 0 its half for n is equal to 1 its 3 by 2 n is equal to 2 

its 5 by 2 and so on. 
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Therefore, my solution for the function z is a sin of 2 n plus 1 pi z by2. I made a mistake 

in the previous one; this should be pi by 2. So, that is the equation for capital z and I also 

have one by theta d theta by d t is equal to minus beta n square is equal to minus of 2 n 

plus 1 pi by 2 whole square. Solving this I will get the exponential function theta is equal 

to e power minus 2 n plus 1 pi by 2 the whole square times t. 

So, that is the final solution. u x transient will be equal to theta times z is equal to a times 

sin whole square t star. So, this is the solution. This satisfies the equation for any value 

of z. So, the most general solution is a summation n is equal to 0 to infinity of A n times 

this; a linear combination of all of the solutions. How do we determine the coefficients A 

n? Using the orthogonality relations once again. 

So, for this particular problem if you recall for the flow in a channel the basis functions 

were sin of n pi z by n pi times z star whereas, here the basis functions are two n plus one 

pi by z star by 2. So, I define S n is equal to sin of 2 n plus 1 pi z star by 2 and the 

orthogonality function the inner product S n comma s m is equal to integral 0 to 1 d z star 

S n times s m which shows once again equal to delta m n by 2. You can work it out for 

this function as well. It gives you the same identical result as that of sin of n pi z. 
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So, now I to use the orthogonality conditions at the initial time t is equal to 0. At t star is 

equal to 0 like u x t is equal to summation A n sin of 2 n plus 1 pi z by 2 which is equal 

to summation of A n times S n. That is equal to minus of the steady solution which was 

minus of z minus z square by 2. So, minus is the steady solution. So, how do I find out 

the coefficients and I take the inner product of both the left and the right hand side with 

respect to S n. So, summation of A n; S n , s m is equal to inner product of z star minus z 

square by 2 comma s m. This is equal to summation A n into delta m n by 2. So, it is 

minus integral d z of z star minus z star square by 2 sin of two m plus 1 pi z by 2. 

So, this is A m by two and you can work out this integral quite easily to get a solution 

which is minus 1 by pi cubed into 2 m plus 1 by 2 whole cubed and therefore, A m is 

equal to minus 2 by pi cubed into 2 m plus 1 by 2 whole cubed. 
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So, that is the final solution. u x transient is equal to minus x summation n is equal to 0 

to infinity minus 2 by pi cubed sin into the exponential part 2 t. 

So, this solution has all of the features of previous solution by separation of variables. 

You have a series of harmonics complete basis set and the higher order terms in the 

series decay exponentially in time and as n increases, the rate of decrease exponentially 

in time is faster. So, these are the same characteristics as the solution for the flow 

between flat plates except that the basis functions are not slightly different. The previous 

case we required the basic functions to be 0 on both boundaries. So, it has sin and pi z 

the present case we require the basis functions to be 0 on one boundary and the slope to 

be 0 on the other boundary. That is the only difference and because of that the basis 

functions were sine of 2 n plus 1 pi z by 2 and they have an exponential decay. 

The decay rate will be approximately the same in both the cases because two n plus one 

by two for large n is approximately equal to n. So, this gives you a flavor of how one 

solves a separation of variables for this particular case. When we did the separation of 

variables for the flow between flat plates, we have to ensure that the velocity on both 

surfaces for the transient part was 0. In this case we have to ensure that there was no in 

homogeneous term of equation of motion. So, that is the only difference. 

So, this is second example of separation of variables that I have showed you in order to 

solve the transient problem. So, this is an example of momentum transfer were there are 



sources and sinks. Next class we will look at a couple of problems I heat and mass 

transfer were there are sources and sinks. After that we will go into looking at other 

configurations such as cylindrical coordinates and so on. So, we will continue 

unidirectional flow in the next class with other examples of flows in with sources and 

sinks and then we will proceed later on to looking at cylindrical and spherical coordinate 

systems. 

So, that completes the separation of variables part of this lecture. We will see it again 

when we do cylindrical coordinates, but, as far as Cartesian coordinates is concerned; 

this completes the various solution procedures that we have used. Similarity variables, 

separation of variables and oscillatory flows; three techniques that I have thought you for 

Cartesian coordinates we will see them again in other coordinate systems. But, before 

that we will solve a couple of problems whether our sources and sinks within the flow 

for heat and mass transfer. So, we will see you in the next lecture and we will continue 

unidirectional flows there. 

Thank you. 


