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Applied polymer rheology: Transport phenomena

Hello friends, welcome to the applied polymer rheology and this aspect you are going to discuss about

the transport phenomena under the areas of polymer process engineering. So, in this particular
lecture, we are going to discuss the various dimensionless groups. We will discuss the balance
equation and a model simplification aspect of the polymeric system.
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Now, modelling in polymer rheology or plastic rheology in processing is purely based on the transport
phenomena. Now, we cannot overlook the importance of rheology because whenever we go for a
useful product manufacturing, especially in the polymeric system, then ultimately, we need to go for
certain sort of viscosity behaviour and some the thermodynamic concept. Based on this, we need to
have a piece of proper knowledge about polymer rheology, and processing is purely based on that
particular rheological aspect, which is why the integral part of this processing and plastic rheology is
the transport phenomena.
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Introduction

* Modelling in plastics rheology and processing is based on transport
phenomena.

* Adimensional study of the system, which provides insight into the
significant parameters that influence the system or process, is frequently
the first step in modeling a system, whether a rheometer or an actual
process.

* When modeling a system, it is necessary to balance the flux of mass,
force, and energy inside the system by applying the
right material models or constitutive equations.

* Dimensionless numbers provide insight into the
system.
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So, usually, a dimensional study of the system which provides insight into the significant parameter
that influence the system or a process is frequently the first step in modelling a system where whether
a rheometer or an actual process likewise. When modelling a system, it is necessary to balance the
flux of mass force and energy inside the system by applying the right material models or constitutive
equations and dimensional dimensionless numbers provide insight into the system. The most
significant dimensionless groups pertinent to the plastic rheology and plastic processing we are going
to discuss here. The balance equations, they are then derived along with the simple constitutive or
rheological model that enabled the modelling of rheometric flows and polymer processes.

L A
Dimensionless group

» Engineers utilize dimensional analysis and dimensionless groups or
numbers to present theoretical and experimental results compactly to
obtain insight into an issue.

* This is accomplished by condensing all of the variables of a system
into meaningful dimensionless numbers.

» For example, it may be appropriate to express the
pressure requirements in terms of the Reynolds
number, which is the ratio of both effects, if the
fluid's inertia and the viscous effects dominate the
flow system.
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Dimensionless group

Example: Flow in a tube

Consider the classical pressure drop problem during flow in a smooth straight
pipe, ignoring the inlet effects. In such a system, the relevant parameters are
pressure drop Ap, tube diameter D,/tube length L,  viscosity of the fluid 7, )
density of the fluid p, and average fluid velocity w. Such a system is governed
by three dimensionless numbers: -

Eunr:ﬂ'—]t'2 ....(Euler number)
pu
Tube aspect ratio=L/D - (1)
Re:? ..(Reynolds number)

NPIEL ONUNE
CERTIFICATION COURSE

R 17 nooRkEE

To simulate the fundamental system as flow in a tube, even partially flow or pressure flow between
the parallel plates, the flow between the two rotating concentric cylinders give it flow. The model and
analyse the rheometer and of course, the processes to improve them, one can utilise these
straightforward system or combination of them. The engineers utilise dimensional analysis and
dimensionless groups and they are having a very good importance and very well-versed importance
in all kind of rheological studies. So, we are going to discuss the dimensional groups. Now, these
groups or a number is present the theoretical and experimental result compactly to obtain insight into
that particular aspect or rheological behaviour.

Dimensionless group
Example: Flow in a tube

* which can be putina sous ! s T
relationship by the followmg 040 * Water 12,188 em
function 7 oo %, I Ar oorizscm
f(Eu,Re,L/D)=0  ..{2) o= Mo, T

* The form of the function f can :;: =) , | | - ‘“‘“ﬂ-lu-u
be created experimentally, O o — 1 ®

even though this does not Fig. Pressure drop

explain the nature of the | characteristic of a straight

relation. smooth tube
* Fig here presents results from such experiments
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Now, this is accomplished by condensing all of the variables of a system into the meaningful
dimensional dimensionless numbers. For example, it may be appropriate to express the pressure



requirement in terms of Reynolds number, which is the ratio of both effects if the fluids inertia and
the viscous effect dominate the flow system. Let us take example of flow in a tube. Now, consider a
classical pressure drop during the flow in a smooth straight pipe, we can ignore the inlet effects in
such a system the relevant parameters are pressure drop delta p, the tube diameter d at the tube
length and viscosity of the fluid neta and the density of fluid rho and average fluid density u. Now,
such a system is governed by three dimensional less numbers.

Dimensionless group
Table: Dimensionless Groups in Plastics Rheology and Polymer Processing
Symbol Definition Mennii'lg

onvection from surface
Conduction through bo

‘ Brinkman , (I Br \' [ nuzjkﬂ'f' e \r‘|soou-. heatlng,f
_,___.___.,;..1" N __,,/J E e _,,a{ -andu; tion— :_,-»’
| Caplllar‘y Ca TR /o, )?/\natonc stresse
' Surface tension st s
Fi— -~ ! T
[Damki'}hler / Da | cAH,/pC, T | | Reaction energy/ ‘
—_—— ~ | Internal energy /
Deborah De Eorﬂ.ﬁ, \ Relaxation time/
£ Process time
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Dimensionless group
Table: Dimensionless Groups in Plastics Rheology and Polymer Processing

Name Symbol Definition Meaning
= - : T
Fourier Fo rocess time/
mal diffusion time
e T -~ A =]
/Giacomin / l-‘ ~ G, J{Dex iWe" / Measure of non-
— . L s .
TN N | A Newtonianness

Transverse conduction

| Graetz Gz, THTJL Lengthwise convection/
L) a

Manas-Zloczower | M, ¥ M_= 0.0-No deformation

1 ..-————1._'></ ¥+ w M_= 0.5-Shear flow
e ___----'"’L"'*c\;-\ _ M= 1.0-Elongational flow
Nahme-Griffith Na a AT Br Effect of viscous heating on

flow
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One is the Euler number that is Eu is equal to delta p over rho u square, then second is the Reynolds
number, that is Re is equal to d u rho over neta if the tube aspect ratio is equal to L by d. Now, this



can be putin arelationship by this particular function, fis a function of Euler number Reynolds number
and L by d is equal to 0. Now, the form of the function f can be created experimentally even though
this does not explain the nature of the relation. So, this figure represents the pressure drop
characteristics of a straight smooth tube and this results from those experiments. Now, this particular
plot shows the lambda is equal to 2 Eu d over L as a function of a Reynolds number.

Dimensionless group
Table: Dimensionless Groups in Plastics:Rheology and Polymer Processing

NI:ISSGIE:] Nu kL /Eﬁﬂ;ectiue heat transfer
Kero o Conductive heat transfe
TN flutd [ | — ,-—--'—_‘__._\,,4’
Péclet) Pe uL “._r Rate of advective heat transfer/
S o -H_}_}at_l_a___uf.diﬁ_ﬁusion—he_gtt{an;)der
| Prandtl Pr. w e dﬁE\?ﬁ;‘f
\ o Thermal diffusivi
"Re-\,?ﬁﬁlds | Re pL /" Inertia forces/ m'\; )
P ‘“\,;— n I\\ Viscous foree;iﬁ
Schmid Sc v Mechanical mixing
D iffusion mixing
I:L:l.l'l.l’ei5senberg We Ay or ol or Aypw Elastic s?resseﬂ
~_ ’ Viscous stresses
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The value of the dimensionless number is clearly shown in this particular plot. The line representing
the laminar flow is exemplified by a pressure flow in a tube derived further. Now, this particular table
represents a dimensionless group in plastic rheology and polymer process like Biot number, the
symbol is Bi represented as Hi over k that is a convective from the surface and conduction through
body, then Brinkman number represented as Br and this is represented as neta u square over k delta
t. This is the meaning of the viscous heating and conduction, then capillary, Damkohler, Da Broglie
number and all these having the different type of a definition and their meanings. Similarly, the Fourier
number represented by Fo definition alpha t over L square this is the process time and thermal
diffusion time, then Giacomin, Gn, De plus i We where we have given this Ge over here, and this is a
measure of non-Newtonian stress, then Grate's number, then Manus-Jacquard number and Nern-
Griffith number.

So, all these numbers they represent similarly, the Nusselt number, the Peclet number, the Prandtl
number, the Reynolds number, the Schmidt number and then Weissenberg number. So, all these
numbers, they are the dimensional group, dimensionless groups in the rheology and they all having
the major impetus in describing the polymer rheology and the polymer processing, like sometimes
require the convective heat transfer then should have considered the Nusselt number, then rate of
advective heat transfer, then Peclet number, then if we talk about the momentum diffusivity and the
thermal diffusivity, then the Prandtl number in force and then if we talk about the inertia forces, then
viscous or viscous forces, then Reynolds number all these things are there. And if we talk about the
mechanical mixing or a diffusion mix mixing, then Schmidt numbers, these numbers in force. Now, let
us talk about the balance equation. Now, to solve the flow and a heat transfer issue in polymer
processing, we must adhere to the laws of conservation of mass, force and energy.



Balance equations

* To solve flow and heat transfer issues in ‘jhmmm

polymer processing, we must adhere to the !
laws of conservation of mass, forces, and
energy.

* When material attributes are combined with
momentum and energy balances via
constitutive relations, very nonlinear
governing equations can emerge.
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Now, when material attributes they are combined with momentum and energy balances via
constitutive relations, a very nonlinear governing equation, these can emerge. So, let us talk about the
mass balance or a continuity equation, the conservation of mass usually is a fundamental principle
that modelling polymer processing must adhere to. A volume balance is comparable to mass balance
when simulating the flow of polymer, because we can assume incompressibility. Now, this is the
figure, the differential frame immersed in the flow and fixed in space. Now, the continuity equation is
the name to given to the resulting equation.

A
Balance equations

The Mass Balance or Continuity Equation:

* The conservation of mass is the fundamental principle that modeling
polymer processing must adhere to.

* Avolume balance is comparable to a mass balance when simulating the
flow of polymers because we can assume incompressibility.

L Fig. Differential frame
>+ | immersed in a flow and
__— fixed in space
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Now, if we see this particular diagram or a figure, we insert an imaginary wire frame with the
dimensions of delta X into delta Y into delta Z inside a flowing system to calculate the continuity
equation. Now, if we take the using the notation introduced in that in this particular figure, we can
perform a volumetric balance. Now, in and out of the differential element in the volume is specified a



specific form by dividing the balance by the elements volume delta X into delta Y into delta Z. So, this
can be delta U Z over delta Z plus delta U Y over delta Y plus delta U X over delta X is equal to 0. Let us
take this is equation number 1.

A
Balance equations
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Now, letting the size of a differential element go to 0, this results del U Z over del Z plus del U Y over
del Y plus del U X over del X is equal to del U | over del X | that is equal to 0. Let us say this is equation
number 2. Now, this is stating the divergence of the velocity vector must equal to 0 when the mass or
volume is conserved. So, we can write this equation as is equal to 0, this is equation number 3. Now,
when the flow is compressible, variable density has to be taken into account and the continuity
equation must be written as U is equal to 0.

Balance equations
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Now, this can be the continuity equation in the Cartesian and the cylindrical coordinate system. Now,

this the most cases the density rho is constant and can be dropped from the equation. Now, here the
Cartesian coordinate if we talk about the Cartesian coordinate X, Y, Z, so, we can write del over del X
rho U X plus del over del Y rho U Y plus del over del Z rho U Z is equal to 0. Now, the cylindrical
coordinates r, theta and z, this can be written as 1 over r del over del r rho r U r plus 1 over r del over
del theta rho U theta plus del over del Zrho U Z is equal to 0. Now, the momentum balance or equation
of motion can be depicted with this particular figure, where the differential fluid elements they are
travelling along the streamline X direction and forces that acts on its surface.

Balance equations

The Momentum Balance or Equation of Motion o _ _
) Fig. Differential fluid

_— element traveling
, /"/ R N\ along its streamline x-
f / H""“'_'_r' direction and forces
Vane |" o Ay N that act on its
N y yd surfaces

0 e NPTEL ONUMNE __!_.!__1,_,._ ﬂm A Rudul:ph, Natalie (2015) Polymer rheology _ fundamentals
and applications-|
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ublications. ISBN 978-1-56990-517-3.

Now, in order to calculate the momentum balance, we use the figure. Now, instead of submerging a
hypothetical frame into the melt, we use a real fluid element with the dimensions of delta X into delta
Y into delta Z and calculate a force balancing using the force acting on its surface. The force balance
can be written as summation of force is equal to m a. Now, where the correspondingly the component
in the equation denotes the force F, mass m and acceleration a, we will simply display the balance of
forces in the X direction here for simplicity. Now, this figure describes the forces that are exerted in a
tiny fluid element in the X direction.
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Balance equations

* where, correspondingly, the
components in the equation denote
force (f), mass (m), and acceleration
(a).

* We will simply display the balance
of forces in the x-direction here for
simplicity. 7

* Fig. describes the forces thatare.
exerted on a tiny fluid element in
the x-direction.
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Balance equations
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Now, because the element in this particular figure is a fluid particle that moves with the flow, moves
with the flow and the change in its velocity, the change in its velocity component is described by the
material derivative. So, therefore, the force balance in the X direction is given by summation F is equal
tom d u x over dt, where m is equal to rho delta X into delta Y into delta Z. So, after adding the forces
divided by elements volume and letting the volume go to 0, the force balance in the X direction results
like rho d u x over dt del X X del X plus del small sigma Y X del Y plus del small sigma Z X del Z plus rho
g X. Now, which for all 3 dimensions directions for all 3 directions can be written as rho d ui over dt is
equal to del small sigmaijdel X j plus rho giand rho d u over dt is equal to rho g. Now, this particular
thing represents a deformation due to stress.



Now, this is the effect of deviatoric stresses as the fluid element travels along the streamline. Now,
in fluid however, it is necessary to split the total stress into the deviatoric stress tau and hydrostatic
stress, deviatoric stress causes the deformation as per this particular figure, the deformation due to
the stress. Now, the hydrostatic stress is described by the pressure. Now, here you see the hydrostatic
stress acting on a differential element. So, we can write sigma i j is equal to sigma H delta i j plus tau i
j, where delta i j is the Kronecker delta as the above this particular equation reveals the hydrostatic
stress only that can act in the normal direction of the surface and it is equal, it is equal in all 3
directions.

A
Balance equations

Fig. Effect of deviatoric stresses as the
fluid element travels along its streamline

—

In fluid flow, however, it is necessary to split
the total stress, g;;, into a deviatoric .
stress, T;;, and a hydrostatic stress, o;. The

deviatoric stress causes deformation as '

shown in the figure.

Deformation

Edue to stress
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Hence, we can write sigma is equal to sigma H is equal to minus p, where p is the pressure, the
negative pressure reflects the fact that a positive pressure causes a compressive stress. So, the total
stress can be written as a sigma i j is equal to minus p delta i j plus tau i j. So, using the definition of
total stress, the momentum balance can be written as can be rho du i over dt is equal to minus del p
over del xi plus del tau over del x plus rho gi and rho du over dt is equal to Kronecker delta p, this is p
plus tau plus rho g. Now, the momentum equations which can be written as with respect to the
Cartesian coordinates and in terms of tau that can be written as rho del ux over del t plus ux del ux
over del x plus uy del ux over del y plus uz is equal to del ux over del z, this is equal to minus del rho
over del x plus del tau xx over del x plus del tau yx over del y plus del tau zx over del z plus rho gx. And
similarly, rho del uy over del t plus ux del uy over del x plus uy over del uy over del y plus uz del uy
over del z, this is equal to minus del p over del y plus del tau xy over del x plus del tau yy del y plus del
tau zy over del z plus rho gy or rho del uz over del t plus ux del uz over del x plus uy del uz over del y
plus uz del uz over del z, this can be represented as minus del p over del z plus del tau xz over del x
plus del tau yz plus del y plus del tau zz over del z plus rho gz.
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The hydrostatic stress is described byipressure:
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Balance equations
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So, these are the Cartesian coordinate x, y, z. Now, if we try to write with the help with the cylindrical
coordinates r theta z. So, rho del ur over del t plus ur del ur over del r plus u theta over r del ur over
del theta minus u theta square over r plus uz over del u r over del z, this is equal to minus del p over
del r plus 1 over r del r tau plus 1 over r del tau r theta del theta minus tau theta plus del tau iz del z
plus rho gi or rho del u theta plus del t plus ur del u theta plus del r plus u theta over r del u theta over
del theta plus ur u theta over r plus uz del u theta over del z, which is equal to minus 1 over r del rho,
del p over del theta plus 1 r square del r r square tau r theta plus 1 over r del tau theta plus rho g theta
or rho del uz over del t plus u r del uz over del r plus u theta over r del u z over del theta plus u z del u
z over del z, which is equal to minus del p over del z plus 1 over r del r r tau r z plus 1 over r del tau
theta z plus del tau zz del z plus rho gz. Now the energy balance or equation of energy, now this is the
heat flux across a differential fluid element during the flow. Now Q represents the heat aspect and
the different direction.



Balance equations

The Energy Balance or Equation of Energy

Fig. Heat flux across a
X differential fluid

I element during flow
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Now using the Fourier law of heat conduction Qi is equal to minus k i del t over del x i. Now assuming
an isentropic material for this the k x is equal to ky is equal to k z is equal to k. Now an energy balance
around the moving fluid element, this can be written as rho C p dT over d t k del 2 T over del x 2 plus
del 2 T over del y 2 plus del 2 T over del z 2 plus Q dot plus Q viscous heating, where an arbitrary heat
source Q dot and viscous dissipation term were included. Now this is the schematic flow of a simple
shear flow system used to illustrate the viscous dissipation term in the energy balance system. Now
as an illustration we will derive the viscous dissipation term in the energy balance using a simple shear
flow system.

Balance equations
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Balance equations

A

Fig. Schematic of a simple shear flow sﬁfstem used to
illustrate viscous dissipation terms in the energy
balance '
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Balance equations
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Now here the stresses within the system can be given as tau y x is equal to mu d u x over del u x over
del y, which in terms of parameters depiction like force, area, gap, height, plate, speed u naught. This
can be written as force over the area of cross section mu u naught, which is the plate speed over h
which is the height. So, the system in the system rate of energy input is given by f u naught is equal to
mu u naught over h A u naught. And if we divide the above this particular equation by the volume of
the polymer of polymer A h, this is A h the rate of energy input per unit volume is given by f u naught
over A h is equal to mu u naught over h then u naught over or q viscous heating g dot mu del u x over
del y into del u x over del y. This equation can be deduced from the Newtonian fluid and the general
term of the viscosity dissipation is given by mu dot gamma dot gamma, where dot gamma is equal to
summation iis equal to 1, 2, 3 and summation zis equal to 1, 2, 3 gammaijgammaji.
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Balance equations
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Balance equations
Cartesian Coordinates (x, y, z):
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And for the Newtonian for the non-Newtonian material the viscous heating is written as tau gamma.
Hence, the energy energy balance becomes rho C p d t del t over del t plus rho C p u j del t over del x
j which is equal to del over del x j k del t over del x j plus tau i j gamma j i plus q dot or rho C p del t
over del rho C p u delta t that is equal to k t plus tau dot gamma plus g. Now, the if we talk about the
Cartesian coordinates this can be mathematically represented like rho C p del t over del t plus and so
on like this and if we talk about the cylindrical coordinates this can be represented in this particular
mathematical form. Now, we must first simplify the balancing equation in order to get the analytical
solution. The balancing equations they are rigorous and basic but they are also non-linear complex
and challenging to solve.

In other words, they lack a universal answer and only specific solutions for specific issues have been
discovered so far. Now, in order to arrive at an analytical solution to the situation at hand the balancing
equation must therefore be adequately simplified. The scale of variables or an estimate of its highest
order of magnitude is often the foundation upon which the system simplifications are built. Now, in
order to arrive an analytical solution to the situation at hand the balancing equations must therefore
be adequately simplified and the scale of variable or an estimate of its highest order of magnitude is
often the foundation upon which the system simplifications are built. Scaling is the process of
determining the precise order of magnitude of the many unknowns as was discovered in different
sections.
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Model simplification

* We must first simplify the balancing equations in order to get analytical
solutions.

* The balancing equations are rigorous and basic, but they are also
nonlinear, complex, and challenging to solve.

* In other words, they lack a universal'answer, and only specific solutions
for specific issues have been discovered so far.

* In order to arrive at an analytical solution to the situation at hand, the
balancing equations must therefore be adequately
simplified

* The scale of the variables, or an estimate of its
highest order of magnitude, is often the foundation
upon which a system's simplifications are built.
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These values such as characteristic times, characteristic length these are the frequently referred to as
a characteristic’s magnitude. The new dimensionless variables that results from scaling a variable in
relation to its characteristic magnitude scale will be of order 1. A dimensionless viscosity or scaled
viscosity can be produced for instance by scaling the x velocity field u x within a system with regard to
the characteristic velocity u naught. So, this can be represented mathematically like this. Now, using
this particular relation the original variable can be expressed in terms of a dimensionless variable and
its characteristic value like this u x is equal to bar u x over into u naught.

. o400

Model simplification

* The new dimensionless variable that results from scaling a variable in
relation to its characteristic magnitude (scale) will be of order 1.

» A dimensionless velocity, or scaled velocity, can be produced, for instance,
by scaling the x-velocity field, u,. , within a system with regard to a
characteristic velocity, Uy S

: UU s
» Using the above relation, the orlglnal variable can be
expressed in terms of the dimensionless varlable and
its characteristic value as e N
U= uﬁx Uﬂ'
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Now, let me give you an example that object submerged in fluid. Consider an object with the
characteristic length L and the thermal conductivity k that is submerged in a fluid of constant
temperature tau naught and the convection coefficient H. If a heat balance is made on the surface of
the object it must be equivalent to the heat by conduction. Now, this can be represented like this



minus k del T over del n H T s minus T infinity. The maximum value the possible for the temperature
gradient must be the difference between the central temperature and the surface temperature.

Model simplification
Example: Object submerged in a fluid

Consider an object with a characteristic
length L and a thermal conductivity k that
is submerged in a fluid of constant
temperature T_. and convection coefficient
h. If a heat balance is made on the surface
of the object, it must be equivalent

to the heat by conduction:
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This is the central temperature and this is the surface temperature. So, delta T is almost equal to T ¢
minus T s this which provides the characteristic temperature difference this is the characteristic
temperature difference. Here the length variable is a normal distance delta n and has a characteristics
length L. We can now approach to the scaling in two ways. The first and quickest is to simplify the
substitute the variable into the original equation often referred as the order of an order of magnitude
analysis.



The second is to express the original equation in terms of dimensionless variable and the order of
magnitude analysis result in the scale conduction is given by k del T over del n k T ¢ minus T s over L.
Now, reducing the problem to say k T ¢ minus T s over L H T s minus T infinity or in a more convenient
way B iis equal to H L. B i is the biot number. Now, this is the second and the third way. So, T cover k
T cminus T s over T s minus T infinity.

Model simplification
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So, the bar T is equal to T over T ¢ minus T s and bar n is equal to n over L. This can be solved to give

TisequaltoTcminusTsbarTornisequal to bar. Now, substituting these two in the original equation
this results minus k L H del n T s minus T infinity over T ¢ minus T s or if we represent in terms of biot
number. So, B i del T bar over del n. Now, this this del T bar over this one is of order 1 and the same
analysis done this which is applied over here.

L A
Model simplification

WhenBi<<1:

- The solid is considered isothermal.

- The problem dimensionality is reduced to a zero-
dimensional or lumped model.
When Bi >> 1:

- The fluid is considered non-isothermal.

- T, = T_, changing the convection boundary condition
to a thermal equilibrium condition.
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So, let us take that if B i is less than less than 1 the solid is considered the isothermal and the problem
dimensionality is reduced to a O dimensional or lumped model and when B i is greater than greater
than 1 the fluid is considered the non-isothermal and the minus T s is equal to T infinity changing the
convection boundary condition to a thermal equilibrium condition. The choice of characteristic value
of for normal distance and the temperature allows the generation of dimensionless variables and
scaling the problem and expressing the governing equation in dimensionless form.
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So, dear friends in this particular segment we discussed the different rheological nature and developed
the different models and for your convenience we have enlisted several references can be utilized as
per the requirement. Thank you very much.



