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Mass transfer phenomenon in polymers: Laminar flow and boundary layer conditions 

 

 Hello friends, welcome to the next episode of Mass Transfer Operations. In this particular segment, 

we are going to discuss the laminar flow and boundary conditions in mass transfer operations. So, let 

us have a brief outlook on what we discussed in the previous lecture, we discussed the mass transfer 

coefficient in the previous lecture, then different types of mass transfer coefficient, and then we 

discussed the equimolar counter diffusion in two components. We established the relationship 

between the mass transfer coefficient and we discussed the mass transfer coefficient and film 

thickness. Apart from this, we discussed the dimensionless numbers in mass transfer operations. In 

this particular segment, we are going to discuss the mass transfer coefficient in laminar flow. 

  

 We are going to discuss the mass transfer in falling film. Apart from this, we will discuss the laminar 

falling film in the inclined surface. We will also discuss the mass transfer coefficient in turbulent flow. 

Apart from this, we will discuss boundary clear theory and film theory, all these things we are going 

to discuss in this particular section. 



 

 Now, let us talk about the mass transfer coefficient in laminar flow. In principle, rather we did not, 

we do not need to study the mass transfer coefficient in laminar flow conditions. A uniform method 

dealing this both laminar flow and turbulent flow is nevertheless desirable. So, we shall choose one 

relatively simple situation to illustrate the general technique and to provide some basis for considering 

turbulent flow. Now, this is the particular figure. 

 

 This particular figure shows a liquid falling in a thin film in a laminar flow and down a vertical flat 

surface while being exposed to gas A, in that case, which dissolved in that particular liquid. So, this is 

a very common phenomenon when a gas is usually dissolved in a particular liquid like in a scrubbing 

operation. So, this liquid contains a uniform concentration of C A, not of A at the top. At the liquid 

surface, the concentration of the dissolved gas is C A1. 



 

 In the equilibrium with the pressure A in the gas phase, now since C A1 is greater than C A0, gas 

dissolves in the liquid. The problem is to obtain the mass transfer coefficient kl with which the amount 

of gas dissolved after the liquid falls a certain distance l, this can be computed. The problem is solved 

by the simultaneous solution of the equation of continuity for component A with the equation which 

usually describes the liquid motion in the Navier-Stokes equation. The simultaneous solution of a 

formidable set of partial differential equations becomes possible only when several simplifying 

assumptions are made. Now, let us consider this particular equation which is derived for unsteady 

state mass transfer. 
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 Here, vx del C over del x plus vy del C A over del y plus vz del C over C A over del z plus del C A over 

del t is equal to D AB, del 2 C A over del x2 plus del 2 C A over del y2 plus del 2 C A over del z2 plus rA. 

This is the equation number 1. For the present purpose, assume that there is no chemical reaction 

within the system. So, we can take rA is equal to 0 and condition do not change in the x direction 

perpendicular to the plane of the paper. All derivatives with respect to x should be 0. 
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Now, if we take the steady state condition previous, in that case, del C A over del t is equal to 0. Now, 

we can take the other assumptions too. One is that the rate of absorption of gas is very small. This 

means that vz in equation 1, this is equation 1, due to the diffusion of A is essentially 0. A diffusion of 

A in the y direction is negligible in comparison with the movement of A outward due to bulk flow and 

that is D AB del 2 C A over del y2 is equal to 0 and the physical properties in this case, that is D AB rho 

mu are constant. So, equation 1 which can this equation can be reduced to v at y del C A over del y is 

equal to D AB del 2 C A over del z2 and we can say that this is equation number 2. Now, if we talk 

about the mass transfer in falling film, now, this is states that A added to the liquid running down at 

any location z over an increment of in phi.  
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So, we have to be the diffuser, we have to be called as the diffusion in the z direction and the equation 

of motion under this condition can be reduced to mu del 2 vy over del z2 plus rho g is equal to 0 and 

that is the equation number 3. Now, the solution of equation 3 with the condition vy is equal to 0 at z 

is equal to delta and that dv over dz is equal to 0 at z is equal to 0 is well known and this can be 

represented like this vy is equal to rho g del 2 over 2 mu into 1 minus z over delta to the power 2 and 

that can be represented as equation number 4. So, the maximum velocity that occurs at z is equal to 

0 in this particular equation vy max is equal to rho g del 2 over 2 mu and that is equation number 5. 



 

 So, the bulk average velocity can be obtained like vy average this can be represented as a 

mathematical formula like this and vy average can be represented if we adopt all kind of integration 

and another thing can be put as rho g del 2 over 3 mu and this can be written as equation number 6.  
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So, the film thickness can be represented as delta is equal to 3 by average mu over rho g to the power 

half and that is equation number 7. So, if we substitute equation 4 into equation 2, which we derived 

previously, and then by equation 6, we get this final equation 3 over 2 vy average into 1 minus z over 

the delta to the power 2 del c over del y is equal to dAb del 2 c over del z2. So, which is to be solved 

under the different conditions like at z is equal to 0, ca is equal to cai at all the values of y and at z is 

equal to delta, ca over del z is equal to 0 at all the values of y since no diffusion takes place into the 

solid wall and at y is equal to 0, ca is equal to ca naught at all values of z. So, the solution in the result 

in the general expression and infinite series gives ca for any for any z and y therefore, the providing 

the distribution that ca z at y is equal to solid wall L. 

 

 So, if we take equation 4 and 5 into consideration then vy is equal to vy max 1 minus z over delta 

where vy max is equal to 3 by 2 vy average. So, if the solute is penetrated only a very small distance, 

very small distance into the fluid and that is a short contact time that is t is equal to v over vy max, 

then the solute a that has diffused this has been carried out along with the velocity vy maximum. So, 

the previous equation 2 which becomes del ca over del y over v is equal to d A v del 2 ca over del z 2 

this is equation number 9. So, if we use a if we use ca is equal to 0 at y is equal to 0 and ca is equal to 

ca i at z is equal to 0 and ca is equal to 0 at z is equal to infinite. So, if we integrate equation 9 then it 

can be this is equation 9 if we integrate then ca over ca i this is equal to f c over z 4 d A b y over v y 

this is equation number 10. 



 

 Now, where this particular is a complementary error, error function of y it can be written as E r f c y 

is equal to 1 minus E r f c y r the standard tabulated functions. So, the local molar flux at the surface z 

is equal to 0 at any position y from the top of the entrance can be given as n A is equal to minus d A b 

del c A over del y z is equal to 0 and this can be c A i in d A b v y over tau y this is equation number 11. 

So, the total mole of A transferred total mole of A transferred per second to the liquid over the entire 

length y is equal to 0 to y is equal to L where the vertical surface is unit with which can be calculated 

like n A L into 1 1 0 to t n A z is equal to 0 to L c A i d A d y v y maximum which we are targeting to the 

power half into 1 over y to the power half d y which is equal to L c A 4 d A b v y pi L to the power half 

this can be written as equation number 12.  

 

 



Now, let us take up a problem the absorption of pure carbon dioxide is carried out at 1 atmosphere 

pressure and at 25 degree centigrade by using water film flowing down a vertical wall of 1 meter long 

and the water is essentially CO2 free at the outset. The average velocity of the liquid is 0.2 meters per 

second and the solubility of carbon dioxide in water at 25 degree Celsius and 1 atmosphere is that is 

c A i initially is equal to 0.336-kilo mole per meter cube. So, you need to calculate the film thickness 

and the rate of absorption of carbon dioxide. Now, some statistical information is given to you like 

that d A b is equal to 2 into 10 to the power minus 9-meter square per second and the solution density 

is equal to rho is equal to 997 kilograms per meter cube and the viscosity which is foremost important 

to solve this particular problem is given as 8.95 into 10 to the power minus 4 kilograms per meter 

second at 25 degree Celsius. 

 



 So, let us solve this particular problem. Now, it is given that v y average this is equal to 0.2 meters per 

second, p is equal to 997 kilograms per meter cube, mu is equal to 8.95 into 10 to the power minus 4 

kilograms per meter second and g is 9.81 meters per square. So, the delta is equal to 3 v average mu 

this is the standard formula that we discussed earlier rho g to the power half, and this is 3 into 0.2 into 

8.95 into 10 to the power minus 4 over 997 into 9.81, which is equal to one half. 

 

 So, the delta is equal to 2.34 into 10 to the power minus 4 meters. So, now, CAI is given to you that is 

0.0336-kilo mole per meter cube, D AB is given to you 2 into 10 to the power minus 9 meter square 

per second length is given 1 meter. So, N A is equal to CAI 4 D AB v y maximum tau L to the power half. 

So, if we substitute all these values, then it becomes N A is equal to 0.0336 into 4 into 2 into 10 to the 

power minus 9 into 0.2 tau 1 to the power half and this is coming out to be 7.58 into 10 to the power 

minus 7 kilo mole per meter square second and this is our required answer.  

 

 

Now, let us talk about the laminar falling film in an inclined surface. Sometimes this inclined surface 

plays a very vital role in this aspect. 

 Now, this is our inclined surface at angle theta. So, for any liquid flowing down a surface, a velocity 

profile which is usually established with the velocity increasing, let us say from 0 at the surface itself 

to a maximum where it is in contact with the surrounding atmosphere. So, the velocity distribution 

may be obtained in a manner similar what we used in connection with the pipe flow, but the driving 

force is attributed to the gravity rather than the pressure gradient. So, for the flow of liquid of the 

depth of say, delta down a plane surface with the width W, which is inclined at an angle of theta to 

the horizontal. So, a force balance in the y direction parallel to the surface may be written in this 

particular aspect. 
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 Now, in an element of length dy, the gravitational force acting in the part of the liquid which is at the 

distance greater than Z from the surface, this can be written as delta minus Z into W dy rho g sine 

theta. Now, if we talk about the drag force, so if the drag force of the atmosphere is negligible, the 

retarding force for laminar flow is attributable to the viscous drag in the liquid at a distance y from the 

surface and that is equal to mu dy over dz W dy. Now, where vy this is the velocity of the fluid at the 

position and therefore the equilibrium thus the equilibrium we can write delta minus Z into W dy rho 

g sin theta is equal to mu dv y over dz W dy. Now since there will be normally no slip between the 

liquid and a surface where vy is equal to 0 when Z is equal to 0. So, we can write the integrated 

integration like from 0 to vy dv y is equal to rho g sin theta over mu and 0 to Z delta minus Z into dz 

which can be modified to vy is equal to rho g sin theta over mu into del Z delta Z minus 1 over Z square. 
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So, the mass rate of the flow, that is the m of the liquid or mass of the liquid down to the surface, can 

be calculated as dot m is equal to 0 to delta rho g sin theta over mu into W delta Z minus 1 over 2 Z 

square into rho Z which can be after simplification it can be written as dot m is equal to rho square g 

sin theta over mu into W into del 3 delta 3 over 2 minus delta 3 over Z and which can be further 

modified to this final shape. Now, if we talk about the laminar falling film in an inclined surface, so 

average velocity of the fluid can be represented as vy average is equal to dot m over rho W delta is 

equal to rho g sin theta delta square over 3 mu and for vertical surface sin theta is equal to 1. So, the 

equation can be modified as v is equal to rho g delta square over 3 mu the maximum velocity that 

occurs at the free surface is given by vy is equal to rho g sin theta delta square over 2 mu and this is 

almost 1.5 times the mean velocity of the fluid. Now, let us talk about the boundary layer theory in 

mass transfer. 



 

 The exact solution can be obtained for the hydrodynamic boundary layer for isothermal laminar flow 

usually past a plate. Now, this is the typical laminar flow of the fluid that passes a flat plate, this is the 

flat plate and the concentration boundary layer. So, at this level this is CA. Now, an extension to the 

Blasius solution can be extended to derive an expression for the convective heat transfer. Now, in the 

analog manner, we can use the Blasius solution for convective mass transfer as well as the same 

geometry and laminar flow. 
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Now, here CA infinite is the concentration of A in the fluid approaching the plate. Now, CAS is the 

concentration of A in the fluid adjacent to the surface. So, in other words, we can say like this. So, if 

we start with the differential mass balance and simplify it for steady-state process where Del C over 

Del t is equal to 0. Now, flow only direction flow in the direction of x and y. 

 

 
So, if so, vz is equal to 0 and neglecting diffusion in x and z directions. So, it can be given as vx is into 

Del C over Del x plus vy into Del CA over Del y is equal to D AB Del 2 CA over Del y2 and this is can be 

represented as equation number 13. So, the momentum boundary layer is very similar. Therefore, this 

equation can be modified as vx to Del vx over Del x plus vy is equal to Del vx over Del y plus is equal 

to Mu over Rho Del 2 vx over Del y2 and this can be represented as equation number 14. 

The thermal boundary layer is also similar 
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Dimensionless concentration boundary conditions are; 
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 So, the thermal boundary layer if we talk about is also similar. So, this can be represented as vx into 

Del t over Del x plus vy is equal to Del t over Del y is equal to k over Rho CP Del 2 t over Del y2, and 

this is equation number 15. And if we adopt the dimensionless correct concentration boundary 

conditions, then at y is equal to 0, the vx over v infinite is equal to t minus TS over t infinite minus TS 

is equal to CA minus CAS over C infinite minus CAS is equal to 0. So, this can be represented as equation 

number 16. And on simplification, if we go for y is equal to infinite, this equation can be further 

modified, which is represented here, that is vx over v infinite is equal to t minus TS over t finite minus 

TS is equal to CA minus CAS over CA infinite minus CAS is equal to 1. So, this is equation number 17.  

 

Now, the Blasius equation is applied to convective heat transfer in that case Mu is Mu over Rho over 

alpha is equal to n a, which can be represented as 1. Now, we use the same type of solution for the 



laminar convective mass transfer, where Mu over Rho over D AB is equal to n SC that is Schmidt 

number 1 minus 0, and the velocity gradient, the velocity gradient is derived in the fluid mechanics 

and that is d vx over del vx over del y at y is equal to 0 that is 0.0332 v infinite over x n Reynolds 

number to the power half. So, where n Re that is Reynolds number at x, x v infinite Rho Mu, this is 

equation number 18. Now, if we recall equation number 17 here, then vx over v infinite is equal to CA 

minus CAS over C infinite A infinite minus CAS, this is equation number 19. 

 

 Now, if you differentiate equation 19 and combine the result with equation 18, then it can be D 

written as d CA over del CA over del y at y is equal to 0, this is equal to CA infinite minus CAS 0.332 

over x n that is Reynolds number over half. This is equation number 20. So, the convective mass 

transfer equation can be written as and also, if we relate with Fick's law, Fick's equation, then n A y is 

equal to k C CAS minus CA infinite is equal to minus D AB del CA over del y, y is equal to 0, this is 

equation number 21. So, from equations 20 and 21, we get k dash C x over D AB is equal to Sherwood 

number 0.332 n that is Reynolds number to the power half x and this is equation number 22. So, the 

relationship, this relationship is restricted to gas, gases with a Schmidt number is equal to 1.0. 

Relation between thickness and concentration boundary layer  
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 Now, the relationship between the thickness delta of the hydrodynamic and delta C, the 

concentration boundary layer where Schmidt number is not equal to 1 is delta C delta over delta C is 

equal to Schmidt number to the power 1 by 3 and that is equation number 23. Now, as a result, the 

equation for local convective mass transfer coefficient is given as k prime C x over D AB is equal to 

Sherwood number the x direction is equal to 0.332 Reynolds number to the power half and Schmidt 

number to the power 1 by 3 and this can be represented as equation number 24. So, we can obtain 

the mass transfer coefficient k c prime from x is equal to 0 to L for a plate with B by integrating this 

particular equation. So, this can be the k c prime is equal to B over B L 0 to L integration k c prime d x 

and this is equation number 25. So, we can represent the integration like k c prime over into L over D 

AB is equal to Schmidt number is equal to 0.664 Reynolds number to the power half and Schmidt 

number to the power 1 by 3. 

Mean mass transfer coefficient 
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 Now, let us take another problem, a large volume of pure water at 25 degrees Celsius is flowing 

parallel to a flat surface of solid benzoic acid where L is 0.244 meter in the direction of the flow and 

the water velocity is 0.061 meter per second, and the solubility of the benzoic acid in water is given 

that is 0.2948 kilo mole per meter cube and the diffusivity of the benzoic acid is 1.245 into 10 to the 

power minus 9 meter square per second. 

 



 

You need to calculate the mass transfer coefficient to k c prime and the flux and given is whatever 

given that is mu is equal to 8.71 into 10 to the power minus 4 kilograms per meter second and density 

rho is 996 kilogram per meter cube. So, let us solve this particular problem. So, the Schmidt number 

that is N SC that is mu is equal to rho D AB this is 8.71 into 10 to the power minus 4 996 into 1.245 

into 10 to the power minus 9 that is equal to 702 and Reynolds number is given by this particular 

mathematical representation and if you substitute the value, then it can be into 996 over 8.71 into 10 

to the power minus 4 and that is 1.7 into 10 to the power 4. So, k c prime over D AB is equal to 0.664 

Reynolds number to the power half and Schmidt number to the power 1 by 3. 

 

 So, if we substitute all the values that we calculated and D AB, which is given then k c prime comes 

out to be 3.92 into 10 to the power minus 6 meters per second. So, if we calculate N A we have N A is 

equal to k c prime x into CA 1 minus CA 2 which is equal to k c CA 1 minus CA 2. Now, if the solution is 

very dilute then this can be represented at k c prime is almost equal to k c. 



 

 Also, initially it is given the solubility is given 2.948 into 10 to the power minus 4-kilogram mole per 

meter cube that is solubility and CA 2 is equal to 0 for a large volume of fresh water. So, if we substitute 

all these values it 3.9 N A is equal to 3.92 into 10 to the power minus 6 into 0.02948 minus 0. This 

comes out to be 1.15 into 10 to the power minus 7-kilogram mole per meter cube. This is our answer. 

 

 Now, if we talk about the turbulent flow, so there are many theories that attempt to interpret the 

explaining explain the behaviour of mass transfer coefficient like NIST given the film theory the 

penetration theory is given by Higbie in 1935 and the surface enable theory is given by Dankwerts in 

1951. Now, NIST the film theory the NIST postulates that near the interface, there exists a stagnant 

film and the stagnant film, which is hypothetical since we really do not know the details of the velocity 

profile near the interface. 



 

 The basic concept is that the resistance to diffusion can be considered equivalent to that in the 

stagnant film of a certain thickness.  
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The mass transfer occurs by the molecular diffusion through the fluid layer at a phase boundary that 

is a solid wall and beyond this particular film the concentration is homogeneous and it is given by C A 

B. So, the mass transfer through the film occurs at a steady state and flux is very low and the mass 

transfer occurs at low concentration. So therefore, this can be N A can be represented like this. Now, 

a steady state mass balance over the elementary volume thickness if we try to find out at delta z. 
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So, the rate of input solute at z is equal to N A at z and the rate of output can be given as like this. So, 

if we take the rate of accumulation is equal to 0 that is the rate of input minus the rate of output; 

therefore, at a steady state, mathematically it can be represented like this. Now, let us consider that 

if we go for z tends to 0, then N A z at z minus N A at z plus z delta z over delta z is equal to 0. So, upon 

simplification we can go we can obtain various equations like d N A over d z is equal to 0 and then d 

over d z minus d A B d C A over d z is equal to 0. So, we can obtain various equations which are useful 

in due course of time. 

𝐶𝐴 = 𝐶𝐴,𝑖 − (𝐶𝐴,𝑖 − 𝐶𝐴𝑏)
𝑍

𝛿
 

𝑁𝐴 = −𝐷𝐴𝐵
𝑑𝐶𝐴
𝑑𝑧

|
𝑍=0

 



𝑁𝐴 =
𝐷𝐴𝐵(𝐶𝐴,𝑖 − 𝐶𝐴𝑏)

𝛿
 

 

 Now, if we integrate the previous equation, which we developed over like equation number 3, then 

with the different conditions, a different boundary layer condition that is C A is equal to C A I when z 

is equal to 0, and C A is equal to C A B where z is equal to the delta. So, we have now mathematically 

represented like this. Therefore, according to the film theory, the concentration profile in stagnant 

film is linear, and the molar flux through N A is given by these two equations.  

 

So, dear friends, at the outset, we discussed the mass transfer operation in various aspects like falling 

film, thickness all those things, and for your convenience, we have enlisted a couple of references you 

can utilize as per your requirement. Thank you very much. 


