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Hello friends, welcome to the thermodynamics of polymeric system phase 3. In this lecture,
we will discuss about the enthalpy entropy calculation for various polymeric systems. We
discussed the phase behavior of polymeric systems, fugacity, activity, equilibrium conditions,
theories, and various theories like Flory-Huggin's theories in the thermodynamic system. In
this particular segment, we are going to discuss the activity coefficient models. We will discuss
the Flory-Huggins theory. Then we will discuss Hansen solubility parameters, and the
correlation of various solvent activities because solvents play a vital role in shaping polymers
into useful products.

L
Topics to be covered

* Activity coefficient models

* Flory-Huggins theory

* Hansen solubility parameters
* Corelations of solvent activity
* Group contribution model

* Equation of state model

Then we will discuss about the group contribution model and equation of state models. Now
the first is the activity coefficient model. Now the in practice, the original Flory-Huggins theory
which is not accurate enough for a quantitative representation of polymer solvent phase
equilibrium. Now to improve this situation, a concentration dependent Xi parameter can be
introduced.
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s Activity Coefficient Models

* In practice the original Flory-Huggins theory is not accurate enough for a
quantitative representation of polymer-solvent phase equilibria.

* To improve this situation a concentration-dependent y parameter can be
introduced.

Now for this the Flory-Huggins they proposed the things and for a solution of a polydisperse
polymer with M polymer component in one solvent, the Flory-Huggins expression for the
Gibbs energy of the mixing per mole of lattice site. This can be written as delta G for mixing
over RT is equal to psi s In plus summation i shiiriinverse In shii plus shis ship Gspand G
sp is equal to is a function of temperature and shi p. Now the sum is only over the polymer
component shiiis the segment fraction of polymer component i. So, this can be shi p is equal
to summation of i is to summation from i is equal to 1 to M shi i is equal to 1 minus shis. Now
to avoid any kind of a confusion with the polymer solvent interaction parameter of the symbol
G sp is used instead of shi which is independent of concentration.
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¢ Flory—Huggins Theory
* For a solution of a polydisperse polymer with ‘m’ polymer components in

one solvent, the Flory-Huggins expression for the Gibbs energy of mixing
per mole of lattice sites can be written as;
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Now this G sp is equal to a plus b over t plus c t plus d shi p plus e shi p square. Now G sp is
equal to a plus b plus c over t 1 minus d shi p. Now G sp is equal to a plus b t plusclIntoverl
minus d shi p. Now this In X s gamma s is equal to In shi s plus 1 minus 1 over R n shi p plus G
sp minus shi s del G sp over del shi p i p square. Now this In X i gamma i is equal to In shi i plus
1 minus R i shi p over R n minus R i shi s plus Ri G shi p shiisquare.
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* The sum is only over the polymer components, @; is the segment fraction of
polymer component .
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* To avoid confusion with the polymer-solvent
interaction parameter, the symbol g, is used instead
of %, which is independent of concentration.
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Now R nis equaltoniRioveriisequal to 1 msummation fromiisequalto1ltomniwhere
R n is number average chain length of polymer. Now Henson solubility parameter according
to the regular solution theory of Hildebrand The xi parameter can be approximated by is v s
over R t del s delta s minus delta p square where v s is the molar volume of the solvent, delta
sis the solubility parameter of solvent and delta p is the solubility parameter of polymer. Now
this Henson suggested the refining of the solubility parameter theory and introduction of the
contribution from the dispersive interaction d and the polar interaction p and hydrogen bond
formation that is H b. So, this can be represented as v s over R t delta s d delta p square plus
delta s delta s h b and xi is equal to alpha v s R t delta s minus delta p plus 0.25 delta s minus
delta p plus 0.
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where 1, is number-average chain length of the polymer.
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+ Hansen Solubility Parameters

* According to the regular solution theory of Hildebrand the y parameter
can be approximated by;

v ) .
X = R—fr{c)g —3p)*

Where,
* v, is the molar volume of the solvent
* 0, is solubility parameters of solvent
* 0, is solubility parameters of polymer

v . .
X = R—}(f}S — f}pjz

. ___________________________
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* Hansen suggested refining the solubility parameter theory by the
introduction of contributions from dispersive interactions (d), polar
interactions (p) and hydrogen bond formation (hb).
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25 delta s h b minus delta p h b alpha is equal to 0.6. Now since the middle of 1990 is the
model for the activity coefficient have been put for that combine the Flory Huggins kind of
expression for the combinational entropy of mixing and the segment based local composition
model to take into account the contribution from energetic interaction. In 1993 Chen they
put up a correlative model of combined non-random two liquid NRTL theory with the Flory
Huggins expression for the entropy change. Now correlation of solvent activity, now in place
of NRTL theory Pedrosa he suggested unique quack theory in 2004.
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+* Correlation of Solvent Activities

* Since the middle of the 1990s, models for the activity coefficient have
been put forth that combine the Flory-Huggins kind of expression for the
combinatorial entropy of mixing with segment-based local composition
models to take into account the contribution from energetic interactions
(the residual contribution to the activity coefficient).

* In 1993, Chen put up a correlative model that
combined the non-random two-liquid (NRTL)
theory with the Flory-Huggins expression for the
combinatorial entropy of mixing.

Now using the database of 70 low pressure VLE system they examined the different
combinations of contributions and residual contributions. Now as an illustration we will
provide the expression for the activity coefficient of the solvent for a model that combines
the segment based NRTL residual term along with the p free volume term and the
contributions and the free contributions they are combined in the p free volume
combinatorial term. The activity coefficient of the solvent is given by In gamma s is equal to
In gamma s plus In minus residual. Now this combinatorial free volume term is given by In
gamma s combinatorial free volume is equal to In phi s this fugacity over plus 1 minus phi s X.
Now the free volume fraction this phi f v is calculated as X i Vi f v over summation jXjVifv.

In Y = In }Ismmb— fi +1n :}Isrﬁs
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In yeomb—f —1n % g %5
X X



I @409
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* The activity coefficient of the solveat is given by:

Iny, =Iny®*F £ In ™

‘5

* The combinatorial/free-volume term is given by ;

afe fo
In 3 = In i1 i

Xs X

The free volume of the component is usually defined by Vi f v is equal to minus ViV dw
where this Viis the molar volume of the liquid component i and this ViV d w is the hard core
volume or wonder volume of this particular segment. Now p correction factor which is which
can be calculated as p is equal to 1 minus V s over V p. So, the residual term can be given as
In gamma s residual g s X p square tau p sover X s plus X p g p s square plustausp gs p square
over X p plus X s g s p tau e to the power aij R T and Gi a is equal to e to the power minus
alpha tau ij where a s p and a p s are adjustable inter interaction parameter and aisthenRT
L non-random parameter which is fixed as by the Pedroza at point 4. Now so X i is equal to X
i gioversummationjXjqjandqiisequaltoRilminus 2 alpha 1l minus1uponRiwhereX
i is the effective mole fraction of the segment of a species i and q i is the effective segment
number of a species i R s is equal to 1 and rp is equal to R. Now group contributions method
this can be used to forecast the thermodynamic properties.
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¢ Correlation of Solvent Activities

* The free-volume fraction @¥, is calculated as;

o
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+ The free volume of a component is defined by;

of' = (vi — viaw)?

where v; is the molar volume of liquid component i,
V; .qw 1S the hard-core volume or van der Waals volume
of this component.

¢ Correlation of Solvent Activities

P is a correction factor, which 1s calculated as;

p=1--

I
c
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The residual term is given as;.
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(Xe+ X, Gpe)® (X, + X,Gp)?

= exp(a'j) and __G;; = exp(—ur;)

Where,

ay, and a  are adjustable interaction parameters,

a is the NRTL-non randomness parameter, which was
fixed by Pedrosa et al. at 0.4.
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* Correlation of Solvent Activities
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X, is the effective mole fraction of segments of species i and q; is the
effective segment number of species 1, r, = 1 and r,=r

Xi
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Now, these models divide molecules into functional groups. Now, instead of considering the
interaction between the molecules group contribution model for activity coefficient, consider
the interaction between the functional groups. So, there are significantly fewer functional
groups then there are potential molecules that could be made up of these groups. A smaller
number of group interaction parameters can be used to characterize a large number of
systems. The regression of experimental data is how these group interactions were
discovered.

|
¢ Group Contribution Models

* Group contribution methods can be used to forecast thermodynamic
properties.
* These models divide molecules into functional groups.

+ Instead of considering interactions between molecules, group contribution
models for activity coefficients take into account interactions between
functional groups.

» Since there are significantly fewer functional groups
than there are potential molecules that could be made
up of these groups, a small number of group
interaction parameters can be used to characterize a
large number of systems.

So, the group contribution approaches are thus entirely predictive. The group contribution
approach for activity coefficient is typically less accurate than the correlative models since
specify the particular specifics of the molecule structure are not considered. So Oishi they had
all they proposed the writing of a solvent activity coefficient for the polymer-solvent system,
and they are the sum of the terms like In gamma s In plus In gamma s fugacity plus In gamma
s for the residual. The combinatorial contribution of this gamma accounts for the difference
in the size and shape of the molecules. The free volume contribution of gamma then for the
fugacity accounts for the change in the free volume due to mixing, and that is caused by the
large difference between the free volume of pure solvent and polymers.

X
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* Oishi and Prausnitz proposed writing the solvent activity coefficient for

polymer-solvent systems as the sum of three terms;
Iny, =In ;.'sw"’b +1n ;ﬂ +1In y*

* The combinatorial contribution y5°® accounts for
differences in size and shape of the molecules.

» The free-volume contribution y & accounts for

changes in free volume due to mixing, caused by

the large difference between the free volumes of
pure solvent and polymer.

Il =1n~ comb + In -+ fu + 1n -7
‘3 ‘5 + 85 5

So, the residual contribution accounts for energy interaction, and some of the workers their
formulation they use this Oishi to represent the combinatorial contribution. A modified
version of Flory Huggins equation which is also utilized in the UNIFAC group contribution
model. The residual contribution Also uses the UNIFAC models corresponding to the formula.
The UNIFAC model residual contribution with temperature-dependent interaction
parameters serves as a representation of the residual contribution. Now the liquid molar
volume this requires for calculating the free volume of a component this can be determined
experimentally by using the T-8 equation or by the Albro-Grupp contribution approach.

+*

»* Group Contribution Models

* The residual contribution (Y *%%) accounts for energy interactions.

* The &m—(}uggenheinf formulation is used by Oishi and Prausnitz to
represent the combinatorial contribution.

* A modified version of the Flory-Huggins equation, which is also utilised in
the UNIFAC group contribution model; the residual contribution also uses

the UNIFAC model's corresponding formula.




So, the molar hard core we start this calculated from the pure component hard core molar
volume using the linear mixing rule. Now what is this linear mixing rule this one can be
represented mathematically like this X i Ciis equal to i X i Ci. Now these same type of mixing
rule is used for a number of approaches. Now the group contribution formula in these
equations they are used to determine the pure component hard core volume and the C
parameter. Now here this can be represented like this 21.

L
* Group Contribution Models

* The molar hard-core v* is calculated from the pure component hard-core
molar volumes v*; using a linear mixing rule.

* The same type of mixing rule is used for the number of external degrees
of freedom parameter C.

v* = E xi0;

i
C= Z xiCi

i
I @4 @

“* Group Contribution Models

* The group contribution formulas in Equation are used to determine the
pure component hard-core volumes and C parameters.

vf = 21.9662) v R,
m

I

- 1 1 R
=3 [cn+ Cra(7 -7 Ry
n m
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9662 summation of mV miR mand Ciis equal to the summation of n V n C t naught n plus
Ctn1overtminus 1overtnaughtis equal to this summation n R n over summation m R m
C n naught. Now here, the Vi is the number of groups of type in n molecules i t naught is the
reference temperature R n is the normalized volume of the group n used in the UNIFAC model.
Now the attraction term sometimes Ea is related to the UNIFAC model and Z is the lattice
country coordination number chosen to be equal to 10 and q i the surface area of the
molecule i which is given by this attraction term is equal to summation i half Z q i X i plus
summation j theta j e to the power delta minus delta over R t delta epsilon j i over summation
k theta k exponential minus delta over R t minus 3 R I n 1 by 3 minus 1 summation i X i
summation nV n Ctn. Now q i this is can be represented as V n g n g n is the normalized to
wander wall surface of group n as in the uni-fact and the interaction energy parameter this
epsilon j i and epsilon delta epsilon j i is given by the equations epsilon over nu and delta
epsilon i j is equal to epsilon i j minus i i. Now where this epsilon naught j i is given by ji j
epsilon n m and epsilon n mis equal to minus epsilon n epsilon m to the power half plus delta
epsilon n m.

> 0 exp(—Acji/RT)As

1 ]
EWr = " zgpc; | e + !
i 2 E I(}'Ik EXP(—Q{:H;"RT)

E

— IR n (#) Z (xi Z U?{f} Cﬂn)

i n



I T
“* Group Contribution Models
*  The attraction term E,, 1s related to the UNIFAC mode, z is the lattice

coordination number, chosen to be equal to 10, and q;, the surface area of
molecule 1, is given by

Zﬁj exp(—Azji/ RT) Asji |
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* Group Contribution Models

q; = Z DE:] Qn

n

Q, is the normalized van der Waals surface of group n, as in UNIFAC. The
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s+ Group Contribution Models

* Where €% is given by

O (3) (J)
2= T H S W
i R

12
fnm = _{"-'nnf'-'mm) + Aenm

* In these expressions the volume fraction ¢; of
molecule, the segment fraction e; of molecule 1.

These expressions the volume fraction psi of the molecule and the segment fraction theta i
of the molecule i. Now the segment fraction in the theta n in the molecule they are defined
by the equation phiiis equal to X i Vi star over j X jV jthe reference then theta i is equal to
Xiqgiover summation jXiqjthenthetaniisequaltoVniqgnoversummationmV miinto
g m. The resulting expression for the free volume contribution and the residual contribution
in the activity coefficient is given by Inmiis equalto 3 1 plus cil n 1 by 3 minus 1 over minus
cilnVioverVandlngamma iresidual is equalto 1 overtoZ qil over R T epsilon minus
epsiloniiViplus 1 minus | n summation j theta j e to the power minus delta epsilon j i over
R T minus summation j theta j e to the power minus delta epsilon ji over RT over theta k e to
the power minus delta epsilon k i over R T. This is summation. Now, this graph comprises or
compares the experimentally determined solvent activity of the system for the polypropylene
oxide benzene at 347.85.
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* Group Contribution Models

» The segment fraction of e®_ in molecule i are defined by Egs.

Note; m and n refer to groups m and n, and

".-'51 =

; ity i and j to molecules i and j
_xg
Zx}‘h
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* The resulting expressions for the free-volume contribution and the residual
contribution in the activity coefficient are give as;

~1/3 .
o _ (% T ey B
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* Group Contribution Models

e * The graph compares the experimentally
o0 1 determined solvent activity of the system
£ e et poly(propylene oxide)-benzene at 347.85 K
% = to UNIQUAC correlations and GC-Flory
E”“' model predictions.
Boa * The correlation's outcome is nearly perfect.
“%to 0k a0 o

ofo  odo
Solvent Weight Fraction

Kelvin at UNIFAC correlation, and this correlations outcome is nearly perfect. And this
particular graph illustrates the agreement between the predictions made by this group
contribution flow remodel for the homopolymer solvent system and experimental solvent
activity coefficient at infinite dilution. Now, let us talk about the equation state model. The
high-pressure phase equilibria in system of polymeric system or solvent and supercritical
gases they are almost in all cases modelled using the equation of state. So, one of the first
equation of state that was used to model the high-pressure phase behaviour of polymer
solvent system was the flow equation of state.



And Patterson and Delmas they showed the equation of state can be used to describe both
LCST and UCST phase behaviour. And some of the co-workers they created the perturbed
hard chain theory. It can be used to model the phase behaviour of mixture for small and big
molecules including the polymer across a wide range of pressure and temperature. Now, this
can be seen as an advance over the method of Flory and co-worker. Now, basically there are
two equation of state methods the relatively simple that is Sanchez Locombe Lattice Fluid
Model and statistical associated Flory Fluid Theory that is which has now become one of the
standard equations of state for the polymeric system.

I
» Equation of State Models

* High-pressure phase equilibria in systems of polymers, solvents, and
supercritical gases are in almost all cases modeled using equations of
state.

* One of the first equations of state that was used to model the high-
pressure phase behavior of polymer-solvent systems was the Flory
equation of state.

» Patterson and Delmas showed that this equation of
state can be used to describe both LCST and UCST
phase behavior.

Now, Sanchez Locombe Lattice Fluid Theory this theory like the Flory Huggins model it is
predicting the idea of portion of solvent and polymer molecule to fill the lattice sites of a rigid
lattice although unoccupied lattice sites are also permitted. Now, the compressibility is also
introduced by the pressure dependent relationship between the total number of lattice sites
and number of unoccupied lattice sites. So, the resulting equation for the pure component is
given by p v over t is equal to 1 over r minus 1 plus v In 1 minus 1 v 1 over v t where p is the
reduced pressure this one and this is the reduced volume and this is the reduced temperature.
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< Equation of State Models

» Sanchez—Lacombe Lattice Fluid Theory

* The Sanchez-Lacombe lattice fluid theory, like the Flory-Huggins model,
is predicated on the idea that portions of solvent and polymer molecules
fill the lattice sites of a rigid lattice, although unoccupied lattice sites are
also permitted.

* Compressibility is introduced by the pressure-
dependent relationship between the total number of
lattice sites and the number of unoccupied lattice
sites.

Cont...

The resulting equation of state for a pure component is given by Eq.

P—F=1—[l+ﬁln<1—l)]—é
r r v vT
Where,

P = reduced pressure
7 = reduced volume
T = reduced temperature

e

1 1 1
e M+éln(1-2)|-=
¥ + v T

S

Now, the reduced volume and a reduced pressure and this can be defined as bar v is equal to
v over v standard which is equal to n naught plus r n over r n and reduced pressure can be
defined as p over this standard pressure this is p v standard pressure silent and this reduced
temperature is defined as k t over t star. The parameters with this standard is called the
characteristics parameter and the practice r of the number of segments per molecule epsilon
this is the interaction energy parameter and v star is the molar volume of the lattice site they



are used as the independent pure component parameter and n is the number of moles of the
component and n naught is the number of moles of vacant lattice site.
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Cont...

The reduced volume, the reduced pressure, and the reduced temperature are
defined by;

. v ng+rn
D:_-k:—
(1N I
. P P
p_P.-k_(t
- kT
T =
T*

kT
T*

Now, for mixture of same equation of state is used, but the characteristics parameter r epsilon
star and v star are composition dependent. So, the new this give an overview of different
mixing rule proposed and the literature and often used mixing rules this can be given as r is
equal to summation of x i ri v star is given as psi i vi and epsilon star is given as summation
of psi i psi j roots of epsilon j epsilon ii at the standard condition then epsilon j j its standard
condition 1 minus k i j. Now, this kij is the adjustable binary interaction parameter which
equals to O for i is equal to j. Now, the segment fraction of j i for the component psi is given
by psiiis equal to x i ri over summation x i ri. Now, according to new the correct expression
for the fugacity coefficient of the model given by In psi i is equal to minus In z plus r i minus 2
1 over vt minus In 1 minus 1 over v plus z minus 1 over x jrjinto n r over v star del v over del
ninjisnot equal toniminus 1 overvtintonroverepsilon del epsilon star overdelninjis
not equal ton i.

T
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Cont...

* For mixtures the same equation of state is used, but the characteristic
parameters r, €*, and v* are composition-dependent.

« Neau gives an overview of different mixing rules proposed in the
literature. Often-used mixing rules are given as;
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According to Neau;
The correct expression for the fugacity coefficient for the SL model is;

]- ]_ — 1 Iy *
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Now, the compressibility factor because sometimes it is always required to assess the
deviation from the ideal behaviour this can be given by p v over R T that is reduced pressure
reduced volume and reduced temperature R.

Now, in this particular figure the Sanchez-Lokambe equation of state is used to fit the data
for to the experimental isothermal cloud point curves in the linear low density. Now, the p v
t data and the data shown in this particular graph they are simultaneously fitted to yield the
polymers pure component properties and the equations that were resolved there were those
of Koch and Henderman described the temperature they had the linear relationship with the
binary interaction parameters.
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» In Figure, The Sanchez-Lacombe equation of

N state is used to fit the data to the experimental

{(H 1sothermal cloud-point curves of the linear low
density polyethylene and hexane system.

* From the critical point of hexane and its

5 . { acentric factor, the pure component properties
» 450K
Z FEQ?\ of hexane were calculated.
. Criticad Poirg .

— Cloud Poirit
1 [ Spinodal
«  Critical Foint
o4 . i 4 - .
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P/ MPa

Figure; Showing isothermal cloud-
point curves of LLDPE and n-hexane
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So, dear friend, in this particular segment, we discussed the different model for the polymeric
system, and we see how this equation of state play a vital role in predicting the
thermodynamic behaviour of the polymeric system. We have enlisted several references you
can utilize these references as per your need. Thank you very much.



