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Hello friends, welcome to the fourth segment of thermodynamics of a polymeric system, under the 

edges of polymer process engineering. Now, in the previous lectures, we covered the activity 

coefficient models; we discussed the Flory Huggins theory because we were discussing the different 

thermodynamic models, that can predict the behavior of the polymeric system. We discussed the 

Hansen solubility parameters and developed the correlation for solvent activity. We discussed the 

group contribution model and discussed about the equation of a state model. In this particular 

segment, we are going to discuss the statistical associating fluid theory that is called SAFT. 

 

 

Then, we will discuss the shaft application, and we will discuss the Vera equation of state. Now, let us 

talk about the statistical associating fluid theory, the thermodynamic perturbation theory, which is 

given by various workers. These are the foundations of statistical associating fluid theory. This is 

developed by Chapman and co-workers. 



 

 There have been several numerous publications in this SAFT theory, it originally emerged and Muller 

and Gabbins, they have examined the various SAFT variants and how they are used. Now, for 

polymeric solutions, the SAFT version of HONG and RADS is used to most widely. The PC-SAF, it is 

perturbed chain SAFT, a promising novel variation of SAFT for polymer solution. This was put by the 

Gross and Sadosky in 2000. Now, we shall limit our discussion because this is the latest one. 

 

 So, we shall limit our discussion to these two SAFT versions in this particular instance. Now, both the 

equation of state can be expressed as distinct contributions to the Muller Helmholtz energy because 

of fundamental components are equal. The difference between the system Muller Helmholtz energy 

and its Muller Helmholtz energy in an ideal gas state under the same temperature, pressure, and 

composition is known as the Muller residual Helmholtz energy which is represented as A residual. 

Now, it is calculated as the sum of the contribution of hard chain terms aHC, this is referred as aHC, and 



a dispersion term adispersion and the associated term or association term A association. So, this can 

be represented as a minus a, aHC plus a dispersion plus a. 

 

  

 

Now using the common thermodynamic relationship that is A is equal to summation n i A, the pressure 

and a chemical potential can be calculated from the expression which is we are going to write p is 

equal to minus del A over del v at constant temperature n and mu i that is the chemical potential del 

A over del n i v t. Now, the shaft and PC shaft that is hard chain term, this chain in the molecular model 

underlying the shaft is made up of two hard sphere segments, the covalent bond over these portions 

of hard sphere together and both shaft version hard sphere term is the result of two contributions. 

Now, the statistical associating fluid theory, it is the combination of hard sphere contribution and a 

term due the conductivity of these hard sphere segment which is given by AHC over RT this is equal 

to m AHS over RT plus A over RT and m is equal to psi m i, where m is the average chain length of 

molecule in the mixture. The hard sphere contribution AHS is shown by Boublik-Mansoori this hard-

sphere contribution of state for a mixture of hard spheres. Now, this can be represented as AHS over 

RT 6 pi rho 2, 1, where psi r 2 square over 1 minus rho. 

 



 

 

 

 

 

 



 

 

To the whole power 2 plus psi at the initial then ln 1 minus this can be given by k is equal to pi over 6 

rho summation of x i m i d i i to the power k. Now, this k can be pi is equal to 6 pi over 6 rho summation 

x i m i d i i k, where rho is the number density and d i i is the temperature-dependent hard sphere 

diameter. Now, this is the temperature-dependent hard sphere d i i obtained from the equation d i i t 

is equal to small theta i 1 minus 0.12 e to the power 3 epsilon i over k t, where this m i is the hard 

sphere diameter and theta i is the energy parameter and epsilon i is the pure component parameter. 

Now, the chain term this A chain is given by A chain is given by RT is equal to summation x i 1 minus 

m i ln g to the power h s, where this term is so-called hard sphere radial distribution function at close 

contact. 

 

  

 

 



 

 

Now, this g i j h s is equal to 1 over 1 minus d d i d j over d i plus d j plus d i d j over d i plus d j square 

3 1 minus. Now, the Hong and Redo's version of this shaft chain shaft, the chain at all the dispersion 

term is used and this term is given by A dispersion over RT is equal to summation i from 1 to 4 j is 

equal to 1 to 9 d i j u k t to the i tau j where tau is a constant equal to 0.74048. Now, for mixture the 

wonder wall one fluid mixing rule or the volume fraction of the mixing can be used. The wonder wall 

mixing rules are given by this particular equation u over k t is equal to summation i and j x i x j u i j k t 

d i j over x i x j d i j 3. Now, here k i j is the adjustable binary interaction parameter and d i i is the hard 

sphere diameter. 

 

  



 

 

 

So, d i j is equal to d i plus d j over 2. Now, in shaft dispersion term represents the interaction between 

the individual segments, but in PC shaft the dispersion term represents the interaction of chains of 

segments. So, the expression A dispersion derived by the gross at all and this is the equation is given 

by A dispersion over RT is equal to A1 over RT plus A2 over RT. Now, this term in the right-hand side 

of the previous equation they are defined by the equation like A dispersion RT is equal to A1 over RT 

plus A2 over RT. Now, A1 over RT is equal to minus 2 pi rho m square u k t then i is equal to 0 6 a i m 

n i. 

 



 

 

 



 

 

 

 

 Now, A2 is over RT is equal to minus pi m 1 plus m 8 nita minus 2 squares over 1 minus beta to the 

power 4 plus 1 minus m into 20 nita minus 27 nita square plus 12 the cube minus 10 2 nita to the 

power 4 over 1 minus 2 minus square m square u over k t small theta cube i is summation i from 0 to 

6 b i m n i. Now, the parameter a i and b i are dependent on a i m is equal to a plus m minus 1 over m 

a 1 i plus m minus 1 m minus 2 a 2 i and similarly b i plus m minus 1 b 1 i plus m minus 1 m minus 2 b 

2 i. Now, the reduced fluid density nita is defined by the equation which which is given by the as per 

the following notation, nita is equal to pi n this is Avogadro's number over 6 rho m d cube. Now, both 

the shaft and PC shaft contains pure component parameters that is the energy parameter epsilon or 



u the hard sphere diameter small theta or hard sphere volume v i i and the number of segments m 

per volume for small solvent molecules. These parameters are obtained from a fit of vapour pressure 

data and saturated liquid volume data. 

 

 Now, for pure component polymer parameters they are acquired from acquired from a fit to PVT data 

of a molten polymer and a binary phase equilibrium data because polymer cannot be fitted because 

they are having the lack of vapour pressure. For the description of a mixture one needs one binary 

interaction parameters k i j per binary which has to be fitted to a phase equilibrium data. Now, if 

necessary this k i j can be made temperature dependent and in general the phase equilibrium are very 

sensitive to the k i j value. Now, here this particular figure shows the isothermal cloud point curve of 

HDPE and ethylene system and here you see that this is a shaft model. Now, if we go to the other 

things like Sanchez-Lecombe model this particular curve shows the isothermal cloud point for HDPE 

plus ethylene system. 

 Now, in this particular graph the experimental results from the system of ethylene plus HDPE they 

are compared with the modelling result using shaft and Sanchez-Lecombe model. In both cases k i j is 

taken to be linearly dependent on temperature and due to the polydispersity of the polymer the cloud 

point curve shows a dip in which a critical point is located. Now, if in the modelling of the polymer it 

is assumed to be monodisperse this behaviour we cannot reproduce. The graphical demonstration of 

the previous figure this demonstrates that although the deviation they are bigger at high and low term 

polymer concentration both shaft and Sanchez-Lecombe model adequately describe the experimental 

phase behaviour and the same system this was modelled by Tumakaka using the shaft and PC shaft 

model. Let us talk about the other equation of state the equation of state based on the lattice hole 

theory this is theory and created by Penaju-Wu and Vera in 1982 this was comparable to the Sanchez 

and Lecombe equation of state. 



 

 The first major difference between the two theories is that the Vera theory the volume of a lattice 

site is arbitrarily fixed to be equal to 9.75 into 10 to the power minus 3-meter cube per kilo mole. But 

in the Sanchez-Lecombe theory the volume of a lattice site is a variable quantity regressed from the 

experimental data. Now, fixing the volume of the lattice site this eliminates the need for a mixing rule 

for lattice site for mixture. The issue of having the various lattice volume for the mixture and the pure 

component this is resolved by using fixed lattice volume. 

 

 The volume should be chosen so that the lattice site and the smaller group of interest have nearly the 

same volume. Now, where at all they choose the value of 9.75 into 10 to the power minus 3-meter 

cube per kilo mole which accurately reproduce the pressure volume temperature data for 

polyethylene. So, all these things are case sensitive polyethylene polypropylene all these things are 



case sensitive. The Sanchez-Lecombe theory of and the Vera theory they differ significantly in two 

more ways. 

 

 
The Sanchez-Lecombe believe that a random mixing combinatorial was sufficient to represent the fluid 

for both component and a mixture and a Vera created the equation that accounts for non-random 

mixing brought on by the interaction energies between molecules. So, this Vera equation of a state in 

reduced variable this can be represented as p reduced over t 1 that is ln equal ln v 1 reduced over v 1 

reduce minus 1 plus z over 2 ln v 1 reduce plus q 1 over r 1 minus 1 over v 1 reduced minus theta 1 

over t 1 reduced. Now, theta is the surface area fraction, v is the reference volume and t is the 

reference temperature. Now, for modeling of the phase behaviour of copolymer solvent system the 

copolymer can be treated as a homopolymer with the effective pure component parameters. 

McCaughey and colleagues, they provided examples for this particular strategy. 

 



 

  

The drawback of this strategy is that the characteristics of a pure component polymer depend on the 

nature and makeup of the copolymer. From binary polymer solvent phase equilibrium data pure 

component polymer properties are usually derived. Now, it is feasible to describe the phase behaviour 

of the same polymer in a different solvent using these parameters. The Redo’s and the co-workers 

they use the copolymer shaft methodology in which the copolymer characteristics they are computed 

based on solely the copolymers molecular weight and structure and it is found to be the superior 

method. Now, there are 3 binary interaction parameters for A B type of copolymer. 

 The parameter governing the interaction between A segment and solvent molecule segment and B 

segment and solvent molecule segment and A and B segment interaction. So, the phase behavior of 2 

homopolymer system can be used to determine the first 2 binary interaction parameters while some 

copolymer solvent data must be fitted to determine the third binary interaction parameter. Now, once 

these parameters are known, predictions can be made for a copolymer solvent system with the same 

type of copolymer but with a different copolymer composition. And this particular figure the constant 

temperature cloud point curves and PC-SAFT modeling of the polyethylene system with the different 

repeat units composition at 5 weight percent of the graduation of the polymer. Now, the model 

correctly predicts the change in the location of the cloud point with changing co-monomer 

concentration in the polymer. 



 

 Especially, it is interesting to see that the ethylene and polyethylene system in the curve of the cloud 

point pressure as a function of ethylene thiol-coal concentration in the polymer shows this is the 

minimum. So, dear friends in this particular segment we discussed the different models for the 

prediction of thermodynamic systems, and for convenience, we have enlisted a couple of references. 

Thank you very much. 

 


