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Stability Analysis – Basics 

Friends, let us continue our discussion on stability of chemical reactor. But before we go 

to this example little background if you recall in out last session we saw that when we 

are looking at the behavior of an adiabatic stirred tank reactor or even a stirred tank 

reactor with a jacketed vessel in which exothermic reaction is taking place. There is a 

possibility that there will be more than one steady state depending upon the operating 

condition that we choose.  

We also saw that there were three steady states for example, in a case of adiabatic 

reactor. Now out of these two steady states are inherently stable as we called them last 

time and one was inherently unstable. So what we will do in todays class is to look at 

some formal definition of stability and look at the condition, which needs to be satisfied 

for a steady state to be stable or steady state is unstable. 
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So let us start this discussion by looking at a system whose dynamics is given by x dot 

equal to f of x. Note here we assume that this is the dynamics which describe how 

system which is represented by state vector x. So this is a vector in n-dimensional space 

so it has component for example, x 1 x 2 up to up to x n. So this is a n-dimensional space 

that we are we are looking at. Now we would like to know the steady state, which 

satisfies this dynamics so let us say that that steady state is x of x of s again a vector and 

by very definition of a steady state it implies that x s dot when x is equal to x s which is f 

of x s, which is zero that is steady state implies that dynamics has disappear and we have 

reached a steady state which is invariant with time and hence the time derivative is 

derivative is zero. 
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So we would like to know whether this steady state x s is stable or otherwise. This is the 

question that we are trying to answer in todays session. First thing that comes to mind is 

what is meant by stable? So, what is a proper definition of a state to be stable steady state 

to be stable? So let us try to look at that by considering our dynamics let us say x dot 

equal to f of x and let us say that it is solution or it is trajectories are given by some 

function phi of t that is we do not know what this solution is but let us say that that 

solution is represented as some function phi of t where i is 1, 2 up to n our n-dimensional 

space. So what this trajectory or what these solutions imply is a moment in n-

dimensional space of how x will change as the time progresses.  



This x i as phi of t is refer to as trajectory of x i that is how i changes with changes with 

time and we are now interested for example, in looking at let us say we have two-

dimensional space for our simplicity will keep the discussion to two-dimensional. But 

the same applies idea applies to higher dimension problem also. We have one solution x 

1 which is phi 1 of t and let us say x 2 is phi 2 of t. So if i were to plot x 1 versus time let 

us say this is that this is that solution and this correspond to x 2 versus time some 

function. So this is my phi 2 and the first function is let us say phi 1 of t. 
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We now say that given this solution we may not know that solution but let us assume for 

sake of sake of argument that we know this solution. Then I can invert these 

relationships that is I know x 1 as a function of time, I know x 2 as a as a function of 

time. So I can always generate x 1 as some function of x 2 and this is what is called as 

face space that is representing one solution in terms of another variable. Few definitions 

before us before we actually look at look at the definition of stability itself. So all we 

have done in writing in this x 1 as a function of x 2 is having known that x 1 is phi 1 of t 

x 2 is phi 2 of t, I have just eliminated time and expressed x 1 as function of some 

function of function of x 2.  

Let us let us introduce a concept of what we call Eucleadian distance between points x 

and y in general and we will make use of this Eucleadian distant in describing what is 

meant by stability and so on. So Eucleadian distant between point x and y is defined as 



summation x i minus y i the whole square i going from one to n components. So we have 

two point x and y and the Eucleadian distance between this two is what we call norm of 

x minus y and that is summation x i minus y i the whole square and this summation is 

over all the components n components of our space state vector and raise to raise to 

power half. 

(Refer Slide Time: 08:10) 

 

One more one more idea before we go to the definition of definition of stability. Let us 

define a region s of r and c which is denotes a region for a two-dimensional space it will 

be a spherical region of centre c centre c and radius r and c is said to be the critical point. 

Now why we do say c is the critical point with c equal to equal to zero. In our in our 

considerations of stability of a steady state what we are going to what we are going to 

assume is y is zero and it will become clear why y is y is zero when we actually look at 

look at one particular system. So if y is zero than we can call the steady state solution as 

x equal to zero and this will become clear when we actually look at look at the problem 

on hand namely stability of a steady state. 
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We will start with the first definition and that pertains to this particular part and I will 

explain what it what it what it means in with an example but let me just read it out to 

begin with a state x equal to zero and we just now saw that by putting y equal to zero our 

steady state has become x equal to zero. A state x equal to zero is said to be stable when 

given some epsilon which is greater than zero there exist a delta greater than zero and 

delta between zero and epsilon such that the norm of if norm of x zero is less then delta 

than the norm of x of t. We have defined this now just now is less than epsilon for all 

time t greater than greater than zero.  
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Now this will simplify this for a two-dimensional problem to see what is actually the 

definition of definition of stability, so let us go back to two-dimensional system and first 

of all first of all let us let us say that we have a steady state x equal to zero and we are 

trying to look at whether that steady state is stable or not. So let us say that in a two-

dimensional space let us say we have only x 1 x 1 and x 2. Let us say this represents my 

steady state that is x equal to zero. Now I called this steady state stable for the case 

where I can find some delta and some epsilon such that zero less than delta less than 

epsilon such that let us say that circle is s of centre zero and radius delta so this radius is 

delta. 

Now around this steady state point x equal to zero I have a circle of radius delta and if I 

can say that if I can find for all the points in this circle wherever I start if my norm of so 

for all x of zero less than delta. Remember this norm of x of zero with this definition 

when y is zero this is nothing but for will be nothing but x 1 at zero value square plus x 2 

zero square raise to half. So this being less than delta which for two-dimensional system 

now are represented by this by this point delta. All my x of t now what is my x of t norm 

of x of t is nothing but x 1 of t the whole square plus x 2 of t the whole square because 

our other point is zero raise to half remains within this circle of radius epsilon. 

So let me say that this represents my s of zero and epsilon then starting with this x of 

zero the green point which I said, my system is said to be stable if solution as a function 

of time remains in this circle of radius epsilon for all times from time t equal to zero to 

time t equal to t equal to infinity. This is what I called a stable steady state. Once again 

the idea is idea is simple I want to know whether my x of zero is stable or not that stable 

definition formal definition says that for some region in the neighborhood of x equal to 

zero, if my initial starting point lies in this small neighborhood.  

Then my dynamics requires that if the solutions for all times x of t t greater than zero 

remains within this neighborhood of epsilon, then I say that this point is point is stable. 

So what it means is suppose I start over here the solution may look different but for all 

times if I remain in this in this region I would call such steady state x equal to zero as a 

stable steady state. 
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Now the second definition which talks about whether the steady state is attractive and 

this is this particular portion once again i will read it out to you, a x equal to zero is said 

to be asymptotically attractive when given mu greater than zero such that for all x that is 

norm of x less than mu the limit as t goes to infinity the norm of x goes to goes to zero, 

this is when we say that this system is asymptotically attractive.  
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Now let us go back and see what is what is meant by asymptotically attractive state. This 

is what this is what we said about asymptotically stable. Now for asymptotically 



attractive state what we are saying once again for x equal to zero if we can find some 

region as denoted by s of zero and radius mu and the starting point somewhere over here 

then for all for all x of zero less than mu limit as t goes to infinity norm of x of t is zero if 

we can satisfy that condition than we say that our state is asymptotically attractive. Now 

what is the meaning of norm of x of t going to going to zero?  

If we look at our definition of norm this can happen only when x 1 and x 2 individually 

goes to zero because norm of x of t is x 1 square plus x 2 square and summation raise to 

square root that is power half. So for norm of x if t to zero at long times both x 1 has to 

go to zero, x 2 has to go to zero that means that is our steady state. What is our steady 

state, x equal to zero that means x one equal to zero x two equal to zero. So what this 

attractive definition says is that at this starting from here at long times we actually go to 

the go to the state x equal to zero.  

The definition of stability alone said that all such starting points we remained in the close 

neighborhood of close neighborhood of x equal to zero. The definition of attractive state 

asymptotically attractive state says that for all such starting points we actually go to 

steady state x equal to zero as time progresses. 
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Now comes the definition of our asymptotically stable steady state which says that a 

steady state a steady state is said to be asymptotically stable and when it is stable and 

asymptotically attractive. Now state is said to be marginally stable when it is stable but 



not asymptotically attractive. Now at first glance this definition means seem to have 

some redundancy in it saying that it should be stable and asymptotically attractive does 

not definition of stability indirectly or directly imply attractive and definition of 

attractive directly or indirectly encompasses the definition of stability. The next set of 

examples will convince you that that is not necessarily the necessarily the case. 
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So what we are seeing here is example on the first hand on the first hand an example of 

whose dynamics are given by this x and y and it is steady state value is when x is equal 

to zero y is equal to equal to zero. Now if you actually look at the dynamics of this 

system and try to try to try to look at the trajectories it turns out that you try to take any 

starting condition as time progresses it actually comes back to zero and zero, so the 

system is attractive. But from a definition of stability of a system remember, what was 

the definition of stable system? For any starting point within this region delta our 

solutions always remained within epsilon. 

Now it turns out for this particular example on the on the left hand side it is impossible to 

find for this given this stating point in some region delta it is impossible to find an 

epsilon such that the solution is entirely within this within this epsilon region. So it does 

is a attractive state that is solutions eventually go to x equal to zero but it is not a stable 

state so this is a example of attractive but not stable. On the right hand side is another 



example dx dt equal to y and dy dt equal to x whose again steady state solution is x equal 

to zero and y equal to y equal to zero. 

Now if we if we start with some starting point let us say let us say over here. The 

dynamics of this system keep it on this circle or a limit cycle. So the solution never 

actually converges so it never goes to goes to zero so that never happens. So what does it 

mean it means that for this particular example we can always find an epsilon and delta 

such that the long time solution is within this bounded with in this region epsilon? But so 

it is a stable steady state but it is not an attractive steady state. Because the solution does 

not does not eventually go to go to x equal to zero. So this is stable but not attractive. 

And hence to have an asymptotically stable solution we need both state has to be stable 

and asymptotically attractive. So we call a steady state asymptotically stable only when 

the stable it is stable according to this definition and it is asymptotically attractive 

according to according to this definition. So that is that is that is how we define an 

asymptotically stable. So when we are talking about the talking about the stability of a 

steady state or otherwise, we are looking at asymptotically stable steady states of course, 

a system is said to unstable when it is not stable I mean that is that is that is understood. 
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Now let us go back to our dynamic and try to see how can we how can we find out the 

stability of steady state for which we have a dynamics which is which is given by given 

by x dot equal to f of x. So we want to find the stability of the steady state that is when x 



dot equal to zero when x at that time is some steady state x s. So we would like to know 

how to find the stability of such steady state. Now before we actually find the stability 

and determine the criteria we are going to do a small variation in the sense that we are 

going to look at how the behavior of the system is away from the steady state value.  

Remember when we talked about the definition we said that this is my this is my steady 

state this is my steady state and this is my starting point in the close neighborhood of this 

of this steady state. We of course also said that we are going to call x equal to zero as our 

as our steady state steady state value. So what are we what are we going to do we are 

actually going to look at the perturbation of my system because what is what is the 

meaning that I start from this particular point that means I have perturb my steady state 

by some quantity in this case by a small quantity so let me enlarge it so a small 

perturbation.  

So I am going to look at what happens when I introduce a small perturbation what 

happens to what happens to my solution. Now in order to in order to keep the discussion 

with a with a x equal to zero as my steady state I am going to define the variable y as x 

minus x s. So if i if i do that then I can write y dot as x dot minus x s x s dot. I am going 

to further going to write I know x equal to x s is my steady state I know x s dot is equal 

to zero and I know my x dot is f of x and this quantity is quantity is zero. 

So what I am going to do now is I am going to write f of x in the following manner. I am 

going to expand using tailor series tailor series expansion and this would around the 

steady state value x of s. So this will be f of x of s plus remember x is a n component 

quantity. So i will have terms like del f i or let me let me write it f of x 1 to begin with so 

f of x of s plus I am going to expand this using tailor series tailor series expansion. So 

this will be del f 1 del x 1 into x 1 minus x 1 s plus del f 1 del x 2 into x 1 minus x 1 

minus sorry x 2 minus x 2 s and so on. 
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In short if I now generalize this then I can write f of any x i as f of x s plus summation 

del f i del x j x j minus x j s j going from one to n plus I will of course, have second order 

term higher order term so i will have terms like del square del x k x j x j minus zero x j 

minus x j s into x k minus x k s and so on, a simple tailor series tailor series expansion. 

So now knowing this and making another assumption that I am going to neglect all 

higher order term and keep only the first order first order first order term that means I am 

going to neglect all these all these terms and then go back to my y dot equation go back 

to my y dot equation, which is which is actually nothing but f of x and I am going to put 

for that so that would be y dot equal to this has this has gone to zero or if i want to write 

y i dot for example, that would be f of x i which will be summation del f i del x j and x j 

minus x j is nothing but is nothing but y j. 
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So this if I write for all such i y 1 y 2 y i up to y n and put all these things together I will 

have the dynamics the perturbation dynamics y dot defined as if I just expand this terms 

we have y 1 y 2 y n and the first term here will be del f 1 del x 1 del f 1 del x 2 del f 1 del 

x 3 del f n del x n. So all these similar quantities up to del f 1 del x n del f n del x n. So I 

will have I will have all these all these terms which now I can write in a more compact 

form as y dot equal to A of y where A is my Jacobean matrix del f 1 del x 1 del f 1 del x 

2 del f 1 del x 3 and so on and so forth up to up to.  

So this is my is my dynamics of my perturbation variable y and I am interested in 

knowing what happens what is the steady state solution of this y equal to zero. 

Remember our y is y minus x s. So when x reaches the steady state x s my y is y is zero 

and this will then tell me that if I start with some y of zero having a value delta let us say 

something like this. What happen to my y of t does it go back here does it go somewhere 

else and so on and so forth. So that will then tell me what is the solution or what is the 

status of this steady state f of x of x of s. 

Let me let me recap what we what we saw just now before I go on to describing the 

solution of these of these or how do we how do we find this condition for condition for 

stability. Let us put things in perspective we have system whose dynamic is given like 

this whose dynamic is given in this particular manner. What we are trying to trying to 

find out is if the steady state x equal to x s is the steady state solution of this such that x s 



dot equal to f of x equal to equal to zero is it is it stable or otherwise that is the question 

that we have in front of us. In order to make this question little less abstract let us go 

back let us go back to our problem of reaction engineering and let us try to make this 

little less abstract so let me let me see if I can. 
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I am looking at stability of a CSTR so from our last session last session we know that 

this is my CSTR operation for which mass balance equations and energy balance 

equation are given in this particular manner. dc 1 we are looking at reaction A 1 going to 

A 2 in this CSTR which for which we are trying to maintain a steady state and by 

providing a cooling jacket or a jacket in which a coolant is being circulated at a 

temperature T r and we are trying to find out the steady state operations and what is what 

is possible or otherwise.  

So what we did last time was we define these non dimensional quantities we define these 

non dimensional quantities we define these non dimensional quantities and converted 

this dimensional form of mass and energy balance into the non dimensional form of mass 

and energy balances mass and energy balances. Now we will take this mass and energy 

balances and represent it in the form of heat generation term and heat removal term as 

we have done over here. So what I am going to do is I am going to rewrite those mass 

and energy balances just to just to keep things in a proper perspective.  
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So we can and I am going to take only first order reaction simply for a matter 

considerably. So we had our dimension less mass balance in terms of dimension 

concentration as one minus x and we had our dimensionless temperature as B into r 

minus Q R and we call this B into r term as Q G. We are interested so first of all define 

our steady state solution as x equal to x s some dimensionless quantity and theta equal to 

theta s. So then we will define the perturbation variable we are looking at only two-

dimensional system over here that makes matter little easy so we will define our 

perturbation variable y 1 as x minus x s and y 2 as theta minus theta s. 

So given this going back to going back to this what is our what is our dynamics x equal 

to f of x x equal to f of x for example, if I write x and this is not to be confused with 

dimensionless quantities the notation is little unfortunate but let us let us stick with that x 

with theta my x dot equal to f of x my f will be f 1 and f 2 where f 1 is this whole 

quantity and f 2 is this whole quantity or in other words my f 1 f 1 is minus x by k zero 

tau R plus e raise to theta by one plus theta by gamma into one minus x and my f 2 is B 

into r minus Q R. 

So these are my f 1 and f 1 and f 2. Then this is my steady state solution x equal to x of s 

so that steady state steady state solution last time we saw that steady state solution are 

these three steady state solution or depending upon operating condition. So this is when 

Q R is equal to Q G and so on. So I am actually trying to look at look at those solutions x 



equal to x s, theta equal theta s and for which I define my perturbation variables y 1 and 

y 2 as x minus x s and theta minus theta s such that I can write I can write my solution of 

x dot equal to f of x and in terms of in terms of my dimensionless quantities my y dot my 

y dot which is A of y this is the equation I am looking for can now be written in the 

following manner. 
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Remember our y dot which is y 1 dot and y 2 dot which is equal to in the real terms 

dimensionless concentration and dimensionless temperature that is deviation from the 

steady state value. This is the real quantity that we are looking at and these are my f 1 

and f 2. So this quantity this quantity is now nothing but del f 1 del x del f 1 del theta del 

f 2 del x del f 2 del theta into y 1 and y 2 where what is del f del x derivative of this f 1 

with respect to x del f 1 del f theta derivative of f 1 with respect to theta and so on and 

this vector matrix we called as Jacobean matrix A bar and wrote the dynamics y dot 

equal to and we are interested in looking at solution of this of this y. Now how do we get 

the solution of this y? 
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To do that let us let us look at our dynamics y dot equal to y is the vector and A is a 

matrix. Now I want to look at look at solution of this of this matrix. Let us define let us 

define y and we will we will come to that in a minute what is all this y as matrix V into z. 

what is matrix V? Matrix V is the matrix of Eigen vectors of Eigen vectors of A. What 

are what is Eigen vectors matrix of Eigen vectors, given this matrix A it satisfies this 

particular condition this you know from your mathematics. 
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Where what is what is the matrix lambda matrix is a diagonal matrix of Eigen values 

lambda 1, lambda n. So and what is this what is this matrix we want so there are lambda 

1 lambda 2 lambda n represent n Eigen values of this Jacobean matrix A, then V 1 is the 

Eigen vector corresponding to matrix Eigen value lambda 1. So matrix consisting of V 1 

V 2 these is this makes my Eigen vector matrix V and we know this from the definition 

of Eigen value. 
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So if we now look at look at our y dot equal to A y and define y equal to V into z then 

what do we get? Then we get y dot which is V z dot is A V z by putting e for y equal to 

V z on both sides of these equation. So what do I get I get y dot or other let us not worry 

about y dot anymore I get I get V z dot equal to A V z. So if I post pre-multiply both 

sides by V inverse I get z dot equal to V inverse A V z. 



(Refer Slide Time: 50:13) 

 

What is B inverse A V? Remember our A V equal to lambda V, where lambda is a 

diagonal matrix. So this gives us V inverse A V is nothing but z dot equal to equal to 

lambda z, lambda is a diagonal matrix so we can write the solution of this as z i of t is 

some z i zero e raise to lambda 1 t and similarly or lambda i t so for i equal to 1,2 up to n. 

Or in other words in other word what do we have here we have define our y as z V into 

V into z and individually z solution is given like this it implies that the solution y of t is 

given by some constant c 1 let us say e raise to lambda 1 t plus c 2 e raise to lambda 2 t 

plus c 3 e raise to lambda 3 t and so on. That constant will come from all this 

combinations of Eigen vector and z i zero values and so on. 
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So what do we what do we what do we get here. Now what are what are we interested in 

we are interested in looking at the dynamics of this solution given y of zero adds up 

value delta let us say we know that this components individual components y i are given 

by summation of this summation of this e raise to lambda t terms. We are interested in 

knowing what happens to y of t what happens to y of t? Now even without even without 

knowing much of mathematics we can take a simple example let us say that we have just 

had one-dimensional problem lambda 1 t.  

Now suppose y is equal to zero this is against time and this is I am plotting y 1 y equal to 

zero is the solution. So suppose I am start at t equal to zero I start somewhere over here. 

Now what will happen to as time progresses will depend upon what is the magnitude of 

this lambda 1 or what is the sign of lambda 1. Suppose lambda 1 is zero then what 

happens solution will remain something like this. This is for lambda 1 equal to zero. 

Suppose lambda 1 is a positive term then what will happen to this solution as time 

increases y 1 will keep on increasing I do not know in the in the exponential form in the 

exponential form.  

So this is for lambda one greater than zero. But what will happen if lambda one is less 

than zero for lambda one less than zero as time increases y one will go to zero and is not 

this is what we looking for our stable system indeed that is given a small perturbation if I 

go back to my original steady state that is it is stable and attractive I call such system as 



asymptotically stable and this simple example would have convinced you that that 

depends upon the sign of the Eigen value. 

So to summarize we say that system is asymptotically stable if real value because Eigen 

values can be complex. So we are interested only in the real part of the Eigen value. so if 

real part of the Eigen value is negative for all Eigen values not just one or two but for all 

Eigen values then we call such system as asymptotically stable. If among all n values if 

anyone is positive the real part is positive the system is unstable, if the real part is zero 

we cannot say anything about stability of this of this system. We will stop here for this 

session but in the next session we will look at the behavior of this system and try to 

analyze whether our stable our steady state will got for our CSTR problem whether they 

are stable or unstable. Thank you. 


