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Mass transfer phenomenon in polymers: Laminar flow and boundary layer conditions

Hello friends, welcome to the next episode of Mass Transfer Operations. In this particular segment,

we are going to discuss the laminar flow and boundary conditions in mass transfer operations. So, let
us have a brief outlook on what we discussed in the previous lecture, we discussed the mass transfer
coefficient in the previous lecture, then different types of mass transfer coefficient, and then we
discussed the equimolar counter diffusion in two components. We established the relationship
between the mass transfer coefficient and we discussed the mass transfer coefficient and film
thickness. Apart from this, we discussed the dimensionless numbers in mass transfer operations. In
this particular segment, we are going to discuss the mass transfer coefficient in laminar flow.
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We are going to discuss the mass transfer in falling film. Apart from this, we will discuss the laminar
falling film in the inclined surface. We will also discuss the mass transfer coefficient in turbulent flow.
Apart from this, we will discuss boundary clear theory and film theory, all these things we are going
to discuss in this particular section.



‘ Mass transfer coefficient in laminar flow i

* In principle we do not need to study the mass transfer coefficient in
laminar flow conditions.

* A uniform method of dealing both laminar and turbulent flow is
nevertheless desirable.

* We shall choose one relatively simple situation to
illustrate the general technique and to provide some
basis for considering turbulent flow.
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Now, let us talk about the mass transfer coefficient in laminar flow. In principle, rather we did not,
we do not need to study the mass transfer coefficient in laminar flow conditions. A uniform method
dealing this both laminar flow and turbulent flow is nevertheless desirable. So, we shall choose one
relatively simple situation to illustrate the general technique and to provide some basis for considering
turbulent flow. Now, this is the particular figure.

| Mass transfer coefficient in laminar flow |

* Figure shows a liquid falling in a thin film in a e ™
laminar flow down a vertical flat surface while de ot pees
being exposed to a gas A, which dissolves in the —
liquid.

* The liquid contains a uniform concentration C,, of
A at the top.

» At the liquid surface the concentration of the
dissolved gas is C,;. in equilibrium with the pressure
of A in the gas phagé, since C,; > C,, gas dissolves in
the liquid. B

.
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This particular figure shows a liquid falling in a thin film in a laminar flow and down a vertical flat
surface while being exposed to gas A, in that case, which dissolved in that particular liquid. So, this is
a very common phenomenon when a gas is usually dissolved in a particular liquid like in a scrubbing
operation. So, this liquid contains a uniform concentration of C A, not of A at the top. At the liquid
surface, the concentration of the dissolved gas is C Al.



In the equilibrium with the pressure A in the gas phase, now since C Al is greater than C AO, gas
dissolves in the liquid. The problem is to obtain the mass transfer coefficient kl with which the amount
of gas dissolved after the liquid falls a certain distance |, this can be computed. The problem is solved
by the simultaneous solution of the equation of continuity for component A with the equation which
usually describes the liquid motion in the Navier-Stokes equation. The simultaneous solution of a
formidable set of partial differential equations becomes possible only when several simplifying
assumptions are made. Now, let us consider this particular equation which is derived for unsteady
state mass transfer.

| Mass transfer coefficient in laminar flow |

* Consider the following equations of continuity derived for unsteady state
mass transfer:
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« For the present purpose, assume that N A

a) there is no chemical reactions in the systems, R, =0

b) Conditions do not change in the x direction
(perpendicular to the plane of the paper. All
derivatives with respect to x should be 0.

¢) Steady state condition prevail, %_zo
t
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Continuity equation

ac,  ac,  9C, aC, 92C, 92C, 9%C,
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At steady state condition;

aC,
o 0

Here, vx del C over del x plus vy del C A over del y plus vz del C over C A over del z plus del C A over
del tis equal to D AB, del 2 C A over del x2 plus del 2 C A over del y2 plus del 2 C A over del z2 plus rA.
This is the equation number 1. For the present purpose, assume that there is no chemical reaction
within the system. So, we can take rA is equal to 0 and condition do not change in the x direction
perpendicular to the plane of the paper. All derivatives with respect to x should be 0.



| Mass transfer coefficient in laminar flow |

* Other assumptions are:
d) The rate of absorption of gas is very small t]:us means that V, in equation 1
due to diffusion of A is essentially zero. &

e) Diffusion of A in the y direction is negligible in comparison with the
movement of A outward due to bulk flow, - o’c, . J—
4B A3 T '
o
f) The physical properties in this case (DAB P, ) are
constant. So, equation 1 reduces to: 0

oC, &’C, u
Vot =Da ()
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Now, if we take the steady state condition previous, in that case, del C A over del t is equal to 0. Now,
we can take the other assumptions too. One is that the rate of absorption of gas is very small. This
means that vz in equation 1, this is equation 1, due to the diffusion of A is essentially 0. A diffusion of
Ain the y direction is negligible in comparison with the movement of A outward due to bulk flow and
that is D AB del 2 C A over del y2 is equal to 0 and the physical properties in this case, that is D AB rho
mu are constant. So, equation 1 which can this equation can be reduced to v at y del C A over del y is
equal to D AB del 2 C A over del z2 and we can say that this is equation number 2. Now, if we talk
about the mass transfer in falling film, now, this is states that A added to the liquid running down at
any location z over an increment of in phi.
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|Mass transfer in falling film |

» This states that A added to the liquid running down at any location z over
an increment in y, got there by diffusion in the z direction.
* The equation of motion under this condition will be again reduces to
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* The solution to equation 3 with the conditions V, = 0 at z = 6 and that
dV,/dz=0atz=0,is well known <
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So, we have to be the diffuser, we have to be called as the diffusion in the z direction and the equation
of motion under this condition can be reduced to mu del 2 vy over del z2 plus rho g is equal to 0 and
that is the equation number 3. Now, the solution of equation 3 with the condition vy is equal to 0 at z
is equal to delta and that dv over dz is equal to 0 at z is equal to O is well known and this can be
represented like this vy is equal to rho g del 2 over 2 mu into 1 minus z over delta to the power 2 and
that can be represented as equation number 4. So, the maximum velocity that occurs at z is equal to
0 in this particular equation vy max is equal to rho g del 2 over 2 mu and that is equation number 5.



|Mass transfer in falling film |

* The maximum velocity which occurs at z= 0 in equation 4
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* The bulk average velocity can be obtained as follows:
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So, the bulk average velocity can be obtained like vy average this can be represented as a
mathematical formula like this and vy average can be represented if we adopt all kind of integration
and another thing can be put as rho g del 2 over 3 mu and this can be written as equation number 6.

1
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|Mass transfer in falling film |

* The film thickness is then 52[3.1}'_,.@!;;]15 ..... (7) ,/ o
: P-E -
* Substituting equation 4 into equation 2 and then by using equation 6, we get:
2 @ .
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Which is to be solved under the following conditions

1. Atz=0,C,=C,,atall the values of y. o

2. Atz=35, @Cs/a_ —o at all the values of y, sinceno
diffusion takes place into the solid wall.

3. Aty=0,C,=C, atall values of z
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So, the film thickness can be represented as delta is equal to 3 by average mu over rho g to the power
half and that is equation number 7. So, if we substitute equation 4 into equation 2, which we derived
previously, and then by equation 6, we get this final equation 3 over 2 vy average into 1 minus z over
the delta to the power 2 del c over del y is equal to dAb del 2 c over del z2. So, which is to be solved
under the different conditions like at z is equal to 0, ca is equal to cai at all the values of y and at z is
equal to delta, ca over del z is equal to 0 at all the values of y since no diffusion takes place into the
solid wall and at y is equal to O, ca is equal to ca naught at all values of z. So, the solution in the result
in the general expression and infinite series gives ca for any for any z and y therefore, the providing
the distribution that ca z at y is equal to solid wall L.

|Mass transfer in falling film |
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So, if we take equation 4 and 5 into consideration then vy is equal to vy max 1 minus z over delta
where vy max is equal to 3 by 2 vy average. So, if the solute is penetrated only a very small distance,
very small distance into the fluid and that is a short contact time that is t is equal to v over vy max,
then the solute a that has diffused this has been carried out along with the velocity vy maximum. So,
the previous equation 2 which becomes del ca over del y over v is equal to d A v del 2 ca over del z 2
this is equation number 9. So, if we use a if we use ca is equal to 0 at y is equal to 0 and ca is equal to
caiatzisequalto0and cais equal to 0 at z is equal to infinite. So, if we integrate equation 9 then it
can be this is equation 9 if we integrate then ca over ca i this is equaltofcoverz4dAbyovervy
this is equation number 10.
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Now, where this particular is a complementary error, error function of y it can be writtenasErfcy
is equal to 1 minus E r f c y r the standard tabulated functions. So, the local molar flux at the surface z
is equal to 0 at any position y from the top of the entrance can be given as n A is equal to minusd A b
del c Aover dely zis equal to 0 and this canbe c Aiin d Ab vy over tau y this is equation number 11.
A
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So, the total mole of A transferred total mole of A transferred per second to the liquid over the entire
length y is equal to 0 to y is equal to L where the vertical surface is unit with which can be calculated
likenALintoll0totnAzisequaltoOtoLcAidAdyvymaximum which we are targeting to the

power half into 1 over y to the power half d y whichisequaltoLc A4 d Ab vy pil to the power half
this can be written as equation number 12.



| Problem-1 |

Question: The absorption of pure carbon dioxide is carried out at 1
atmospheric pressure and at 25 degree centigrade by using water film flowing
down a vertical wall of 1 meter long. The water is essentially CO2 free
initially. The average velocity of the liquid is 0.2 meter per second. The
solubility of CO2 in water at 25 ©°C and at 1 atmosphere is WCWM/: 0.0336

kmol/m’ : : —
Calculate the film thickness and the rate of absorption of carbon dioxide ?

Use the following properties, DAB: 2 x 10 m?%/s,
solution density p =997 kg/m*and i
viscosity = 8.95 x 10* kg/m.s at 25 °C.
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Now, let us take up a problem the absorption of pure carbon dioxide is carried out at 1 atmosphere
pressure and at 25 degree centigrade by using water film flowing down a vertical wall of 1 meter long
and the water is essentially CO2 free at the outset. The average velocity of the liquid is 0.2 meters per
second and the solubility of carbon dioxide in water at 25 degree Celsius and 1 atmosphere is that is
¢ Ai initially is equal to 0.336-kilo mole per meter cube. So, you need to calculate the film thickness
and the rate of absorption of carbon dioxide. Now, some statistical information is given to you like
thatd A bis equal to 2 into 10 to the power minus 9-meter square per second and the solution density
is equal to rho is equal to 997 kilograms per meter cube and the viscosity which is foremost important
to solve this particular problem is given as 8.95 into 10 to the power minus 4 kilograms per meter
second at 25 degree Celsius.
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So, let us solve this particular problem. Now, it is given that v y average this is equal to 0.2 meters per
second, p is equal to 997 kilograms per meter cube, mu is equal to 8.95 into 10 to the power minus 4
kilograms per meter second and g is 9.81 meters per square. So, the delta is equal to 3 v average mu
this is the standard formula that we discussed earlier rho g to the power half, and this is 3 into 0.2 into
8.95 into 10 to the power minus 4 over 997 into 9.81, which is equal to one half.

So, the delta is equal to 2.34 into 10 to the power minus 4 meters. So, now, CAl is given to you that is
0.0336-kilo mole per meter cube, D AB is given to you 2 into 10 to the power minus 9 meter square
per second length is given 1 meter. So, N A is equal to CAl 4 D AB vy maximum tau L to the power half.
So, if we substitute all these values, then it becomes N A is equal to 0.0336 into 4 into 2 into 10 to the
power minus 9 into 0.2 tau 1 to the power half and this is coming out to be 7.58 into 10 to the power
minus 7 kilo mole per meter square second and this is our required answer.

|Laminar falling film in an inclined surface|

* In any liquid flowing down a surface a velocity
profile is established with the velocity
increasing from 0 at the surface itself to a
maximum where 1t 1is contact with the
surrounding atmosphere.

Flow of liguid over a
surface

* The velocity distribution may be obtained in a
manner similarly used in connection with the
pipe flow but that the driving force is due to
gravity rather than the pressure gradient.

'
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Now, let us talk about the laminar falling film in an inclined surface. Sometimes this inclined surface
plays a very vital role in this aspect.

Now, this is our inclined surface at angle theta. So, for any liquid flowing down a surface, a velocity
profile which is usually established with the velocity increasing, let us say from 0 at the surface itself
to a maximum where it is in contact with the surrounding atmosphere. So, the velocity distribution
may be obtained in a manner similar what we used in connection with the pipe flow, but the driving
force is attributed to the gravity rather than the pressure gradient. So, for the flow of liquid of the
depth of say, delta down a plane surface with the width W, which is inclined at an angle of theta to
the horizontal. So, a force balance in the y direction parallel to the surface may be written in this
particular aspect.



q Laminar falling film in an inclined surface|

* If the drag force of the atmosphere is negligible,
the retarding force for laminar flow is attributable to
the viscous drag in the liquid at a distance y from

the surface= p.dV,/dz.wdy
Where, Flow of liquid over a
V, is the velocity of the fluid at that position. surface

* Thus, at equilibrium

C ’ e
(8 —z)wdy.p.g.siné = u ai'—-1 wdy

-
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. av,
(6 —2)w.dy.p.g.sinf = h W dy
Now, in an element of length dy, the gravitational force acting in the part of the liquid which is at the
distance greater than Z from the surface, this can be written as delta minus Z into W dy rho g sine
theta. Now, if we talk about the drag force, so if the drag force of the atmosphere is negligible, the
retarding force for laminar flow is attributable to the viscous drag in the liquid at a distance y from the
surface and that is equal to mu dy over dz W dy. Now, where vy this is the velocity of the fluid at the
position and therefore the equilibrium thus the equilibrium we can write delta minus Z into W dy rho
g sin theta is equal to mu dv y over dz W dy. Now since there will be normally no slip between the
liquid and a surface where vy is equal to 0 when Z is equal to 0. So, we can write the integrated
integration like from 0 to vy dv y is equal to rho g sin theta over mu and 0 to Z delta minus Z into dz
which can be modified to vy is equal to rho g sin theta over mu into del Z delta Z minus 1 over Z square.

Vy z

.g-sin@
f dv, =pngf(5—z)dz
0 0

.g.sin@ 1
= 2050 (5, L)
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|Laminar falling film in an inclined surface|

* Since there will be normally no slip between the
liquid and the surface, then V, =0 when z = 0:

7,

IdK :LSMI(-:S—:)d: //
0 -’u 0

Flow of liquid over a
surface
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q Laminar falling film in an inclined surface|

* The mass rate of flow that is th of liquid down the surface can be calculated

as:
5 .
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HLaminar falling film in an inclined surface |

* The average velocity of fluid is: ” M p.g.sin 85°

- PoW.S 3. e
* For a vertical surface, sin0 =1 J
_pgstly S

3u |

v.avg
* The maximum velocity which occurs at the free surface is given by:

YAavg
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So, the mass rate of the flow, that is the m of the liquid or mass of the liquid down to the surface, can
be calculated as dot m is equal to O to delta rho g sin theta over mu into W delta Z minus 1 over 2 Z
square into rho Z which can be after simplification it can be written as dot m is equal to rho square g
sin theta over mu into W into del 3 delta 3 over 2 minus delta 3 over Z and which can be further
modified to this final shape. Now, if we talk about the laminar falling film in an inclined surface, so
average velocity of the fluid can be represented as vy average is equal to dot m over rho W delta is
equal to rho g sin theta delta square over 3 mu and for vertical surface sin theta is equal to 1. So, the
equation can be modified as v is equal to rho g delta square over 3 mu the maximum velocity that
occurs at the free surface is given by vy is equal to rho g sin theta delta square over 2 mu and this is
almost 1.5 times the mean velocity of the fluid. Now, let us talk about the boundary layer theory in
mass transfer.



Boundary layer theory in mass transfer

* An exact solution can be obtained for the
hydrodynamic boundary layer for isother mal
laminar flow past a plate.

* An extension of the Blasius solutions can be

extended to derive an expression for convective
heat transfer.

* In the analogous manner we can use the

Blasius solutions for convective mass transfer
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Laminar flow of fluid passes a
flat plate and concentration
boundary layer

The exact solution can be obtained for the hydrodynamic boundary layer for isothermal laminar flow
usually past a plate. Now, this is the typical laminar flow of the fluid that passes a flat plate, this is the
flat plate and the concentration boundary layer. So, at this level this is CA. Now, an extension to the
Blasius solution can be extended to derive an expression for the convective heat transfer. Now, in the
analog manner, we can use the Blasius solution for convective mass transfer as well as the same

geometry and laminar flow.

qBoundary layer theory in mass transfer | .

Here,
* C,. = is the concentration of A in the fluid
appr@achlng the plate. T

» (C,s = is the concentration of A in the fluid
"'adjacent to the surface
» We start with the differential mass balance and
simplifying it for steady state process where,
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Laminar flow of fluid passes a
flat plate and concentration
boundary layer
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Now, here CA infinite is the concentration of A in the fluid approaching the plate. Now, CAS is the
concentration of A in the fluid adjacent to the surface. So, in other words, we can say like this. So, if
we start with the differential mass balance and simplify it for steady-state process where Del C over
Del t is equal to 0. Now, flow only direction flow in the direction of x and y.

w
* Flow only in the x and y directions; soV, =0 :l.kL
and neglecting diffusion in the x and z directions , 1 — E;an'.mm
. P s / undary kayer
to give: e S W ;
éC éc 8’C,/
vy 4.y Z2_p -4 ...(13) ami ot flui |
* o ¥ By AB a}:g L / Laminar flow of fluid passes a

flat plate and concentration
D boundary layer

* The momentum boundary layer is very similar,
So: -

= (1)
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So, if so, vz is equal to 0 and neglecting diffusion in x and z directions. So, it can be given as vx is into
Del C over Del x plus vy into Del CA over Del y is equal to D AB Del 2 CA over Del y2 and this is can be
represented as equation number 13. So, the momentum boundary layer is very similar. Therefore, this
equation can be modified as vx to Del vx over Del x plus vy is equal to Del vx over Del y plus is equal
to Mu over Rho Del 2 vx over Del y2 and this can be represented as equation number 14.

The thermal boundary layer is also similar
v oT Ly oT K 09°T
Yox Yoy p.Cpoy?
Dimensionless concentration boundary conditions are;

Vy _ T-Ts

Ca—Cas
= = = 0' at y:o
Vo Tewo—Ts Caco—Cas
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X = S = 4 45 — 1, atyis atinfinity
Vo Two—Ts Cawo—Cas




qBoundary layer theory in mass transfer | .

* The thermal boundary layer is also similar: ISR e SRS
oT T K o'T “T7 . oo
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* The dimensionless concentration boundary

diti Laminar flow of fluid passes a
conaitions-are

e flat plate and concentration

L= =T & e 2\, boundary layer
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So, the thermal boundary layer if we talk about is also similar. So, this can be represented as vx into
Del t over Del x plus vy is equal to Del t over Del y is equal to k over Rho CP Del 2 t over Del y2, and
this is equation number 15. And if we adopt the dimensionless correct concentration boundary
conditions, then at y is equal to 0, the vx over v infinite is equal to t minus TS over t infinite minus TS
is equal to CA minus CAS over C infinite minus CAS is equal to 0. So, this can be represented as equation
number 16. And on simplification, if we go for y is equal to infinite, this equation can be further
modified, which is represented here, that is vx over v infinite is equal to t minus TS over t finite minus
TS is equal to CA minus CAS over CA infinite minus CAS is equal to 1. So, this is equation number 17.

|B0undary layer theory in mass transfer |
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Now, the Blasius equation is applied to convective heat transfer in that case Mu is Mu over Rho over
alpha is equal to n a, which can be represented as 1. Now, we use the same type of solution for the



laminar convective mass transfer, where Mu over Rho over D AB is equal to n SC that is Schmidt
number 1 minus 0, and the velocity gradient, the velocity gradient is derived in the fluid mechanics
and that is d vx over del vx over del y at y is equal to 0 that is 0.0332 v infinite over x n Reynolds
number to the power half. So, where n Re that is Reynolds number at x, x v infinite Rho Mu, this is
equation number 18. Now, if we recall equation number 17 here, then vx over v infinite is equal to CA
minus CAS over C infinite A infinite minus CAS, this is equation number 19.
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Now, if you differentiate equation 19 and combine the result with equation 18, then it can be D
written as d CA over del CA over del y at y is equal to 0, this is equal to CA infinite minus CAS 0.332
over x n that is Reynolds number over half. This is equation number 20. So, the convective mass
transfer equation can be written as and also, if we relate with Fick's law, Fick's equation, thenn Ay is
equal to k C CAS minus CA infinite is equal to minus D AB del CA over del y, y is equal to 0, this is
equation number 21. So, from equations 20 and 21, we get k dash C x over D AB is equal to Sherwood
number 0.332 n that is Reynolds number to the power half x and this is equation number 22. So, the
relationship, this relationship is restricted to gas, gases with a Schmidt number is equal to 1.0.

Relation between thickness and concentration boundary layer

) 1
5o = Nec

Equation for local convective mass transfer coefficient

kix 1 1
—~ = Ngp, = 0.332N2, N3
DAB

Re,x" 'Sc
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* As a res-ﬁﬁ,_-t_he equation for local convective
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Now, the relationship between the thickness delta of the hydrodynamic and delta C, the
concentration boundary layer where Schmidt number is not equal to 1 is delta C delta over delta C is
equal to Schmidt number to the power 1 by 3 and that is equation number 23. Now, as a result, the
equation for local convective mass transfer coefficient is given as k prime C x over D AB is equal to
Sherwood number the x direction is equal to 0.332 Reynolds number to the power half and Schmidt
number to the power 1 by 3 and this can be represented as equation number 24. So, we can obtain
the mass transfer coefficient k ¢ prime from x is equal to O to L for a plate with B by integrating this
particular equation. So, this can be the k c prime is equal to B over B L 0 to L integration k c prime d x
and this is equation number 25. So, we can represent the integration like k c prime over into L over D
AB is equal to Schmidt number is equal to 0.664 Reynolds number to the power half and Schmidt
number to the power 1 by 3.

Mean mass transfer coefficient
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* We can obtain the mean mass transfer _'_j;ii'1'-'—'-'-'"""":1|'l""‘{;mm
coefficient k. romx=0tox =L foraplateof .~ & [ % oyt
: .
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boundary layer

* The result is

k.L Lo e
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Now, let us take another problem, a large volume of pure water at 25 degrees Celsius is flowing
parallel to a flat surface of solid benzoic acid where L is 0.244 meter in the direction of the flow and
the water velocity is 0.061 meter per second, and the solubility of the benzoic acid in water is given
that is 0.2948 kilo mole per meter cube and the diffusivity of the benzoic acid is 1.245 into 10 to the
power minus 9 meter square per second.

| Problem-2 |

Question: A large volume of pure water at 25 °C is flowing parallel to a flat
surface of solid benzoic acid, where L is 0.244 m in the direction of flow. The
water velocity 1s 0.061 m/s. The solubility of benzoic acid in water is 0.02948
kmol/m?. The diffusivity of benzoic acid is o
1.245 x 10-° m?/s. Calculate the mass transfer coefﬂmeut kc and the flux N,.
Given that £t =8.71 x 10 kg/m.s and p = 996 Kgfm3
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You need to calculate the mass transfer coefficient to k ¢ prime and the flux and given is whatever
given that is mu is equal to 8.71 into 10 to the power minus 4 kilograms per meter second and density
rho is 996 kilogram per meter cube. So, let us solve this particular problem. So, the Schmidt number
that is N SC that is mu is equal to rho D AB this is 8.71 into 10 to the power minus 4 996 into 1.245
into 10 to the power minus 9 that is equal to 702 and Reynolds number is given by this particular
mathematical representation and if you substitute the value, then it can be into 996 over 8.71 into 10
to the power minus 4 and that is 1.7 into 10 to the power 4. So, k ¢ prime over D AB is equal to 0.664
Reynolds number to the power half and Schmidt number to the power 1 by 3.

So, if we substitute all the values that we calculated and D AB, which is given then k ¢ prime comes
out to be 3.92 into 10 to the power minus 6 meters per second. So, if we calculate N A we have N A is
equal to k c prime x into CA 1 minus CA 2 which is equal to k ¢ CA 1 minus CA 2. Now, if the solution is
very dilute then this can be represented at k ¢ prime is almost equal to k c.
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Also, initially it is given the solubility is given 2.948 into 10 to the power minus 4-kilogram mole per
meter cube that is solubility and CA 2 is equal to O for a large volume of fresh water. So, if we substitute
all these values it 3.9 N A is equal to 3.92 into 10 to the power minus 6 into 0.02948 minus 0. This
comes out to be 1.15 into 10 to the power minus 7-kilogram mole per meter cube. This is our answer.

‘ Mass transfer coefficient in turbulent flow i

* There are many theories which attempt to interpret or explain the behavior
of mass transfer coefficient.

Such as: 1 "

a) Film theory mmp Nernst (1904)

b) Penetration theory map Higbie (1935)

¢) Surface-renewal theory mmp Danckwerts (1951)
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Now, if we talk about the turbulent flow, so there are many theories that attempt to interpret the
explaining explain the behaviour of mass transfer coefficient like NIST given the film theory the
penetration theory is given by Higbie in 1935 and the surface enable theory is given by Dankwerts in
1951. Now, NIST the film theory the NIST postulates that near the interface, there exists a stagnant
film and the stagnant film, which is hypothetical since we really do not know the details of the velocity
profile near the interface.



The basic concept is that the resistance to diffusion can be considered equivalent to that in the
stagnant film of a certain thickness.

A7 dz
Film theory .
1. Concentration profile in stagnam flm
* Mass transfer occur by molecular: diffusion | \
through the fluid layer at phase boundary that “Hllu profile
is at solid wall. Beyond this :film the S Cas
concentration is homogeneous and is Cyp. \--._ ) 5
.-/

. i 2
*Mass transfer ~through the ﬁlm occurs at Concentration profile with
steady state. stagnant film

* Flux is low and mass tl ansfer occurs-at low
concentration. Hence; ~D .dC }
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The mass transfer occurs by the molecular diffusion through the fluid layer at a phase boundary that
is a solid wall and beyond this particular film the concentration is homogeneous and it is given by C A
B. So, the mass transfer through the film occurs at a steady state and flux is very low and the mass
transfer occurs at low concentration. So therefore, this can be N A can be represented like this. Now,
a steady state mass balance over the elementary volume thickness if we try to find out at delta z.

Lim Nalz- NA| SV

\Z—0 &

—L=-0— -D =0—=2=0
dz dz dz AB 0,2 T U g2
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The steady state mass balance over an ";“

elementary volume of thickness AZ. /- Cu {Ca
* Rate of input of solute at,/ — N : '

* Rate of output of solute at Z+AZ N ‘ ' u "7

Z—AZ

* Rate of accumulation =0
= rate of input-rate of output e
Therefore, A1 7
At steady state: (=
N, -N =0

4lz 4 |Z+.az

.
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Consider ‘ Film theory ‘ :

Lim Nalz=Nal 20z g _ o
Then* "lZ- *u ¥4 /.»- {.‘-“ E( .. §
dj’\f“! =0 ) (2?) . Nz }»\4:‘? 17
d: 0 > 7
... (28 ;
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So, the rate of input solute at z is equal to N A at z and the rate of output can be given as like this. So,
if we take the rate of accumulation is equal to 0 that is the rate of input minus the rate of output;
therefore, at a steady state, mathematically it can be represented like this. Now, let us consider that
if we go for ztends to 0, then N A z at zminus N A at z plus z delta z over delta z is equal to 0. So, upon
simplification we can go we can obtain various equations like d N A over d z is equal to 0 and then d
overdzminusd ABd CAoverdzisequal to 0. So, we can obtain various equations which are useful
in due course of time.

A
Cq= CA,i - (CA,L' - CAb)g

dc,

Ny = —Dyp——
dz lz=o




_ Dyp (CA,i - CAb)
o)

— Film theory —

Ny

* Integrating equation 3 for the following boundary 5
conditions P : - (

Cy=C,; whenZ=0 © - P f

Cy=Cyp WhenZ -5 } .

We have now: c,=C,, _( C, - C.m)% o u i .7

* Hence, according to film theory “

Concentration profile in stagnant film is linear

* Molar flux through film, N: dc, v
Ny=-Dgp—
Therefore, dz |74
N = D,w (C.-f._f B CAEJ) —
: .. (3
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Now, if we integrate the previous equation, which we developed over like equation number 3, then

with the different conditions, a different boundary layer condition that is C A is equal to CA | when z
is equal to 0, and C A is equal to C A B where z is equal to the delta. So, we have now mathematically
represented like this. Therefore, according to the film theory, the concentration profile in stagnant
film is linear, and the molar flux through N A is given by these two equations.
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So, dear friends, at the outset, we discussed the mass transfer operation in various aspects like falling
film, thickness all those things, and for your convenience, we have enlisted a couple of references you
can utilize as per your requirement. Thank you very much.



