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Hello friends, welcome to the fourth segment of thermodynamics of a polymeric system, under the
edges of polymer process engineering. Now, in the previous lectures, we covered the activity
coefficient models; we discussed the Flory Huggins theory because we were discussing the different
thermodynamic models, that can predict the behavior of the polymeric system. We discussed the
Hansen solubility parameters and developed the correlation for solvent activity. We discussed the
group contribution model and discussed about the equation of a state model. In this particular
segment, we are going to discuss the statistical associating fluid theory that is called SAFT.
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Topics to be covered

+ Statistical associating-fluid theory (SAFT)
» SAFT applications
* Panayiotou-Vera Equation of State

Then, we will discuss the shaft application, and we will discuss the Vera equation of state. Now, let us
talk about the statistical associating fluid theory, the thermodynamic perturbation theory, which is
given by various workers. These are the foundations of statistical associating fluid theory. This is
developed by Chapman and co-workers.
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Statistical Associating-fluid Theory
* The thermodynamic perturbation theory of Wertheim serves as the

foundation for the statistical associating-fluid theory (SAFT) developed by
Chapman et al..

* There have been numerous publications of SAFT since it originally
emerged.

*» Muller and Gubbins have examined the various SAFT variants and how
they are used.

There have been several numerous publications in this SAFT theory, it originally emerged and Muller
and Gabbins, they have examined the various SAFT variants and how they are used. Now, for
polymeric solutions, the SAFT version of HONG and RADS is used to most widely. The PC-SAF, it is
perturbed chain SAFT, a promising novel variation of SAFT for polymer solution. This was put by the
Gross and Sadosky in 2000. Now, we shall limit our discussion because this is the latest one.
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Statistical Associating-fluid Theory

* For polymer solutions the SAFT version of Huang and Radosz is the

most widely used.

* PC-SAFT (perturbed chain-SAFT), a promising novel variation of SAFT
for polymer solutions, was put up by Gross and Sadowski in 2000. We shall
limit our discussion to these two SAFT versions in this instance.

So, we shall limit our discussion to these two SAFT versions in this particular instance. Now, both the
equation of state can be expressed as distinct contributions to the Muller Helmholtz energy because
of fundamental components are equal. The difference between the system Muller Helmholtz energy
and its Muller Helmholtz energy in an ideal gas state under the same temperature, pressure, and
composition is known as the Muller residual Helmholtz energy which is represented as A residual.
Now, it is calculated as the sum of the contribution of hard chain terms a"c, this is referred as a"c, and



a dispersion term adispersion and the associated term or association term A association. So, this can
be represented as a minus a, a"¢ plus a dispersion plus a.
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Statistical Associating-fluid Theory

It is calculated as the sum of the contributions of a hard chain term a®, a
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Using common thermodynamic relationship (A=) n.a ), the pressure
and chemical potential can be calculated from this expression.
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Now using the common thermodynamic relationship that is A is equal to summation ni A, the pressure
and a chemical potential can be calculated from the expression which is we are going to write p is
equal to minus del A over del v at constant temperature n and mu i that is the chemical potential del
A over del nivt. Now, the shaft and PC shaft that is hard chain term, this chain in the molecular model
underlying the shaft is made up of two hard sphere segments, the covalent bond over these portions
of hard sphere together and both shaft version hard sphere term is the result of two contributions.
Now, the statistical associating fluid theory, it is the combination of hard sphere contribution and a
term due the conductivity of these hard sphere segment which is given by AHC over RT this is equal
to m AHS over RT plus A over RT and m is equal to psi m i, where m is the average chain length of
molecule in the mixture. The hard sphere contribution AHS is shown by Boublik-Mansoori this hard-
sphere contribution of state for a mixture of hard spheres. Now, this can be represented as AHS over
RT 6 pirho 2, 1, where psi r 2 square over 1 minus rho.
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Statistical Associating-fluid Theory

It is combination of a hard-sphere contribution and a term due the
connectivity of these hard-sphere segments, as given by equation below,

m = E Xim;

Here m is the average chain length of the molecules in
the mixture

Statistical Associating-fluid Theory

The hard-sphere contribution ab is shown by the Boublik-Mansoori hard-
sphere equation of state for mixtures of hard spheres,
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To the whole power 2 plus psi at the initial then In 1 minus this can be given by k is equal to pi over 6
rho summation of ximidiito the power k. Now, this k can be pi is equal to 6 pi over 6 rho summation
ximidiik, where rho is the number density and d i i is the temperature-dependent hard sphere
diameter. Now, this is the temperature-dependent hard sphere d i i obtained from the equationdiit
is equal to small theta i 1 minus 0.12 e to the power 3 epsilon i over k t, where this m i is the hard
sphere diameter and theta i is the energy parameter and epsilon i is the pure component parameter.
Now, the chain term this A chain is given by A chain is given by RT is equal to summation x i 1 minus
m i In g to the power h s, where this term is so-called hard sphere radial distribution function at close
contact.
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Statistical Associating-fluid Theory

The is the temperature-dependent hard sphere diameter (d;;) obtained from
equation:

4(T) = o, [1 _ 012 exp G%Tﬂ

m;=the hard-sphere diameter
6; = the energy parameter
€; = pure component parameters.
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Statistical Associating-fluid Theory

The chain term a,;, is given by Eq.

ach ain

o = 2 xi(1—m) Infg(di)"]

where g(d;)™ is the so-called hard-sphere radial distribution function at
close contact.
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Now, thisgijhsisequaltoloverl1 minusddidjoverdiplusdjplusdidjoverdiplusdjsquare
3 1 minus. Now, the Hong and Redo's version of this shaft chain shaft, the chain at all the dispersion
term is used and this term is given by A dispersion over RT is equal to summation i from 1to 4 j is
equaltolto9dijukttotheitaujwhere tauis a constant equal to 0.74048. Now, for mixture the
wonder wall one fluid mixing rule or the volume fraction of the mixing can be used. The wonder wall
mixing rules are given by this particular equation u over k t is equal to summationiandjxixjuijkt
dijoverxixjdij3.Now, herekijisthe adjustable binary interaction parameter and d i i is the hard
sphere diameter.

SAFT Dispersion Term

In the Huang and Radosz version of SAFT the Chen—Kreglewski dispersion
term is used. This term is given by

where 1 is a constant equal to 0.74048.
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SAFT Dispersion Term

For mixtures, the van der Waals one-fluid mixing rules or the volume
fraction mixing rules can be used. The van der Waals mixing rules are
given by Eq
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So,dijisequaltodiplus djover 2. Now, in shaft dispersion term represents the interaction between
the individual segments, but in PC shaft the dispersion term represents the interaction of chains of
segments. So, the expression A dispersion derived by the gross at all and this is the equation is given
by A dispersion over RT is equal to Al over RT plus A2 over RT. Now, this term in the right-hand side
of the previous equation they are defined by the equation like A dispersion RT is equal to Al over RT
plus A2 over RT. Now, Al over RT is equal to minus 2 pi rho m square uk ttheniisequalto06aim
ni.

a®? g, L
RT RT RT




I 4 @
PC-SAFT Dispersion Term

* In SAFT the dispersion term represents the interactions between

individual segments.
* But PC-SAFT the dispersion term represents the interactions of chains

of segments.
* The expression for a%s® derived by Gross and Sadowski is equation:

a%? g, a
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PC-SAFT Dispersion Term

The terms on the right-hand side of expression for a2P are defined

by Egs.
Y » reduced fluid density 1
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PC-SAFT Dispersion Term

The parameters a; and b, are dependent on m,
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The reduced fluid density 1 is defined by Equation
given below, in which N, is Avogadro’s number.
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Now, A2 is over RT is equal to minus pi m 1 plus m 8 nita minus 2 squares over 1 minus beta to the
power 4 plus 1 minus m into 20 nita minus 27 nita square plus 12 the cube minus 10 2 nita to the
power 4 over 1 minus 2 minus square m square u over k t small theta cube i is summation i from 0 to
6 bimni. Now, the parameter aiand biare dependent on aim is equal to a plus m minus 1 over m
aliplus mminus 1 m minus 2 a2iandsimilarly biplus m minus1b 1iplus m minus1mminus2b
2 i. Now, the reduced fluid density nita is defined by the equation which which is given by the as per
the following notation, nita is equal to pi n this is Avogadro's number over 6 rho m d cube. Now, both
the shaft and PC shaft contains pure component parameters that is the energy parameter epsilon or



u the hard sphere diameter small theta or hard sphere volume v i i and the number of segments m
per volume for small solvent molecules. These parameters are obtained from a fit of vapour pressure
data and saturated liquid volume data.

L
SAFT and PC-SAFT Applications

Both SAFT and PC-SAFT contain pure component parameters:
the energy parameter € or u,

the hard-sphere diameter o,

or the hard-sphere volume v, and

the number of segments m per molecule.
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For small (solvent) molecules these parameters are
obtained from a fit of vapor pressure data and
saturated liquid volume data.

Now, for pure component polymer parameters they are acquired from acquired from a fit to PVT data

of a molten polymer and a binary phase equilibrium data because polymer cannot be fitted because
they are having the lack of vapour pressure. For the description of a mixture one needs one binary
interaction parameters k i j per binary which has to be fitted to a phase equilibrium data. Now, if
necessary this ki j can be made temperature dependent and in general the phase equilibrium are very
sensitive to the ki j value. Now, here this particular figure shows the isothermal cloud point curve of
HDPE and ethylene system and here you see that this is a shaft model. Now, if we go to the other
things like Sanchez-Lecombe model this particular curve shows the isothermal cloud point for HDPE
plus ethylene system.

Now, in this particular graph the experimental results from the system of ethylene plus HDPE they
are compared with the modelling result using shaft and Sanchez-Lecombe model. In both cases ki j is
taken to be linearly dependent on temperature and due to the polydispersity of the polymer the cloud
point curve shows a dip in which a critical point is located. Now, if in the modelling of the polymer it
is assumed to be monodisperse this behaviour we cannot reproduce. The graphical demonstration of
the previous figure this demonstrates that although the deviation they are bigger at high and low term
polymer concentration both shaft and Sanchez-Lecombe model adequately describe the experimental
phase behaviour and the same system this was modelled by Tumakaka using the shaft and PC shaft
model. Let us talk about the other equation of state the equation of state based on the lattice hole
theory this is theory and created by Penaju-Wu and Vera in 1982 this was comparable to the Sanchez
and Lecombe equation of state.
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SAFT and PC-SAFT Applications

2000

—— Monadisperse Figure; Showing isothermal cloud
oot o, olydisperse point curves of the HDPE+

' ethylene system.

(b) Sanchez— Lacombe model

The first major difference between the two theories is that the Vera theory the volume of a lattice
site is arbitrarily fixed to be equal to 9.75 into 10 to the power minus 3-meter cube per kilo mole. But
in the Sanchez-Lecombe theory the volume of a lattice site is a variable quantity regressed from the
experimental data. Now, fixing the volume of the lattice site this eliminates the need for a mixing rule
for lattice site for mixture. The issue of having the various lattice volume for the mixture and the pure
component this is resolved by using fixed lattice volume.
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Panayiotou-Vera Equation of State

* An equation of state based on lattice-hole theory and created by
Panayiotou and Vera in 1982 was comparable to the Sanchez and Lacombe
equation of state.

» The first major difference between the two theories is that in the
Panayiotou-Vera theory the volume of a lattice site is arbitrarily fixed to be
equal to 9.75x10-* m* kmol-*.

* But in the Sanchez-Lacombe theory the volume of a lattice site is a
variable quantity regressed from experimental data.

The volume should be chosen so that the lattice site and the smaller group of interest have nearly the
same volume. Now, where at all they choose the value of 9.75 into 10 to the power minus 3-meter
cube per kilo mole which accurately reproduce the pressure volume temperature data for
polyethylene. So, all these things are case sensitive polyethylene polypropylene all these things are



case sensitive. The Sanchez-Lecombe theory of and the Vera theory they differ significantly in two
more ways.
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Panayiotou-Vera Equation of State

» The Sanchez-Lacombe theory and the Panayiotou-Vera theory differ
significantly in two more ways. Sanchez and Lacombe believed that a
random mixing combinatorial was sufficient to represent the fluid.

* For both pure components and mixtures, Panayiotou and Vera created
equations that account for nonrandom mixing brought on by the
interaction energies between molecules.

The Sanchez-Lecombe believe that a random mixing combinatorial was sufficient to represent the fluid
for both component and a mixture and a Vera created the equation that accounts for non-random
mixing brought on by the interaction energies between molecules. So, this Vera equation of a state in
reduced variable this can be represented as p reduced over t 1 that is In equal In v 1 reduced over v 1
reduce minus 1 plus z over 2 In v 1 reduce plus q 1 over r 1 minus 1 over v 1 reduced minus theta 1
over t 1 reduced. Now, theta is the surface area fraction, v is the reference volume and t is the
reference temperature. Now, for modeling of the phase behaviour of copolymer solvent system the
copolymer can be treated as a homopolymer with the effective pure component parameters.
McCaughey and colleagues, they provided examples for this particular strategy.
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Panayiotou-Vera Equation of State

* The Panayiotou-Vera equation of state in reduced variables is
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0 surface area fractions
V reference volume
T reference temperature

The drawback of this strategy is that the characteristics of a pure component polymer depend on the
nature and makeup of the copolymer. From binary polymer solvent phase equilibrium data pure
component polymer properties are usually derived. Now, it is feasible to describe the phase behaviour
of the same polymer in a different solvent using these parameters. The Redo’s and the co-workers
they use the copolymer shaft methodology in which the copolymer characteristics they are computed
based on solely the copolymers molecular weight and structure and it is found to be the superior
method. Now, there are 3 binary interaction parameters for A B type of copolymer.

The parameter governing the interaction between A segment and solvent molecule segment and B
segment and solvent molecule segment and A and B segment interaction. So, the phase behavior of 2
homopolymer system can be used to determine the first 2 binary interaction parameters while some
copolymer solvent data must be fitted to determine the third binary interaction parameter. Now, once
these parameters are known, predictions can be made for a copolymer solvent system with the same
type of copolymer but with a different copolymer composition. And this particular figure the constant
temperature cloud point curves and PC-SAFT modeling of the polyethylene system with the different
repeat units composition at 5 weight percent of the graduation of the polymer. Now, the model
correctly predicts the change in the location of the cloud point with changing co-monomer
concentration in the polymer.



Extension to Copolymers

Figure; Constant composition cloud-
point curves and PC-SAFT modeling for
poly (E-co-EA)—ethylene systems with
different repeat-unit compositions at 5
wt.% polymer:

Especially, it is interesting to see that the ethylene and polyethylene system in the curve of the cloud
point pressure as a function of ethylene thiol-coal concentration in the polymer shows this is the
minimum. So, dear friends in this particular segment we discussed the different models for the
prediction of thermodynamic systems, and for convenience, we have enlisted a couple of references.
Thank you very much.
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