
Fundamentals of Transport Processes 
Prof. Kumaran 

Department of Chemical Engineering 
Indian Institute of Science, Bangalore 

 
Module No. # 03 
Lecture No. # 12 

Unidirectional Transport Cartesian Co-ordinates – V 
(Separation of Variables) 

 

Welcome to lecture number 12, fundamentals of transport processes, where we were 

looking at unidirectional transport using the method of separation of variables. This is an 

important solution procedure. So, we will go through it in some detail to illustrate some 

of the intricacies involved in nationally implementing it properly. Because once we 

implement it properly, then it is a very powerful tool to be used for solving not just 

transient problems, but also problems involving variations in different coordinate 

directions. 
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So, the problem that we were considering was as follows: This was unsteady diffusion in 

a finite channel; I have 2 plates, 0 and H, the temperature at the bottom is one, the 

temperature of the top is 0 in scaled variables. 



In the final steady state, one would expect that the temperature in the limit T going to 

infinity, reaches a linear temperature profile, where the temperature varies linearly with 

position. However, the transient temperature profile is not linear, it evolves from initially 

0 temperature throughout the channel to a final linear temperature profile. Because had it 

applied the initial condition that both the bottom and the top plate temperatures were 0 

initially, at T equal to 0, the entire fluid was at T star equal to 0, at time T equal to 0. 

And at T equal to 0, I instantaneously switched the temperature at the bottom from 0 to 1 

and then I look at how the temperature field evolves as a function of time. So that was 

the problem to solve for the unsteady evolution of temperature within this channel. 

The differential equation that we consider is the usual one for the unsteady case, with no 

sources and no sinks. It is just partial of temperature with respect to time is equal to 

alpha times d squared T by dZ square, and T star is equal to 1 at Z is equal to 0 and 0 at 

Z is equal to H. 

We had defined the scaled Z coordinate as Z star is equal to Z by capital H and we put 

into that equation and managed to get out a scaled time T star is equal to t alpha by H 

square. This is a dimensional necessity, because the only parameters in the problem are 

alpha, the thermal diffusivity, and H, which is the distance between the two plates. 

Therefore, I can get only one time scale out of this problem, which is H square by alpha. 

So, I can define only one dimensionless time as t alpha by H square. 

So that was the rational for choosing this dimensionless time. Physically this can be 

interpreted as follows: alpha by H square, if the time is H square by alpha, which is the 

time it would take for thermal diffusion of energy over a distance proportional to edge. 

So, this H square by alpha is time scale over which would expect diffusion of heat over a 

distance comparable to edge and therefore, equilibration of the temperature field over a 

distance H. 

So, when T is large compared to alpha by H square, the diffusion has already taken place 

over the entire extent and the system has reached a final steady state; when T is small 

compared to alpha by H square, the diffusion does not progress very fast. So, because of 

that, it is confined to a thin boundary layer near the surface; a penetration layer of depth 

is equal to square root of alpha T. 



So, T star gives me some indication of the time over which diffusion would takes place. 

If T star is large compared to 1 or T is large compared to H square by alpha, I would be 

attaining the steady state temperature, that is, if T star is small compared to 1 or T is 

small compared to H square by alpha, the temperature should be in the very initial stages 

of development, where the penetration depth of temperature into the medium is small. 

So, there is physical interpretation of this time scale T star, when expressed in terms of 

the scaled time and the scaled coordinate, the final equation that I get has no dimensional 

parameters in it. So, it is a completely dimensionless equation, when expressed in this 

form. 

As I said, in the limit as time going to infinity, I should reach the final steady 

temperature. That final steady temperature is equal to 1 minus H star and that satisfies 

the equation d square T by dZ star square is equal to 0, with temperature is equal to 1 at 

the bottom and 0 on top. 
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So, in the limit as t is going to infinity, you should reach this final steady state 

temperature. So, before progressing we made decomposition in the temperature. We 

wrote it as two parts: one is steady part and the other is the transient part. The idea is that 

if the system reaches the final steady state, the transient part has to go to 0 and T should 

just be equal to T s. 



So, therefore, the transient part of the temperature is the correction to the temperature 

profile, for T being of order 1 or small. In the limit of T being large, this will go to 0. So, 

having separated the temperature into a steady and the transient part, we have to separate 

the equations also into individual equations for the steady and the transient part. 

The steady part, d square T s by dZ square is equal to 0, is the equation for the steady 

temperature profile, with boundary condition T s is equal to 1 at Z is equal to 0 and T s is 

equal to 0 at Z is equal to 1; hot at the bottom and cold at the top. 

For the total temperature field, that is T star is equal to T s plus the transient part, I can 

write that same differential equation once again, partial of T s plus T t, the partial time, is 

equal to the second derivative with respect to Z of the transient plus the steady part. The 

steady part is independent of time and its time derivative is 0. The steady part also 

satisfies d square T s by dZ square is equal to 0. So, my differential equation for the 

transient part reduces to just a simple form; the exact same form that I had for the 

original temperature profile, dT transient by dT star is equal to 0 and is equal to d square 

T transient by dZ star square. 

However, there is a difference in the boundary conditions. For the steady part, I have T s 

is equal to 1 at Z is equal to 0, T s is equal to 0 at Z is equal to 1. For the total 

temperature profile, I have T s plus T t is equal to 1 at Z is equal to 0, T s plus T t is 

equal to 0 at Z is equal to 1; subtract the two and I will get T transient is equal to 0 at 

both Z is equal to 0 and at Z is equal to 1. So, as I said, these are homogeneous boundary 

conditions in the Z coordinate. The transient part of temperature is 0, both at Z is equal to 

0 as well at Z is equal to 1. So, it satisfies homogeneous boundary conditions in the Z 

coordinate. 
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However, even though the boundary conditions are homogeneous in the Z coordinate, 

they are not homogeneous in time. At time t is equal to 0, the initial condition for the 

temperature field was that T star is equal to 0 at all Z greater than 0, that means the 

transient plus the steady part has to be equal to 0 at all Z greater than 0. That means for 

the transient part alone, the boundary condition is T transient is equal to minus the steady 

state at Z is equal to 0 or T transient is equal to minus 1 minus Z star, and it explained 

the physical significance of this in the previous class. 

These homogeneous boundary conditions in the two spatial coordinates, means that there 

is no temperature forcing for the transient part alone at the two boundaries. The steady 

part thus have T star is equal to 1 at Z equal to 0 and T star is equal to 0 at Z is equal to 

1, but for the transient part the boundary conditions are both T star is equal to 0 at both Z 

is equal to 0 and Z is equal to 1. 

Whenever boundary conditions are of the form either the temperature or its derivative is 

equal to 0, these are referred to as homogeneous boundary conditions, because there is 

no force sink; over there is no finite temperature that is imposed at those boundaries. 

However, the initial condition is not homogeneous. We have a non-homogeneous initial 

condition, which is actually the reason why T transient is not equal to 0. In the limit as T 

going to infinity, it will of course, decrease to 0 in the long time limit, but at intermediate 



times is not equal to 0, because the transient temperature field has been forced at the 

initial time; at T star is equal to 0. 
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So, the solution of these equations, which we had briefly started it in the previous lecture 

is a method called separation of variables. So, we write this temperature which is a 

function of Z and t, as the product of two terms, one is only the function of Z and the 

other is only a function of t. So, the function of both Z and t is separated into two parts, 

one of which is only a function of Z and the other is only a function of, and this is put 

into the equation. So, I get d by dt of Z theta is equal d square by dZ star square of Z 

theta. Note that Z is only a function of Z star and theta is only function of t star. So, this I 

can write it as Z times d theta by dt is equal to theta times d square Z by dZ star square. 

Note that I have used the total derivative d here, the reason is because theta is only a 

function of t. Therefore, the partial derivative also equal to total derivative, because it is 

only a function of one variable. Similarly, Z is a function only of Z star and therefore, it 

is a total derivative. I divide throughout by Z times theta to get 1 over theta d theta by dt 

is equal 1 over Z d square Z by d Z star square. 

Now, in this equation, the left hand side is only a function of time, and the right hand 

side is only a function of Z, that means that both of these are equal to constants and the 

reason is as follows: Let as assume that it is not equal to a constant. Let us assume that 



the left hand is only a function of t and the right hand side is a function of Z and both are 

equal. 

In that case, I can keep Z a constant and change t. If I do that, the left hand side changes, 

the right hand side does not, because I kept Z a constant and changed t. So, if the left 

hand side changes and the right hand side does not, then the equality is no long valid. 

Conversely, I can keep t, a constant and change Z in that case, the right hand side 

changes and the left hand side does not and therefore, I will end up with a situation 

where the equality is no longer satisfied. 

The only way that the equality can be satisfied for all values of Z and t is, if both of these 

are equal to constants. So, therefore, I require, just from the condition, that the left hand 

is only a function of t and the right hand side is only a function of Z. From that I can 

infer, from an equation of this kind both of these, left hand and the right hand side, has to 

be a constant. 

So, what is that constant? Now, let us look at how to solve for this constant. So, I have an 

equation 1 over Z d square Z by dZ star square is equal to some constant alpha. Is that 

constant positive or negative? Let us try to solve this and see. So, therefore, the equation 

d square Z by dZ star square is equal to alpha times Z. For the moment we will assume 

that this constant is positive. The solution of this will be of the form Z is equal A e to the 

power root alpha Z star plus B e to the power minus root alpha Z star. 

Now, what are the boundary conditions for Z? I have got the two constant, I have solved 

a second order differential equation and now, those two constants have to be determined 

by boundary conditions for Z. What are the boundary conditions for Z? I require that the 

temperature has homogeneous boundary conditions, both at Z is equal to 0 and at Z is 

equal to 1, the temperature is 0. It is 0 at all times and therefore, I require that Z has to be 

equal to 0, both at Z star is equal to 0 and Z star is equal to 1. 



(Refer Slide Time: 17:24) 

 

So, therefore, in this case, I require the boundary conditions Z is equal to 0 at Z star is 

equal to 0, and Z is equal to 0 at Z star is equal to 1. Insert those boundary conditions 

here and I will get A plus B is equal to 0 and A times e to the power root alpha plus B e 

to the power minus root alpha is equal to 0. I just put Z star is equal to 0 in the first 

equation, and Z star is equal to 1 in the second equation. From these equations, you can 

easily see that only solution that I will get is that A is equal to 0 and B is equal to 0, 

which means that capital Z is equal to 0. Therefore, in this case, I do not get any non-

trivial solutions for Z. The solutions end up just being the trivial solution that Z is equal 

to 0 everywhere and therefore, T transient will be equal to 0. 

Now, that was because I happened to choose a value of alpha, which was positive. What 

happens if I choose the value of alpha that is negative? So, let us look at that. This was 

one particular choice of alpha, let us look at some other negative choice of alpha. So, I 

will take the equation of the form A is equal to minus some constant square so that this 

beta is negative so that the constant that I have here is a negative value. Beta square is 

always positive and therefore, the right hand side is negative. The equation reduces to d 

square Z by dZ star square is equal to minus beta square Z. The solution for this is Z a 

combination of a sin and a cos function. 

The boundary conditions are Z is equal to 0 at Z star is equal to 0, and Z is equal to 0 at 

Z star is equal to 1. It is sin 0 anyway. Therefore, I require that B is equal to 0 from the 



first condition, because at Z star is equal to 0 sin of 0 is 0; cos 0 is 1 therefore, B has to 

be equal to 0. At Z star is equal to 1 since B is already equal to 0, I require that A sin of 

beta Z star has got to be equal to 0. One option is of course, that A is equal to 0 in which 

case, I do not get any non-trivial solutions once again, I get just the trivial solution. 

But wait, there is another possibility and that is that sin of beta Z star is equal to 0. If sin 

of beta Z star is equal to 0, then the boundary condition is satisfied. But for that, I require 

to take beta to be specific values. If I take beta is equal to n times pi, where n is an 

integer, I will call this as beta n, where n is any integer value. So, n is equal to 0, sin of 0 

is 0, n equals pi, sin pi is equal to 0 and Z star is 1pi, 2 pi, 3 pi, etcetera. 

Any value of the integer will satisfy this equation. So, I do get non-trivial values for the 

solution to this equation, but I have to choose the value of beta to be specific values. So, 

therefore, this first guess that we had of a positive value did not give any non-trivial 

solutions. So, I chose positive value and yet, did not get any non-trivial solutions. 

However, when I choose a negative value I managed to get non trivial solution, but only 

for the case, where this coefficient beta has a specific value. 
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So, therefore, the solution for the case, where beta has a specific value is, Z is equal to A 

sin beta n Z star is equal to A sin of n pi Z star. What about the other part of the equation 

which was the variation in time? So, this was equal to minus beta square and this is also 

equal to minus beta square. Therefore, I can solve for the second part of the equation, 1 



by theta d theta by dt is equal to minus beta square, which is minus n pi the whole 

squared or d theta by dt star is equal to minus n pi the whole squared theta or theta is 

equal to e to the power minus n pi the whole squared times t star. 
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Now, we had chosen the value of beta, we had chosen the constant to be negative, 

because we got a non-trivial solution for this constant beta here. In this particular 

equation, we chose it to be negative so that we got a non-trivial value of the beta for the 

separation of variables problem for this equation.  If we chose it to be positive, we would 

get the solutions of the equation to just be 0. 

However, that is consistent with the solution that I am getting for T. Because I am 

getting something that is exponentially decreasing in time and the transient part will go 

to 0 only if it decreases exponentially in time. If I chose the constant here to be positive, 

I would have got solutions that increase exponentially in time and clearly that is not 

going to reach a steady state. 

So, I require solutions that decrease exponentially in time and therefore, I require this 

constant to be negative. So, therefore, both of these parts of the solution of the separation 

of variables are consistent with each other. 
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So, let us put all of that together and finally we get T t is equal to A sin n pi Z e to the 

power minus n square pi square t. So, this is one solution, it satisfies any differential 

equation. So, this satisfies the differential equation and the boundary condition, if n is 

equal to 0, 1, 2, 3, etcetera. So, no matter what the value of n, this form of the solution 

satisfies the boundary condition as well as the differential equation. We still have not 

imposed the initial condition; we will come back to how to impose that little later. But 

this is one particular solution of the differential equation, which satisfies both boundary 

conditions. This is true for n is equal to 0, n is equal 1, etcetera. So, the most general 

solution is the sum of all of these solutions. So, the most general solution that I can get is 

summation n is equal to 0 to infinity of A n times this. So, since it satisfies it for n is 

equal to 1, satisfies it for n is equal 2, n is equal to 3, etcetera, the most general solution 

is one which is the summation of all these solutions. Now, we have to determine what is 

the coefficients A n we have to find out what these coefficients are in order to find out 

what the final solutions. 
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These coefficients can be determined using something called orthogonality conditions. 

And these conditions are defined on the domain between 0 and 1; Z star is equal to 0 Z 

star is equal to 1 was the domain of interest and these orthogonality conditions are 

defined on that domain. 

These are easy to do by simple integration. If I take integral 0 to 1 dZ star sin of n pi Z 

star sin of n pi Z star. So, if I just take two functions, sin of n pi Z star and sin of m pi Z 

star and integrate from 0 to 1, this is equal to 1 by 2 if m is equal to n and it is equal to 0 

if m is not equal to n. 

So, in a sense, these functions defined on this domain 0 to 1 are all orthogonal to each 

other. If you take one function multiplied by itself and then integrate it from 0 to 1, you 

get a half. You should take one function multiplied by some other function and integrate 

from 0 to 1, you will get 0. So, every function, when integrated with any of the other 

functions, all the way from n is equal to 0 to infinity, it ends up being 0. How does this 

help us? 

The initial condition we wanted was T star transient is equal to minus of 1 minus Z star 

at t is equal to 0. So, this was equal to minus the steady state temperature, because T 

transient plus T steady was equal to 0 at time T s equal to 0. Therefore, T transient was 

minus 1 minus Z star at t is equal to 0. 
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Now, we have the solution for the temperature field. Therefore, at t star is equal to 0, T 

star transient is got to be equal to summation n is equal 0 to infinity of A n sin of n pi Z 

star. And this, from the initial condition, is got to be equal to minus of 1 minus Z star. 

So, I have to determine all of these coefficients A n, all the way from minus equal to 0 to 

infinity from this particular equation. 



So, in general, this equation contains an infinite set of coefficients, but this is where the 

orthogonality relations can be crucial in determining each of these coefficients and that is 

done as follows. 
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So, this equation that I have, I take both the left and the right sides multiplied by sin of m 

pi Z and then I integrate this from 0 to 1. So, I multiplied by sin n pi Z on both sides of 

the equation and I integrate from 0 to 1. What do I get on the left hand side? Summation 

n is equal to 0 to infinity times A n times half times something, which is 1 if n is equal to 

m and it is 0 if n is not equal to m. This thing, I will call it as the delta function; this delta 

mn is 1 if n is equal to m and it is 0 if n is not equal to m. 

So, I just get half A n times delta mn sin Now, on the left hand side, I have the 

summation delta mn times A n from n is equal to 0 to infinity. So, I have n going to 1, 2, 

3, 4, 5, 6 all the way to infinity, but delta mn is nonzero only when n is equal to m. For 

example, if m is equal to 23, delta mn is not nonzero when m is equal to 23. Therefore, 

on the left hand side, I will get only A23. If m is equal to 2, then the only term on the left 

hand side I will get is A2 divided by 2. 

Since it is nonzero only when n is equal to m, this can effectively be written as half A m 

times this. So, this now gives us each and every one of the constants in that expansion. 

So, A m is equal to minus 2 integral dZ star 1 minus Z star sin of and you can evaluate 



this constant and this turn out to be equal to minus 2 by m pi for odd; m is equal to 0 for 

even. 
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So, putting all these together, with this coefficient for m, I will get finally the transient 

temperature field, T star is equal to minus summation n is equal to 1, 3, 5, etcetera to 

infinity of 2 by n pi sin of n pi Z star e to the power minus n square pi square times t star. 

So that is the final solution for the temperature field. This is only the transient part and 

you can see that it is equal to 0 at Z is equal to 0, it is equal to 0 at Z equal to 1, it is 

equal to 0, when the limit as t goes to infinity. Everything that was required with the 

transient part of the temperature field and the total temperature is equal to this plus the 

steady state that is 1 minus Z star minus 2 by n pi sin of n pi Z. So that is the final 

solution for the temperature field. 

You can see that higher order terms in that expansion are decaying exponentially as e to 

the power minus n square. So, at any finite time these higher terms will become smaller 

because as n increases, this exponential is going as e to the power minus n square. So, 

because of that, the higher order terms will decay even faster. So, if I want a good 

numerical approximation, I can cut off the series at some particular finite value of n and I 

will get a good numerical approximation for this temperature field. 



So, we managed to get a mathematical solution for this temperature field. How about a 

physical field for what it all means? What do these orthogonality relations mean? So, let 

us assume that I define two functions, S n is equal to sin of n pi Z and S m is equal to sin 

of m pi Z. I can define what is called an inner product of these two functions. I will use 

angular brackets for here, S n comma S m and is equal to integral 0 to 1 dZ S n of Z S m 

of Z and I did the calculation to show you that this is equal to delta mn by 2. 

So, these two functions are orthogonal to each other. In a similar sense that for example, 

in 3-dimensional space, unit vectors are orthogonal to each other. For example, if you 

had a 3-dimensional coordinate system with unit vectors e x, e y and e z they are all 

orthogonal to each other. That means if I take the dot product of two vectors, e x dot e y, 

I will get 0; if I take the dot product of the same vector itself, e x dot e x, I will get 1. 

So, the inner product here, which I have defined for you, is analogous to the dot product 

of two vectors. Therefore, the inner product is nonzero only if you take the inner product 

of one function with itself. If we take the inner product of one function with some other 

function, it turns out to be 0. 
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So, in that sense, each of these functions is orthogonal to every other function. What are 

these functions? Within this domain, I have Z star in this direction. For n is equal to 0, 

sin pi times Z star is 0, both at Z is equal to 0 as well as at 1. So, it goes to 1 at a half. 



So, it has a behavior that goes something like this. Then I have sin 2 pi, which will go 

something like this, 3 pi and 4 pi, which will be a still higher harmonic and so on. So, 

basically, I have a series of function each of which is orthogonal to every other function 

within this domain and this forms what is called a complete basis set functions. So, any 

function in this domain, for example, the functions that we had for the temperature 

profile, which was initially was something like this and then it decreased in time until it 

went to the final linear profile. Each of these functions, at all intermediate times, can be 

expressed as the sum of these basis functions multiplied by suitable constants. So, any 

function, just as in a 3- dimensional vector space, can be expressed in the sum of the 

components times the unit vector. 

So, one should think of these things as the unit vectors or the basic functions in this 

function space and these as the components of that basis function. So, basically you are 

decomposing the temperature profile into a set of bases functions. We know there is this 

conflict that any function can be expressed as sum of all of these functions. Each of these 

functions is orthogonal to every other function. And the only difference is that in vectors, 

you have only three directions. In this case, there is an infinite set of basis functions. As 

far as the analysis is concerned, that makes no difference. 
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So, in my solution procedure, what I have done is to express T star of t as some 

summation of A n times S n times e power minus n pi the whole square times t star, 



where S n is a function of Z is equal to sin of n pi Z. I know that at time t star is equal to 

0, this capital T, transient is equal to minus of 1 minus Z star. Therefore, the summation 

A n S n has to be equal to 1 minus Z. 

Now, what I have done is I have taken the inner product of both sides with respect to S n. 

So, I have taken the inner product of summation n is equal to 0 to infinity of A n S n 

comma S n ,where the inner is defined as follows. 
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So, I take the inner product of both the right and the left hand sides, with respect to the 

basis functions. It is like saying if I have an equation, which says that one vector is equal 

to another; I can take both the inner those sides with respect to the unit vectors in a 

similar manner and taking the inner product of both these sides with respect to the basis 

functions comma S n. 

Since the A ns are all constants, this is equivalent to writing summation n is equal to 0 to 

infinity of A n times S n, S m is equal to minus this inner product. S n and S m are 

orthogonal to each other. Therefore, n is equal to 0 to infinity A n by delta mn by 2, and 

delta mn is nonzero only when m is equal to n. Therefore, this will give me A m by 2 

minus and that was how I determined all of those infinite set of constants in the equation. 
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So, this process of expanding out the equation in terms of these basis functions here. In 

expanding out the entire domain from 0 to 1, in terms of this basis function, is equivalent 

to writing a vector in terms of the three basis vectors. In this particular case, you have 

infinite sets of basis functions, but any function can be expanded in that infinite set. The 

set is infinite, but there is no ambiguity in determining the components and the reason is 

because these functions are all orthogonal to each other. If they were not orthogonal to 

each other, when I took this inner product, I would get an a series of linear equations, 

which involved all of these coefficients. 



However, since they are orthogonal to each other, these coefficients are nonzero only 

when n is equal to m and therefore, without any ambiguity, I can determine what each of 

these functions are. The values of beta n, that I had is equal to n pi and these are called 

the Eigenvalues of this problem. And this S n, which was sin n pi Z by L, are called the 

Eigenvectors or the basis functions for this problem, and we have defined the inner 

product of this in such a way that these basis functions are all orthogonal to each other, 

and in that way we have manage to determine the entire solution to the equation. 
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Important points to note: At the beginning, I said that I require homogenous boundary 

conditions in the Z direction. The reason is because it is only with these homogenous 

boundary conditions that I manage to get a discrete set of values of beta which satisfy 

this equation. It was only because I had homogeneous boundary conditions on both 

boundaries, that beta was equal to n pi. So, it is important in all these cases to ensure that 

you have homogeneous boundary conditions in all directions expect one. You have to 

reduce the problem to one, where there is homogeneous boundary conditions in all 

directions expect one and that one in this case, the initial time t is equal to 0 that is where 

the forcing is taking place. It is only if you have homogeneous boundary conditions that 

you will end up with a discrete set of Eigenvalues and a discrete set of Eigen functions. 
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So, beta cannot take any value. It has to have value of an integer value of times pi and 

the Eigen function has to be of this form. For this particular equation, that Eigen function 

with the orthogonality relation defined in this manner gives you an orthogonal basis set 

and because the system is orthogonal, I can solve the equation using orthogonality 

condition to find out each of these coefficients uniquely. Once I have each of these 

coefficients uniquely, then I know the entire solution. This solution is an infinite series. 

So, if you wanted to determine the solution exactly, you would have to determine the 

infinite number of terms. However, the higher order terms in this series decay as e power 

minus n square; as n becomes large. 
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So, for example, I could get a good numerical approximation to this equation by writing 

it T star transient is equal to summation from n is equal 1, 3, etcetera to say up to some 

number p. p may be 50 or 100 and so on, of 2 by n pi sin of n pi Z star e power minus n 

square pi square t star. This is an approximate solution, because I have cut it off at some 

particular value of m; I have neglected the higher order terms in this expansion in n. 

What is the error that I am likely to make because of this? The error will be equal to T 

star T minus the approximate solution that I have. So, this is going to be equal to the 

summation from p plus 1 to infinity of 2 by n pi sin of n pi Z e power minus n square 

times pi square t. 

Now, we do not know exactly what the sin function as it is bounded, but we know that 

this has to be less than or equal to summation of p plus 1 to infinity 2 by n pi times e 

power minus n square pi square t. That is because the sin function is bounded from 

above; the sin function can be utmost 1. So, the error can be utmost summation of 2 by n 

pi times e power minus n square pi square t. 

So, in the limit, as n becomes large I can actually approximate this as an integral, dn into 

2 by n pi e power minus n square pi square t. And if I define another variable, n star is 

equal to n square pi square t to the half, which means that n is equal to n star pi by t star 

per half, then this error has to be less than or equal to integral from p star plus 1 to 



infinity of dn star into 2 by n star pi 2 by n star e power minus n star square, where p star 

is d is equal to p plus 1 by pi t star per half, where p star is equal to p pi t star per half. 

So, for a given time, I can always choose my p in such a way that the error becomes less 

than some specified value. So, as time progresses, the value of p that I choose will be 

smaller and smaller, because if this integral is fixed to a constant value, I can truncate my 

series at a smaller value of p and still get the error below a prescribed value. For 

example, if I wanted a 1 percent error maximum, I will have to choose my p depending 

upon the value of t in such a way that this integral is less than that. 

So, even though the series is infinite, I can use this to control the error in any expansion 

if I truncate it at some particular value in the series. So, we have theoretically got an 

infinite series, but in practice if t star is equal to 1, then this is a series, which causes 1 

over n, but if t star is equal to 0, then the exponential all become 1. So, long as t star is 

larger than 0, the higher order terms are going to decay exponentially as n increases and 

therefore, I can truncate it at some point. The point that I truncated goes to lower values 

of n as time progresses. So, I control my error in this manner and get a good numerical 

approximation for the separation of variable solution. 

So, you looked in some detail at the separation of variables procedure. I said that this is 

an important procedure and we will use it repeatedly later. I request you to go and revise 

this a little so that when it comes once again in later lectures, you will be familiar with 

this procedure and all the intricacies of this. 
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I will briefly review this once again before we go onto another method of solving the 

conservation equation in the next class and that is the method for oscillatory flows. If I 

had, for example, two plates and one was oscillated with some particular frequency, how 

do I find the velocity field within the entire domain? That we will continue in the next 

lecture, after we briefly revise the separation of variables-procedure that we conducted in 

this class. 

So, we will see you in the next lecture and we will continue unidirectional flows in the 

next lecture. 

Thank you. 


