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STEADY-STATE DIFFUSION IN POLYMERS 

 

 Hello friends, welcome to the study of state diffusion in polymers under the areas of polymer process 

engineering. Now, in the previous segments, we studied about the mass transfer operation, then 

discuss about the mechanism of mass transfer, molecular diffusion, then we studied about the Fick's 

law of molecular diffusion, diffusion velocities, unsteady state diffusion and we ended with the Fick's 

second law of diffusion. In this particular segment, we are going to discuss about the steady state 

diffusion through constant area, then we will discuss about the steady state diffusion through non-

diffusing components, steady state diffusion through variable area, then we will have some problems 

to solve and then diffusion from a sphere and we will discuss about the accumulation counter diffusion 

and non-accumulation counter diffusion.  

 

Now, let us talk about the steady state diffusion through constant area. Now, assume the steady state 

diffusion in the x direction without any chemical reaction in a binary gaseous mixture of species A and 

B for one dimensional diffusion species. So, for one dimensional diffusion of a species A, the molar 

flux can be given by this particular equation which we can say that equation number 1. 

For one dimensional diffusion of species A molar flux 

𝑁𝐴 = −𝐶𝐷𝐴𝐵
𝑑𝑦𝐴
𝑑𝑥

+ 𝑦𝐴𝑁 

Where, N=NA + NB 

On separating the variables in the above equation, we will get  



−𝑑𝑦𝐴
𝑁𝐴 − 𝑦𝐴𝑁

=
𝑑𝑥

𝐶𝐷𝐴𝐵
 

 

 Now, where the n A n is equal to n A plus n B, the A and B are the species as we described earlier. 

Now, if you separate the variables in the equation 1, this particular equation, then we get minus d y A 

over n A minus y A n is equal to d x over c d A B, this we can say the equation number 2. So, for gaseous 

mixture at constant pressure and temperature, the concentration c and the diffusion coefficient d A B 

they are constant and independent of the position and composition. So, all the molar fluxes are 

constant in that in this particular equation. 

 

 All the molar fluxes are constant 

At, x=x1,      yA=yA1 



At, x=x2,       yA=yA2 

          

 

On integrating equation 2 with the boundary conditions we will get 

∫
𝑑𝑦𝐴

𝑁𝐴 − 𝑦𝐴𝑁

𝑦𝐴2

𝑦𝐴1

= ∫
𝑑𝑥

𝐶𝐷𝐴𝐵

𝑥2

𝑥1

 

Let  

NA-yAN = z;   -dyAN = dz;   -dyA = dz/N  

On putting all the values in the above equation 3 we get 

∫
𝑑𝑧

𝑁𝑧

𝑍2

𝑍1

= ∫
𝑑𝑥

𝐶𝐷𝐴𝐵

𝑥2

𝑥1

 

Therefore, if we integrate this equation number 2 between the boundary conditions, like at x is equal 

to x 1, y A is equal to y A 1, and at x is equal to x 2, the y A is equal to y A 2. Now, 1 and 2, they indicate 

the start of diffusion path and 2 indicates the end of diffusion path. So, if we integrate this equation, 

then we get this particular equation with that particular boundary condition. Now, let us say that n A 

y A is equal to z n d y A n is equal to d z n minus d y A because it is being consumed over the period of 

time that is equal to d z n. So, if you put all the values in this particular equation, we get this equation 

that is integration from z 1 to z 2 d z over n z equal to y 1 to y 2, x 1 to x 2 d x over c d A B that is 

equation number 4. 



 

 So, if we integrate this particular equation, we get 1 over n ln z 2 minus ln z 1 is equal to 1 over c d A 

B x 2 minus x 1 and ln z 2 over z 1 is equal to n c d A B x 2 minus x 1 which comes out to be ln n A minus 

y A 2 n over n A minus y A 1 n which is n over c d A B x 2 minus x 1. Now, this is ln n over n A n minus 

y A 2 n n over n minus y A 1. This is n over c d A B x 2 minus x 1. So, if you multiply both the sides by n 

A in the equation then it becomes n A is equal to n A n into c d A B over x 2 minus x 1 ln n A over n 

minus y A 2 over n A over n minus y A 1. This is equation number 5. 

 

 Therefore, after integrating with the boundary condition the equation of for diffusion for the set 

condition can be expressed as n A is equal to n A over n c d A B over x 2 minus x 1 ln n A over n minus 

y A 2 over n A over n minus y A 1. That is equation number 6. So, for study state one dimensional 

diffusion of A through non-diffusing B the n B equal to 0 and n A equal to constant. So, therefore, we 

can represent n A over n is equal to n A over n A plus n B that is equal to 1. Therefore, the equation 



number 6 which we describe here this can becomes like this n A over is equal to c d A B over x 2 minus 

x 1 ln into 1 minus y A 2 over y 1 minus y A 1 that is equation number 7. 

 

1-D diffusion of A through non-diffusing B 

NB equal to 0 and NA equal to constant 

𝑁𝐴
𝑁

=
𝑁𝐴

(𝑁𝐴 + 𝑁𝐵)
= 1 

Hence from equation 6; 

𝑁𝐴 =
𝐶𝐷𝐴𝐵
𝑥2 − 𝑥1

ln [
1 − 𝑦𝐴2
1 − 𝑦𝐴1

] 

And this is the equation 7. 

For an ideal gas; C = Pt/RT 

For mixture of ideal gases; yA = pA/Pt 

Hence, equation 7 will becomes; 

𝑁𝐴 =
𝐷𝐴𝐵𝑃𝑡

(𝑥2 − 𝑥1)𝑅𝑇
ln [

𝑃𝑡 − 𝑝𝐴2
𝑃𝑡 − 𝑝𝐴1

] 

Where,  

Pt is the total pressure 

pA1 and pA2 is the partial pressures of A at point 1and 2, respectively. 

 



 

 So, for non-diffusing component for an ideal gas we can put the c t c is equal to p t over r t for a 

mixture of ideal gas quite obvious that it needs to be addressed with respect to the mole fraction. So, 

y A is equal to rho A over p t. Therefore, the equation 7 can be represented like n A is equal to d A B p 

t over x 2 minus x 1 r t ln p t minus p A 2 over p t minus p A 1. This is equation number 8 where p t is 

the total pressure and p A 1 and p A 2 they are the partial pressure of partial pressures of A at point 1 

and point 2. Now, for the diffusion under the turbulent condition, the flux is usually calculated based 

on linear driving force for this purpose the equation this can be become manipulated or rewrite in 

terms of a linear driving force. 

 

 Total pressure 

Pt = pA + pB 



Therefore; 

Pt-pA2 = pB2 and Pt-pA1 = pB1 

pA1-pA2 = pB2-pB1 

Hence equation 8 becomes 

𝑁𝐴 =
𝐷𝐴𝐵𝑃𝑡

(𝑥2 − 𝑥1)𝑅𝑇
[
𝑝𝐴1 − 𝑝𝐴2
𝑝𝐵2 − 𝑝𝐵1

] ln [
𝑝𝐵2
𝑝𝐵1

] 

 

Since for binary gas mixture with the total can be given as p t is equal to partial pressure of A plus 

partial pressure of B. Therefore, p t minus p A 2 is equal to p B and p t minus p A 1 is equal to p v 1 and 

this can be represented as the partial pressure of A at A 1 minus partial pressure of A 2 is equal to 

partial pressure of B at point 2 and partial pressure of B at point 1. Therefore, the previous equation 

these 8th equations can become or can be represented which is equation number 9. 

 

 𝑁𝐴 =
𝐷𝐴𝐵𝑃𝑡

(𝑥2−𝑥1)𝑅𝑇𝑝𝐵𝐿𝑀
(𝑝𝐴1 − 𝑝𝐴2) 

𝑝𝐵𝐿𝑀 =
(𝑝𝐵2 − 𝑝𝐵1)

ln (
𝑝𝐵2
𝑝𝐵1

)
 



So, based on the previous aspect the equation 9 can be rewritten as n A is equal to D AB p t over X 2 

minus X 1 RTP and rho p A 1 minus p A 2 and this has become the equation number 10. So, here this 

this p BLM is the logarithmic mean of the partial pressure of a species B which is can be represented 

like this p BLM is equal to p B minus p B 1 over ln p B 2 minus p B 1. 

 

 This can be given as equation number 11. Now the component A diffuses by the concentration 

gradient and which is given as d A d Y A over d X. Now flux is inversely proportional to the the distance 

through which the diffusion occurs and the concentration of the stagnant gas that is in terms of the 

logarithmic mean of the partial pressure of a species B that is p BLM. So, as X and p BLM resistance 

increases the flux decreases this can be very well understood in this particular figure.  

 



Now let us take up another problem that is carbon dioxide is a diffusing through non-diffusing air 

under the steady state condition at a total pressure of 1 atmosphere and a temperature of 300 Kelvin. 

 

 The partial pressure of the carbon dioxide is 20 kilo Pascal at one point and 5 kilo Pascal at other point 

the distance between these 2 points are 5 centimetres. So, 1 and 2 they are given and you need to 

calculate the flux of carbon dioxide which is given that at 300 Kelvin and at 1 atmosphere the diffusion 

coefficient d CO2 air is 2 into 10 to the power minus 5 metre square per second. Now assume the ideal 

gas and let air is equal to B. So, n CO2 is equal to d CO2 air over RT X 2 minus X 1 into p t over p 

logarithmic mean p CO2 1 minus p CO2 2. Now it is given that this d CO2 is given which is equal to 2 

into 10 to the power minus 5 metre square per second at 300 Kelvin and 1 atom atmosphere. 

 



 p is equal to 1 atmosphere or this is p is equal to 1 atmosphere which is equal to 101.3 kilo Pascal and 

t is equal to 300 Kelvin. So, the p CO2 1 is 20 kilo Pascal and p CO2 at the station 2 is 5 kilo Pascal. So, 

p B 1 this is equal to p t minus p CO2 1 which is equal to 101.3 minus 20 kilo Pascal which is comes out 

to be 81.3 kilo Pascal and p B 2 this is p t minus p CO2 which is 101.3 minus 5 which is comes out to 

be 96.3 kilo Pascal. Now if we talk about p B l m if you substitute then it comes out to be p B 2 minus 

p B 1 over ln p B 2 over p B 1 which is 96.3 minus 81.3 over ln 96.3 over 81.3 which is 88590 Pascal. 

So, n CO2 if you substitute all the values in this particular equation we get 2 into 10 to the power 

minus 5 into 1.013 into 10 to the power 5 into 15000 over 8314 into 300 and consistency of the unit 

must be addressed t 590 and this is 2.75 into 10 to the power minus 6 kilo mole per meter square 

second and this is our answer.  

 

For diffusion of two ideal gases where an equal number of moles of gases diffusing counter currently 

to each other so, 

• NB = -NA = constant and NA + NB = 0 

The molar flux in equation a at steady state can be written as 

𝑁𝐴 = −𝐶𝐷𝐴𝐵
𝑑𝑦𝐴
𝑑𝑥

+ 𝑦𝐴𝑁 

Where, N = NA + NB 

Then the above equation becomes 

𝑁𝐴 = −𝐶𝐷𝐴𝐵
𝑑𝑦𝐴
𝑑𝑥

 

Now, let us talk about the steady state equimolar counter diffusion. This is the case of the diffusion of 

2 ideal gases where an equal number of moles of gas diffusing counter currently to each other in this 

case n B is equal to minus n A and the constant and n A plus n B is equal to 0. So, the molar flux in the 

equation at steady state can be written as n A is equal to minus C D AB d Y A over d X plus Y A n where 

n A n A plus n B is equal to n. Therefore, if we substitute then this equation can become the equation 

number 12 which is n A is equal to minus C D AB over d Y A over d X. 



 

 For ideal gas 

C = Pt/RT 

So,  

𝑁𝐴 = −
𝐷𝐴𝐵𝑃𝑡
𝑅𝑇

𝑑𝑦𝐴
𝑑𝑥

 

𝑁𝐴 =
𝐷𝐴𝐵𝑃𝑡

(𝑥2 − 𝑥1)𝑅𝑇
(𝑦𝐴1 − 𝑦𝐴2) 

𝑁𝐴 =
𝐷𝐴𝐵

(𝑥2 − 𝑥1)𝑅𝑇
(𝑝𝐴1 − 𝑝𝐴2) 

So, for ideal gas C is equal to PT over RT and if we substitute to this particular equation so, thus n A 

can become equation number 13. So, if you integrate this this particular equation with the boundary 

condition at X is equal to X 1 and Y A is equal to Y A 1 and X is equal to X 2 and Y A is equal to Y 2 the 

equation of the molar diffusion for a steady state a cumular counter diffusion can be written like this.  



 

Now, let us take up another problem. Now, carbon dioxide is diffusing at a steady state through a 

straight tube of say 0.5-meter-long with an inside diameter of 0. 05 meter containing the nitrogen at 

300 Kelvin and 1 atmosphere pressure. The partial pressure of carbon dioxide at one end is 15 kilo 

Pascal and 5 kilo Pascal at the other end. Now, you are supplied with the diffusion coefficient at 300 

Kelvin and 1 atmosphere pressure you need to calculate the following for the steady state a counter 

diffusion that is a molar flow rate of the carbon dioxide and the molar flow rate of a nitrogen. Now let 

us assume the ideal gas in a counter diffusion of CO2 flux. So, n CO2 can be written as d CO2 which is 

given R T X 2 minus X 1 which is into p CO2 1 minus p CO2 at the station number 2. 

 



 

Now, it is given this this d CO2 is given p t is equal to 1 atmosphere which is equal to 101.3 kilo Pascal, 

t is given as 300 Kelvin, p CO2 1 is given at 15 kilo Pascal and p CO2 at station number 2 is given as 5 

kilo Pascal and R is equal to 8.314. So, n CO2 is equal to again if we substitute all these things to this 

particular formula, then it becomes n CO2 4 into 10 to the power minus 5 over 8314 into 300 into 0.5 

into 15,000 minus 5000 if we make the consistency of the unit which comes out to be 3.21 into 10 to 

the power minus 7 kilo mole meter square per second. Now, molar flow rate of CO2 is equal to CO2 

into A that is A is the cross-sectional area of the tube and given that the internal diameter of the tube 

is 0.05 meter. So, the cross-sectional area of the tube can be given as pi Di square over 4 and pi over 

4 into 0.05 and this is 1.96 into 10 to the power minus 3-meter square and molar flow rate, rate of 

CO2 is equal to 3.21 into 10 to the power minus 7 into 1.96 into 10 to the power minus 3, which comes 

out to be 6.29 into 10 to the power minus 10 kilo mole per second and this is the first part. Now, if we 

talk about the nitrogen which is d CO2 n 2 R T X 2 minus X 1 that is p n 2 station 1 to p n 2 station 2. 

 

 Now, p n 2 at 1 is given as p t minus p p CO2 1 this is 101.3 minus 15 kilo Pascal that is comes out to 

be 86,300 Pascal. Similarly, p n 2 at station 2 that is p t minus p CO2 at station 2, this is comes out to 

be 101.3 minus 5 kilo Pascal which comes out to be 96,300 Pascal. Now, we know the equimolar 

counter difference of ideal gas this d CO2 n 2 is equal to d n 2 CO2. 

 

 So, if we substitute that comes out to be 4 into 10 to the power minus 5 over 8314 into 300 into 0.5 

and 86,300 minus 96,300 and this comes out to be 0.4 over 1247 minus 3.21 into 10 to the power 

minus 7. So, the mass flow molar flow rate of n 2 is equal to minus 3.21 into 10 to the power minus 7 

kilo mole per meter square into 1.96 into 10 to the power minus 3-meter square and that comes out 

to be 6 point minus 6.29 into 10 to the power minus 10 kilo mole per second and that is our answer. 

Now, let us talk about the steady state diffusion through the variable area. Now, consider a 

component A which is diffusing at a steady state through a cumular triangle here which is tapered 

uniformly. 



 

 Now, A is diffusing through the stagnant non-diffusing B component and equilateral triangle, the 

formula of air where area where A is the length of one side can be written as A is equal to half of the 

side x altitude and this can be represented as like this. Now, if returning to the Fick's law of formula at 

a position x the flux of A through a triangle of stagnant B can be written as per this equation. Now we 

are having this n A is equal to n A over A is equal to 4 over square root of 3 n A A square where this 

dot n A that is the rate of diffusion of a kilo moles per second and if we modify then it can become the 

equation number 14. Now, before limits are imposed it must be remembered that A is a function of x 

as the size of triangle uniformly tapered with the distance along the duct. So, it can be represented 

like A is equal to A 1 plus A 2 minus A 1 over x 2 minus x 1 x minus x 1 and thereby like this. Now, let 

us if we substitute the x and x for A and integrating with the limits of partial pressure of component A 

at 1 and the p A at a triangle of side A and the partial pressure of component A at point 2. 

 



Fick’s law formula 

𝑁𝐴 (1 −
𝑝𝐴
𝑃𝑡
) =

−𝐷𝐴𝐵
𝑅𝑇

𝑑𝑝𝐴
𝑑𝑥

 

2
3

4

a

N

A

AN A
A

N
•

•

==

 

Where NA = Rate of diffusion of A kmol/s 

−
𝑅𝑇

𝐷𝐴𝐵
×

4

√3

𝑁𝐴
•

𝑎2
𝑑𝑥 = 𝑃𝑡

𝑑𝑝𝐴
𝑃𝑡 − 𝑝𝐴

 

 

𝑎 = 𝑎1 +
𝑎2 − 𝑎1
𝑥2 − 𝑥1

(𝑥 − 𝑥1) 

= 𝑎1 +
𝑎2 − 𝑎1
𝑥2 − 𝑥1

𝑥 −
𝑎2 − 𝑎1
𝑥2 − 𝑥1

𝑥1 

𝑑𝑎

𝑑𝑥
= 0 +

𝑎2 − 𝑎1
𝑥2 − 𝑥1

(1) −
𝑎2 − 𝑎1
𝑥2 − 𝑥1

(0) =
𝑎2 − 𝑎1
𝑥2 − 𝑥1

 

𝑑𝑥 =
𝑥2 − 𝑥1
𝑎2 − 𝑎1

𝑑𝑎 



 

 So, the p A 2 and p A 1 then the triangle is at is of side A 2 this we can write as n A is equal to dot n A. 

Now, if we can write R t n A x 2 minus x 1 over d A B A 2 minus A 1 integration from A 1 to A 2 4 square 

root of 3 A square d A is equal to p t p A 1 to p A 2 the integration and d p A over p t minus p A. So, 4 

R t n over 3 d A B. So, x 2 minus x 1 over A 2 minus A 1 minus 1 over A and integration from A 1 to A 2 

that is minus l n p t minus p A and p A 1 to p A 2. So, this can become the 4 R t n A over 3 d A B x 2 

minus x 1 over A 2 minus A 1 1 over A 1 minus 1 over A 2 n which is equal to l n p t minus p A 2 over p 

t minus p A 1. 

 

 So, if we substitute all those things, then it becomes the n A A 1 minus A 2 over A 1 A 2 which is equal 

to 3 d A B p t over 4 R t and A 2 minus A 1 over x 2 minus x 1 and l n p t minus p A 2 over p t minus p A 

1. So, n A is equal to square root of 3 d A B p t over 4 R t A 1 minus A 1 over A 2 x 2 minus x 1 l n p t 

minus p A 2 over p t minus p A 1.  



 

This is the desired formula. Now, let us take up a question and that is the carbon dioxide CO2 is 

diffusing through a non-diffusing nitrogen and to at a steady state at in a conduit of 2 meters long at 

300 Kelvin and a total pressure of 1 atmosphere. The partial pressure of the carbon dioxide at the left 

end is 20 kilo Pascal and other end 5 kilo Pascal and the cross section of the conduit is in the shape of 

an equilateral triangle of 0.025 meters at the left end tapering uniformly to 0.05 meter the right end. 

You need to calculate the transport of the carbon dioxide and diffusivity is given. So, we have given 

the diffusivity. 

 

 So, we are having the value of R 8.3140 is equal to 300 Kelvin and p t is equal to 1 atmosphere which 

is equal to 101.3 kilo Pascal and p A 1 is equal to 20 kilo Pascal and p A 2 is equal to 5 kilo Pascal. A 1 

is equal to 0.025-meter, A 2 is equal to 0.5 meter and x 2 minus x 1 is equal to 2 meters. So, if we 

substitute, then we get n A is equal to the square of 3 d A B, which is the formula which we previously 



described and 4 R T A 1 A 2 x 2 minus x 1 ln p t minus p A 2 over p t minus p A 1. Now, if we substitute 

all the values, we get this n A is equal to 0.22 into 10 to the power minus 2 into ln 96.3 into 10 to the 

power 3, 81.3 into 10 to the power 3, this comes out to be 3.74 into 10 to the power minus 11 kilo 

mole per second and this is our answer.  

 

Now, diffusion from the sphere. Now, this is there are several examples of diffusion through the 

spherical shape bodies like evaporation of a drop of a liquid, the evaporation of a ball of naphthalene, 

the diffusion of the nutrient to a sphere like microorganism in a liquid. Now, here assume a constant 

number of moles n A of A from a sphere whose area is equal to 4 pi square through this stagnant B. 

 

 Now, here you can see in the figure. Now, from the Fick's law of diffusion, the rate of the diffusion 

can be expressed as per this equation and which we can say this is equation number 15. Now, if we 



integrate with the limits of p A 2 at r 2 and p A 1 at r 1, this gives minus r t n A over 4 tau d A B and p 

total 1 over r 1 minus 1 over r 2 that is equal to ln p total over p minus p A 2 minus p A 1 and that is 

the equation number 16. So, as r 1 is less than less than r 2 and then r 1 over r 2 is almost equal to 0. 

So, if you substitute then it becomes the n A 4 tau r 1 square is equal to d A B then p total p A 1 minus 

p A 2 over r t p v l m r 1 which is equal to n A 1 and that is the flux at the surface. 

 

 This is the equation number 17. So, this is equation number 17 can be simplified if p A is small p A 1 

is small compared to p total. So, then p B l m is almost equal to p total. So, we can set t 2 r 1 is equal 

to d 1 that is diameter and c A 1 is equal to p A 1 over r t then this equation 17 can become n A 1 is 

equal to 2 d A B over d 1 c A 1 minus c A 2. This is equation number 18.  

 

  



 

Now, let us take up a problem that is a sphere of naphthalene having radius of 5 mm which is 

suspended in a large volume of still air at 310 Kelvin and 1 atmosphere. The partial pressure of the 

surface of naphthalene at 310 Kelvin is 50 Pascal and assuming that dilute gas phase the diffusion 

coefficient of the component that is d A B of the naphthalene in air is at 310 Kelvin is given as 6 into 

10 to the power minus 6-meter square per second. You need to calculate the evaporation of 

naphthalene from the surface.  

 

Now, here d A B is given that is 6 into 10 to the power minus 6 square meter per second p A 1 is 50, p 

A 2 is equal to 0 and r 1 is equal to 5 over 1000 meter and r is as usual 8.314 and p B l m is equal to p 

t is equal to 1 atmosphere which is equal to 101.3 kilo Pascal. So, if you use the formula then n A over 

4 tau r 1 square that is d A B p total p A 1 minus p A 2 over r t p B l m r 1 which is equal to n A 1. So, 

this can be represented as 4 tau r 1 square this is equal to 6 into 10 to the power minus 6 into 1.013 



into 10 to the power 5 into 50 over 8.3, 8314 into 310 into 1.013 into 10 to the power 5 into 0.005 

which comes out to be 0.23 into 10 to the power minus 6 kilo mole per meter square and that is our 

answer.  

 

So, dear friends in this particular segment we discussed about the mass transfer aspects and diffusion 

which are very essential in the polymeric systems and for your convenience we have enlisted variety 

of references and which can be used for the further studies. Thank you very much. 


