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Heat Transfer Phenomenon in polymer systems: Conduction and Convection 

 

 Dear friends, welcome to the conduction and convection aspect of heat transfer phenomena in the 

edges of polymer process engineering. Now, here is a brief outlook that what we discussed in the 

previous segment. We discussed about the melting temperature, glass transition temperature, 

thermal conductivity, thermal conductivity in polymer and composites. We discussed about the 

conduction heat transfer polymeric system. Then heat transfer example were given in brief in that 

particular segment. In this particular segment, we are going to discuss about the conduction in 

polymeric system in detail with a couple of examples. 

 

 Then we will discuss the convection in polymeric systems and convection in the laminar flow of 

polymeric systems, then the laminar flow of molten polymers. We will discuss the heat transfer data 

for molten polymers heat transfer data for soft polymers, and heat transfer in the turbulent flow of 

polymers. Now, let us take up the conduction in polymeric systems, the cylindrical coordinates. So, 

heat transfer studies can be carried out for any system boundaries such as spheres, rectangles, 

cylindrical, and or any non-uniform shape. 



 

 So, most of the heat transfer studies of the polymers are carried out in cylindrical systems. For 

example, suppose we want to study the conduction phenomena of a specific polymer system, which 

is being synthesized in the injection molding system in a CSTR.  

 

In that case, these types of assemblies are considered as a cylinder for convenience. Now, here you 

see that for the cylindrical coordinate system, which is represented in this particular figure, the terms 

used are where r theta and z are the coordinate directions, vr, v theta, vz are the velocity components 

in the r theta and z coordinates all 3 coordinates. Tau these are the shear stresses, then the normal 

stresses, and rho is the density, p is the pressure and t is the point temperature q they are the different 

components of energy flux and c is the constant volume specific heat. In contrast, a naught is the heat 

generation term. So, the temperature of a fluid element in motion is affected by the heat conduction 

given in this particular equation. So, these equations if you see, now this there are various terms like 



here, this particular term is represented at this particular part indicates the expansion effect due to 

the heating into the material. 
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The temperature of a fluid element in motion is affected by the heat conduction, this is given by this 

particular equation. Now here these various terms being indicative and you see that this is this 

particular term is the indicates the expansion effect due to the heating into the material. However, 

this term this particular term this is multiplied by the first function at constant density, this indicates 

the viscous heating and similarity with the second term displays the viscous dissipation in the solution. 

Now the third term which is the normal stress term, this is a similarly these functions related to the 

normal stress term. Now when we talk about another term that is this is the shear stress term, these 

values account for the shear stress and finally, this a naught this indicates that all type of heat 

generation such as the phase change, chemical source and electrical source. 

 So, these are the various terms. Now the viscous dissipation effect, this takes place in all fluids 

because of the energy used to move the fluid, this becomes dissipated. The size of effect this is related 

to the both velocity gradient and the fluid apparent viscosity. Hence the fluid with the large apparent 

viscosity such as molten polymers in this effect can be quite sizable. Now let us consider a solid body 



of arbitrary shape which is having the volume V, mass m, density rho and the surface area A and 

specific heat C p. 

 

 This is as per this particular figure. To start with the time the tau t is equal to 0, let us temperature 

throughout the body is uniform that is t is equal to t initial and at tau is equal to 0, let the body be 

suddenly placed in the medium at a temperature rho of t A which is as per this figure. Now amount of 

heat transferred into the body in time interval say d tau that is the increase in the internal energy of 

the body that is H dot A t minus t tau d t is equal to m C p d t that is equal to rho C p v d t. Now since 

t A is constant so we can write d t is equal to d t tau t A. Therefore, d t tau is minus t A over t tau minus 

t A this is equal to H A over rho C p v d t. 

 

  



 

 

This is equation number 1. Now integrating between tau is equal to 0 that is t is equal to t i and any 

tau that is t is equal to tau. So, ln t tau minus t A over t i minus t A is just equal to H A tau rho C p v and 

t tau t i minus t A which is equal to exponential H A tau over rho C p v this is equation number 2. Now 

let us take rho C p v over H A is equal to t where t is known as thermal time constant and has a unit of 

time unit has time that is s. Therefore, this equation number 2 can be rewritten as t tau minus t A over 

t i minus t A that is tau over t and that is equation number 3. 



 

 

So now denoting theta is equal to t tau minus t A we can write equation this particular equation 

compactly as theta over theta i t tau minus t A over t i minus t A is just equal to e to the power tau 

over t and that is equation number 4. So, therefore equation 4 this gives the temperature distribution 

in a solid polymer as a function of time when the internal resistance of the solid for the conduction is 

negligible compared to the convective resistance at surface. This shows this particular figure shows 

the temperature variation with time in various polymeric system. Now consider a plane slab this is 

shown in the figure. Let the surface on the left is maintained at temperature t 1 and the surface on 

the right is the temperature t 2 as a result of heat being lost to the fluid at temperature t A the flowing 

with the heat transfer coefficient h. 

 

 



 

 Now this once we write the energy balance at the right-hand side surface which can be represented 

as k A l t 1 minus t 2 which is equal to h A t 2 minus t A. So, if you rearrange the things it will become 

t 1 minus t 2 over t 2 minus t A that is l over k A into 1 h A that is equal to h l k. Now here this is the 

resistance conduction, this is the resistance convection and which is equal to Biot number. What is 

the criteria in the conduction heat transfer in the polymeric system? Now if we recall this previous 

figure here the temperature profile for this is less than B i less than less than 1 this is the Biot number. 

Now it suggests that one can assume a uniform temperature distribution within the solid. 

 



 

 

Now situation during the transient conduction which is shown in the figure this particular figure it may 

be observed that temperature distribution is a strong function of Biot number. Now for Biot number 

less than less than 1 the temperature gradient in the solid is a small and the temperature can be taken 

as a function of time only. Now also for if Biot number is greater than greater than 1 then the 

temperature drops across the solid is much larger than that across the convective layer of at the 

surface. So, let us define the Biot number it is in general is given as B i is equal to h l c over k where h 

is the heat transfer coefficient between the solid surface and the surrounding and k is the thermal 

conductivity of the solid and l c is this one is a characteristic length defined as the ratio of the volume 

of the body to its surface area that is l c is equal to v over a. For polymer solids such as the plane slab 

long cylinders and sphere polymer composite it is found that the transient temperature distribution 

within the solid at any instant is uniform with the error being less than about say 5 percent if this 

particular criterion is satisfied that is Biot number is equal to h l c over k is less than 0. 

Biot Number 𝑩𝒊 =
𝒉.𝑳𝑪

𝒌
 

Characteristic length (LC)=V/A 



 

 

𝐵𝑖 =
ℎ. 𝐿𝐶
𝑘

< 0.1 

 

1 that is called the equation number 6. So, if we recall the equation 5 the l c for the common shapes 

are like plane wall thickness having the 2 l that is l c is equal to a 2 l over 2 a is equal to l. Similarly, if a 

long cylinder that is having the radius r in the sphere if they are having the radius r and cube they are 

having the side l. So, we are having various common shape which are represented in the l c.  



 

Pane wall  

𝐿𝐶 =
𝐴. 2. 𝐿

2. 𝐴
= 𝐿 

Long cylinder  

𝐿𝐶 =
𝜋. 𝑅2. 𝐿

2. 𝜋. 𝑅. 𝐿
=
𝑅

2
 

Sphere  

𝐿𝐶 =
4/3. 𝜋. 𝑅3

4. 𝜋. 𝑅2
=
𝑅

3
 

Cube  

𝐿𝐶 =
𝐿3

6. 𝐿2
=
𝐿

6
 

 

Now, here they are putting the value of t that is rho is equal to C p v over h a this equation number 4 

if you recall. 



 

  

𝛼 =
𝑘

𝜌.𝐶𝑝
,  

𝐹𝑜 =
𝛼.𝜏

𝐿𝐶
2   

 

So, theta over theta i is equal to t tau minus t a over t i minus t a that is e to the power h a tau over 

rho C p v. So, application to a given problem is very simple and a solution for any transient conduction 

problem must begin with the examining of the criteria less than Biot number less than 0.1 is satisfied 

to see if the equation previous equation number 7 is could be applied. Now, if we go to the equation 

number 7 the term h a tau over rho C p v this can be written as per this particular equation. In this the 

alpha is a thermal diffusivity and mathematically alpha can be represented as k over rho C p and the 

Fourier number this is represented as f o is equal to alpha tau over l l c square. 
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Now, let us take up another question. Now, this example that 2 sheets of a glass reinforced polyester 

are to be bonded together with an adhesive that fuses at 110 degree Celsius. The press used to heat 

the system has the platens capable of attending 200 degree Celsius. So, how long should it take to 

bond the sheets of if each is 2 centimeter thick. So, you require n is equal to 0 m is equal to 1 Biot 

number 1 alpha that is a thermal diffusivity is given as 2. 



 

6 into 10 to the power minus 3 centimeter square per second. Now, you can use the previous chart as 

your chart which is given here and also remember that T b that is the original point temperature is 

always taken as 25 degree Celsius. So, this is the Heisler chart this is conduction in a large for unsteady 

state. Now, let us take in this case we assume that the interface which is the adhesive must reach 110 

degree Celsius to bond. So, if we use the Heisler chart and equation 2 and 8 for reference and if you 

modify the equation to y is equal to T a minus T m over T a minus T b and that is 200 minus 110 over 

200 minus 25 and that is 0. 

 



 

515 and x is equal to k theta over rho C p R m square that is equal to 1.32 where T a this one T a T m 

and T b they are the ambient mid plane and original temperatures and k is the polymer thermal 

conductivity and theta is time and rho and C p are polymer density and specific heats and R and R m 

are the positions and radius or half thickness. Now, if let us plot the y and x values in the Heisler graph 

and mark the that the line where m is equal to 1 and n is equal to 0 is given. So, you will find this 

particular thing. Now again let us take that x is equal to k theta over rho C p R m square this is equal 

to alpha or theta is equal to x R m square alpha or theta is equal to 1. 

 

32 into 2-centimetre square that is R m and 2.16 into 10 to the power minus 3-centimetre square per 

second which comes out to be 2.034 into 10 to the power 3 and theta is comes out to be 2034 over 

3600 H which is 0.565 H.  



 

So, another let us take another example and this is a nylon 610 material is charged to a screw’s 

extruder whose barrel and a screw walls are heated to 200 degree Celsius. 

 Now if the depth of a helical flow channel is 1.2 centimetre what should be the maximum time 

required for the mid plane temperature to reach 175 degree Celsius. We are provided the values of 

alpha that is equal to 9.55 into 10 to the power minus 5-centimetre square per second. In this case 

the granular solid this can be represented by a bed of the material the maximum required time will 

occur when heat is supplied only by the extruder barrel and a screw wall. 

 

 Let us solve this problem with the help of this unsteady state heat transfer for polymer chips graph. 

Now here y is equal to t 1 minus t over t 1 minus t naught which is as per the problem 25 minus 175 

upon 25 minus 200 which comes out to be 150 to 107 over 175 which is 0.855. So, if we plot the line 



of a y values to get the x values of nylon 66 the x value corresponding to this nylon 66 is x is equal to 

0. 

09. Now here you see so theta is equal to 0.09 into 0.6 over 9.55 into 10 to the power minus 5 

centimetre square and k theta over rho C p r square is equal to 0. 

 

09. So, theta comes out to be 340 s. Now again if we see this k theta over rho C p r square is equal to 

0.09 and theta is equal to 0.09 r square over k rho C p. 

 So, therefore, theta is equal to 0.09 into 0.6 centimetre square over 9.55 into 10 to the power minus 

5 centimetre square over and this comes out to be 340 second and that is our answer. Now let us talk 

about the convection heat transfer in polymeric system for circular conduits. Now mostly slurry is 

suspensions dispersions solution of a polymeric materials and melt exhibits the complex flow 

behaviour which cannot be described by the Newtonian law of viscosity that is tau is equal to gamma 

where tau is the shear stress and gamma is the shear rate and the constant of proportionality eta is 

the material property that is called the viscosity. 



 

 So, the convective heat transfer to such fluids depend upon the fluid rheology geometric 

configuration of the flow domain as well as the flow regime maybe laminar, turbulent whatever. The 

apparent viscosity of non-Newtonian fluid that is eta a is equal to tau gamma this is not a material 

property as in the case of Newtonian fluid, but may depend on the rate of shear and previous flow 

history of fluid. So, the convective heat transfer to the pseudo plastic or dilatant fluids described by 

the well-known Oswald D well power law model.  

 

Now this power law model this the model of non-Newtonian fluid the power law model is used where 

the shear stress tau is given by k is equal to del u over del y to the power n where k is the flow 

consistency index and del u over del y is the shear stress and n is the flow behaviour index that is 

dimensionless. So, if we see this particular plot you find that n this is the type of a fluid if n is less than 



1 this is the pseudo plastic if n is equal to 1 that is the Newtonian fluid and if n is greater than 1 that 

is the dilatant. 

 

 Non- Newtonian Fluids   

𝜏 = 𝐾 (
𝜕𝑢

𝜕𝑦
)
𝑛

  

 

 

Now here there are various governing equations are represented now here you see that this is the 

continuity equation and if we talk about the x momentum and r momentum these are the governing 

equations which can be used for the reference to find out the convective convection heat transfer in 

the polymeric system. So, if we see these governing equations in the cylindrical coordinates with x r 

and theta denoting the stream wise radial and tangential coordinates u and v this denoting the stream 

wise and the radial viscosity velocity component rho is the fluid density g x and g f they are the 

component of acceleration of gravity vector and p is the pressure. So, the fluid total extra stress is the 

sum of a Newtonian solvent contribution having a solvent viscosity and the polymer additive stress 

contribution. So, this is your energy equation under the edge of governing equation. Now in this 

particular equation k is the fluid thermal conductivity, T is the temperature and C is the specific heat 

of the fluid. 
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These equations are valid for developing and fully developed pipe flow in absence of any kind of cell. 

Now also this energy equation which is developed in this particular slide is used in a simplified form 

for developing flow if del v over del x is less than less than to the del u over del r that is the axial 



diffusion is far less important than the radial diffusion and that the radial heat convection is much 

weaker than the axial heat convection. Therefore, the energy equation that is equation number 10 

becomes like this. Now a fairly sizable technical literature has accumulated over the years in the area 

of convective heat transfer in polymeric system. Now this literature can be roughly divided into those 

effects that can mainly experimental and those are essentially solution to the equation of energy. 

 

  
𝑣𝑍
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Now there are many solutions and equations have been derived to solve the equation of energy for 

tube flow and the generalized form of the equation is represented like this equation number 11. Now 

which assumes only for v and there is no viscous dissipation, no compressibility effects, no internal 

heat source, constant pressure C p and k and assume that z direction convection p C p and v and del t 

over del z for exceeded the z direction conduction and that is k is equal to del 2 t over del z. Now this 

is a tabular form which represents the literature search of various solution which is required in this 

type of study. Various authors they have enlisted, they developed the various equations and these 

equations are depend on like first equation that is Christian and Craig, the equation used in the form 

of a power law and these equations are temperature dependent to viscosity. Apart from this another 

equation which is used for the power and airing this temperature dependent viscosity and the third 

one Joshi and Bergles this is a uses a power line that constant heat flux temperature dependent 

properties. 
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𝜕𝑇
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𝜕𝑉𝑍
𝜕𝑟

) 

Now in this aspect when we talk we are talking about the circular conduits in this aspect more rigorous 

solution of the equation of energy is need to be developed by a number of authors. These authors 

assume that the convective z direction that is rho C p v z into del t over del z heat transfer exceeded 

the convective direction and that is k del 2 t over del z the heat transfer in normal stresses could be 

neglected. Then the energy equations which is represented as equation number 12 which can be 

represented like this. Now this particular equation can be transformed into more amenable form by 

several substitutions. The first of this is that from the Fourier's law that is r q r is equal to minus k r del 

t over del r and that is equation number 13. 
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Also, since the system is now a compressible one so C p is not equal to C v and consequently the C p 

minus C v is equal to t epsilon over rho beta this is equation number 14. So, from equation number 14 

we have the coefficient of thermal expansion that is epsilon is equal to minus 1 upon rho del rho over 

del t at constant pressure and for the compressibility beta is equal to 1 over rho into del rho over del 

p at constant temperature. So, if the equation 13 and 14 are substituted to the equation 12 the 

following form of equation can be resulted the overall thermal expansion Now if equation 13 and 14 

are substituted into the equation 12 then the following form of the result can be represented like rho 

C p v z del t over del z is equal to 1 upon r del over del r k r del t over del r plus t sun v z del p over del 

z minus tau r z del v z over del r. So, this is the equation number 15. Now the overall thermal expansion 

effect is this one where del p over del z is equal to minus 1 upon r del over del r k r minus tau r z and 

this is the equation number 16. 



 

 So, the thermal expansion effect usually is a function of t epsilon v z over r into del del r r tau r z and 

this is the equation number 17.  

 

𝜌. 𝐶𝑃. 𝑉𝑍 (
𝜕𝑇

𝜕𝑧
) =

1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇

𝜕𝑟
) + (

𝑇𝜀𝑉𝑍
𝑟

) (
𝜕

𝜕𝑟
) (𝑟𝜏𝑟𝑧) − 𝜏𝑟𝑧 (

𝜕𝑉𝑧
𝜕𝑟

) 

 

So, putting if you put the equation number 17 in equation 12 the final energy equation this becomes 

like this and it is represented as equation number 18. Now this equation is then solved together with 

the equation of the motion and appropriate relation of the for the systems rheology and its physical 

property behaviour with the temperature and pressure. So, summary of these solutions is given by 

these various authors in this particular table for the for your convenience we have enlisted all those 



things like tour they they they use the power law equation and they neglect the viscous dissipation 

assumes the constant physical properties and analytical solution. Similarly, again in the subsequent 

year he used the power law for the constant properties treated in that region and analytical solutions. 

 Apart from this various other author they used where they no effect of compressibility cooling was 

considered apart from this the temperature dependent physical properties and the computer 

solutions they have considered. Now, in moving from the centre to the wall the portion this is a centre 

from to the wall let the portion of the previous equation 18 that undergoes the greatest change that 

is 1 upon r where r over r is equal to 0 and 1 over r is equal to infinite over r then the wall r over r is 

equal to 1 and 1 over r is equal to 1 over r. In contrast the viscous dissipation term tau r z this depend 

directly on tau t z and velocity gradient. So, if we consider separately the effect of the tube centre and 

the tube wall regime we see the various effects in this particular table with respect to the location 

then 1 over r values and effect on this particular equation the result is represented in the tabular form. 

You can see over here these are the various results which we have enlisted for your convenience. 

 Now, when we plot a temperature profile in the non-Newtonian system with expansion effects, so, 

this shows the effect of thermal expansion and when n is equal to eta is equal to 0.25 with the 

negligible viscous dissipation and constant fluid properties. So, the various silence values represent 

the average value of temperature across the tube. So, it can be seen in this particular plot the effect 

of thermal expansion or compressibility cooling this is depressed the point temperature in the centre 

of the tube. 

 

 

 Now, let us talk about the Nusselt number this is the ratio of the convective to conductive heat 

transfer across normal to the boundary and mathematically this Nusselt number is equal to the 

thermal resistance due to the conduction in fluid and thermal resistance due to convection in fluid, 

and this can be represented in mathematical form like this where the L is the characteristics length, 

and H is the heat transfer coefficient and k is the thermal conductivity. So, the Nusselt number greater 

than 1 indicates that the resistance due to the conduction is higher than that due to convection and 

so the movement of the fluid will result in more heat transfer when the Nusselt number is less than 1 



then the situation is opposite to the above. The ratio of the product of the coefficient of viscosity and 

specify a specific heat at constant pressure to the thermal conductivity in fluid flow used especially in 

the study of heat transfer in the mechanical devices. So, the ratio of momentum diffusivity to the 

thermal diffusivity is given at t r is equal to u over alpha and that is called the Prandtl number. The 

ratio of the fluid viscosity to the thermal conductivity this is of a substance a lower number indicating 

the high convection. 

 

  
Pr =

𝑣

𝛼
 

 

 

So, the fluid with a small Prandtl number are free flowing liquid with a high thermal conductivity and 

therefore good choice for heat conducting liquids. Grades number this is given by d over L into 

Reynolds number into Prandtl number. Now this there d is the hydraulic diameter of the tube or any 

cross sectional number and L is the length of the tube.  

𝐺𝑧 =
𝐷

𝐿
× Re×𝑃𝑟 

 



 

This number characterizes the laminar flow in a conduits and this number is useful for determining 

the thermally developing the flow entrance length index and Grades number is approximately 1000 

or less is the point at which the flow would be considered thermally fully developed. Now the 

relationship between the Nusselt and Grades number for constant wall heat flux condition the 

neglecting longitudinal heat conduction and internal frictional heat dissipation. 

 The approximation is given to obtain the analytical expression for the local Nusselt number which is 

given by this particular equation and this is equation number 19 which is useful for determining the 

relationship between the Nusselt and the Grades number.  

𝑁𝑢𝐿 = 0.650(
𝑝. 𝐷

𝑢
)

1
3
(
𝑅𝑒. 𝑃𝑟

𝐿
𝐷

)

1
3

 

 



 

Now if we are having 0 is less than eta less than equal to 1, then the most useful form of equation is 

represented like this. This is the Grades number. Now for the Newtonian case when eta is equal to 1 

this equation reduced to like this. Now in this particular graph the Nusselt and Grades solution for the 

plug flow and a Newtonian fluid are compared to the power law fluid solution where eta is equal to 

half or 1 by 3 this is derived by the Lyche and the Bird in their studies. 

 

𝑁𝑢𝐿 = 1.418(
3𝑛 + 1

4𝑛
)

1
3
(𝐺𝑧)

1
3 

𝑁𝑢𝐿 = 1.418(𝐺𝑧)
1
3 



 

Another Nusselt-Grades relation is shown in this particular graph which uses the term Br which is the 

measure of the internal heat generation.  

 

Now if Br is small the heat generation can be neglected and the negative value indicate the situation 

which is the fluid is being heated that is Tw is greater than T1 and positive value indicates the cold fluid 

that is Tw is less than T1.  



 

So dear friends in this particular segment we discussed the different aspects of convective heat 

transfer, conductive heat transfer, we developed the various relations and for your convenience we 

have enlisted the large number of references which can be utilized for the further studies. Thank you 

very much. 


