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Design of Pipeline - Natural Gas Transmission 

 

Welcome to the design of pipelines and in this particular chapter, we are going to discuss about 

the natural gas transmission. Let us have a brief outlook about what we discussed in the 

previous lecture. We discussed about the natural gas transmission. We derived the general flow 

equation in steady state with respect to the kinetic energy term, with respect to the pressure 

energy term, potential energy term and friction loss term.  

 

In this particular lecture, we are going to discuss about the various flow regimes including fully 

turbulent flow that is rough pipe flow, partially turbulent flow that is smooth pipe flow, pressure 

drop calculation. We will discuss the pipelines in series, pipelines in parallel, pipeline in 

segmental looping. 
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Now, let us talk about the flow regimes. Now, in high pressure gas transmission lines with 

moderate to high flow rates, there are two types of flow regimes which are normally observed. 

One is the fully turbulent flow that is rough pipe flow and second one is the partially turbulent 

flow. So, the regime of flow is defined by the Reynolds number which is dimensionless and 

Reynolds number is Re = rho D u over mu.  
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The regime of the flow is defined by Reynolds number (Dimensionless); 

 

 

 

 

Now, here if you see that the term used in the Reynolds number that is rho is equal to fluid 

density in kilogram per meter cube, D is the pipe diameter or the pipeline internal diameter m, 

u is the fluid average velocity in meters per second and mu is the fluid viscosity that is kilogram 

per meter second.  
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𝑹𝒆 =
𝝆.𝑫. 𝒖

𝝁
 



Now, if Reynolds number is less than 2000, the flow is normally laminar or stable. Now, if Re 

is greater than 2000, the flow is turbulent or unstable. In high pressure line only two type of 

flow regimes they are exist, fully turbulent or partially turbulent flow.  
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Now, let us talk about the partially turbulent flow regime. The partially turbulent flow is 

defined by the Prandtl-Von Karman equation and this equation is square root of 1 upon f = 4 

log to the base 10 Re upon 1 upon f – 0.6 where f is the friction factor re dimensionless and Re 

is the Reynolds number. Now, it is applicable in which the flow is fully turbulent in the centre 

region of the pipe with a laminar sublayer covering the interior surface of the pipe.  
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Partially Turbulent Flow Regime; 

The partially turbulent flow is defined by Prandtl-Von Karman equation; 

 

 

 

Where, f = friction factor (dimensionless), Re = Reynolds Number (dimensionless) 

 

 

√
𝟏

𝒇
= 𝟒 𝐥𝐨𝐠𝟏𝟎

𝑹𝒆

√
𝟏
𝒇

− 𝟎. 𝟔 



 

Now, here you can you see that it is a semi-log graph where the straight line shows the 

maximum limit of partial turbulent flow. Now, all points to the right hand side of the line this 

exhibit fully turbulent flow and left hand side remain partially turbulent. This is a fully 

turbulent, partially turbulent zones by Prandtl-Von Karman equation.  
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Let us talk about fully turbulent flow regime. The transmission factor for fully turbulent fluid 

is given by Nikuradse equation which is as represented 1 upon f = 4 log to the base 10 3.7 D 

upon K e, where 1 upon f this is the transmission factor which is dimensionless in nature, D is 

the pipeline internal diameter, K e is the effective roughness that is represented in m and K e 

upon D is the relative roughness that is dimensionless. 
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Fully Turbulent Flow Regime; 

 the transmission factor for fully turbulent flow is given by the Nikuradse equation as 

follows; 

 

 

 

 

 

Now, this K e the effective roughness term this can be defined as K e = K s + K i + K d now 

where K s is the surface roughness, K i is the interfacial roughness and K d is equal to roughness 

due to bend, fitting sometimes they are very common and wells. Now, with high pressure gas 

transmission lines with high flow rate and fully turbulent flow regime and natural gas is almost 

dry and K d and K i are negligible if you compare with the K s.  
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𝑲𝒆 ”the effective roughness term” can be defined as; 

 

√
𝟏

𝒇
= 𝟒 𝐥𝐨𝐠𝟏𝟎 [𝟑. 𝟕

𝑫

𝑲𝒆
] 

𝑲𝒆 = 𝑲𝒔+𝑲𝒊 + 𝑲𝒅 



 

Now, the values of K s and K e is very important in fully turbulent flow regime without the 

laminar sublayer, the surface roughness of the pipe play an important role in determining the 

flow and pressure drop. The Nikuradse equation shows that if the effective roughness of the 

pipeline is increased the transmission factor decrease and its result in high pressure drop. So, 

for internally uncoated commercial pipe where this K e is unavailable 700 microns inch maybe 

assumed.  
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Now, the calculation of Reynolds number in gas transmission system, Re in gas transmission 

system, so this Re = rho D u upon mu, u = Q upon pi D square by 4 where Re = rho D Q upon 

mu pi D square by 4.  
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We know that Reynolds number can be defined as; 

 

 

 

 

 

 

 

 

 

 

Now, at steady state condition rho Q = P b Q b, this is the Reynolds number = 4 Q b rho b upon 

mu pi D and if rho b = P b M upon Z b R T b. For natural gas value of Z b = 1 and M = 29 G. 

So, Re = 4 b 29 G P b upon mu pi D R T b.  
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At steady-state condition; 

 

Where,  

𝑹𝒆 =
𝝆.𝑫. 𝒖

𝝁
 

𝒖 =
𝑸 

𝝅𝑫𝟐/𝟒
 

Therefore; 𝑹𝒆 =
𝝆.𝑫. 𝑸

𝝁. 𝝅𝑫𝟐/𝟒
 

And if,  

⟹ 𝑹𝒆 =
𝟒𝑸𝒃. 𝝆𝒃

𝝁𝝅𝑫
 

𝝆𝒃 =
𝑷𝒃.𝑴

𝒁𝒃. 𝑹. 𝑻𝒃
 

For, Natural gas the value of 𝒁𝒃=1 and M= 29G;   

⟹ 𝑹𝒆 =
𝟒𝑸𝒃.29G. 𝑷𝒃

𝝁. 𝝅.𝑫. 𝑹. 𝑻𝒃
 

𝝆𝑸 = 𝝆𝒃𝑸𝒃 



 

So, on substitution of value of variables pi Re = 10.73 psi cubic feet per ton moles R, P b = 

14.7 psi, mu = 7.23 into 10 to the power –6 pound metre per second, the Re = 45 Q b G upon 

D. Now Q b is equal to gas flow rate in cubic feet per hour, G is equal to gas gravity that is 

dimensionless, D is inside diameter of pipe that is in inch. This is the simplified equation and 

that gives the Reynolds number in terms of pipeline parameters. 

(Refer Slide Time: 09:54) 

On substitution of the value of variables 𝝅, R=10.73 Psi.ft3/lbmoles. oR, 𝑷𝒃=14.7 Psi, and 

𝝁= 7.23x10-6 lb m/ft. s 

 

 

 

 

 

⟹ 𝑹𝒆 = 𝟒𝟓
𝑸𝒃G 

𝑫 
 



Now, let us talk about steady state flow equations. So, the general flow equation of natural gas 

in pipeline is given by Q b = pi R g c upon 1856 Z b T b upon P b P 1 square – P 2 square – 58 

G delta H average P square upon R T average Z average upon 58 Z average T average G L 1 

upon f D to the power 2.5. Now, assume potential energy turn that is E = 0.0375 G delta H 

average P upon T average Z average. 

(Refer Slide Time: 11:11) 

Steady state flow equations; 

The general flow equation of natural gas in pipeline is; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume, Potential Energy term; 

𝑬 = 𝟎. 𝟎𝟑𝟕𝟓𝑮. 𝜟𝑯.
𝑷𝒂𝒗𝒈

𝟐

𝑻𝒂𝒗𝒈𝒁𝒂𝒗𝒈
 

𝑸𝒃 = 𝝅√
𝑹.𝒈𝒄

𝟏𝟖𝟓𝟔
.
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𝟐 − 𝑷𝟐
𝟐 −
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𝟓𝟖𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑮. 𝑳
. √

𝟏

𝒇
𝑫𝟐.𝟓 



 

Then on upon simplifying we get Q b = 38.774 T b upon P b 1 upon f P 1 square – P 2 square 

– E upon Z average T average G L D to the power 2.5. Now, this is the most common and 

widely used flow equation and that is suitable for design of large diameter high pressure gas 

transmission line.  
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Then, we have on simplifying; 

 

 

 

 

Note; This is the most common and widely used flow equation that are suitable for design 

of large diameter, high-pressure gas transmission lines. 

 

 

 

 

𝑸𝒃 = 𝟑𝟖. 𝟕𝟕𝟒
𝑻𝒃

𝑷𝒃
. √

𝟏

𝒇
.√

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑮. 𝑳
𝑫𝟐.𝟓 …..Equation (4) 



 

Now, let us talk about the partially turbulent equation, Panhandle equation. This equation is 

normally used for medium to relatively large diameter pipeline with moderate gas flow rate 

operating under medium to high pressure. Now, here we can see that Q b = 435.83 T b upon P 

b to the power 1.0788 into P 1 square – P 2 square – E upon G to the power 0.8539 Z average 

T average L to the power 0.5394 D to the power 2.6182. Now, the transmission factor is defined 

as 1 upon f 6.87 Re to the power 0.07305. 

(Refer Slide Time: 13:11) 

Partially turbulent equations; 

Panhandle A; Equation is normally used for medium to relatively large diameter 

pipelines with moderate gas flow rate, operating under medium to high pressure. 

 

 

 

 

 

 

 

𝑸𝒃 = 𝟒𝟑𝟓. 𝟖𝟑(
𝑻𝒃

𝑷𝒃
)𝟏.𝟎𝟕𝟖𝟖. [

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝑮𝟎.𝟖𝟓𝟑𝟗. 𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓𝟑𝟗𝟒

. 𝑫𝟐.𝟔𝟏𝟖𝟐  

⟹ √
𝟏

𝒇
= 𝟔. 𝟖𝟕𝑹𝒆𝟎.𝟎𝟕𝟑𝟎𝟓 

Transmission factor is defined as; 



 

Or this can be 1 upon f = 7.211 Q b G upon D to the power 0.07305. Now, we can link all these 

parameters which we have discussed earlier.  
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Note; All the parameters are as discussed before. 

 

 

 

 

 

Or,  ⟹ √
𝟏

𝒇
= 𝟕. 𝟐𝟏𝟏 (

𝑸𝒃. 𝑮

𝑫
)
𝟎.𝟎𝟕𝟑𝟎𝟓

 



 

Now, AGA partially turbulent, this AGA partially turbulent equation is highly dependent on 

Reynolds number. Now this equation is used for medium diameter and medium flow and high 

pressure system. Now, let us write this particular equation this Q b = 38.774 T b upon p B P 1 

square – P 2 square – E upon G Z average T average L to the power 0.5 4 D f log Re upon 

1.4126 square root of ‘f’ D 2.5. Now, the transmission factor is defined as 1 upon f = 4 D f log 

Re upon 1.4126 square root of ‘f’.  
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AGA Partially turbulent; 

The AGA partially turbulent equation is highly dependent on Re, this equation is used 

for medium diameter and medium flow and high-pressure systems. 

 

 

 

 

 

 

 

 

𝑸𝒃 = 𝟑𝟖. 𝟕𝟕𝟒
𝑻𝒃

𝑷𝒃
. [

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝑮. 𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓

. 𝟒𝑫𝒇𝒍𝒐𝒈
𝑹𝒆

𝟏. 𝟒𝟏𝟐𝟔√
𝟏
𝒇

.𝑫𝟐.𝟓 

⟹ √
𝟏

𝒇
= 𝟒𝑫𝒇𝒍𝒐𝒈

𝑹𝒆

𝟏. 𝟒𝟏𝟐𝟔√
𝟏
𝒇

. 

Transmission factor is defined as; 



 

Now where D f is drag factor, normally appears in the partially turbulent flow equation and its 

numerical value is ranging from 0.92 to 0.97. 
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Where, 

𝑫𝒇 is drag factor, normally appears in partially turbulent flow equations. Its numerical 

value in the range from 0.92 to 0.97. 

 

 

Now, Panhandle B, this equation is suitable for high flow rate, large diameter and high system. 

Now, this equation can be represented as Q b = 737.02 T b upon P b to the power 1.02 P 1 

square – P 2 square – E upon G to the power 0.961 Z average T average L 0.5 D to the power 

2.53. The transmission factor is usually defined as 1 upon f = 16.70 Q b G upon D 0.01961. 
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Panhandle B; 

This equation is suitable for high flow rate, large diameter and high-pressure system. The 

equation is as following; 

 

 

 

 

 

 

 

 

 

 

 

Now, the efficiency in Panhandle B equation is defined as Q actual upon Q theoretical. Now, 

it is multiplied in the equation to calculate more accurate value of Q b and all the parameters 

in the main equations are same as per which we have discussed.  
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Efficiency in Panhandle B equation is defined as; 

 

 

It is multiplied in the equation to calculate more accurate value of Qb and all the 

parameters in the main equation are same as discussed above. 

𝑸𝒃 = 𝟕𝟑𝟕. 𝟎𝟐 (
𝑻𝒃

𝑷𝒃
)
𝟏.𝟎𝟐

 [
𝑷𝟏

𝟐 − 𝑷𝟐
𝟐 − 𝑬

𝑮𝟎.𝟗𝟔𝟏𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓

. 𝑫𝟐.𝟓𝟑 

Transmission factor is defined as; 

⟹ √
𝟏

𝒇
= 𝟏𝟔. 𝟕𝟎 (

𝑸𝒃𝑮

𝑫
)  

𝟎.𝟎𝟏𝟗𝟔𝟏

 

𝜼 =
𝑸𝒂𝒄𝒕𝒖𝒂𝒍

𝑸𝑻𝒉𝒆𝒐𝒓𝒂𝒕𝒊𝒄𝒂𝒍
 



 

 

Now, let us talk about the Weymouth equation. Now, this equation is used for high flow rate, 

large diameter and large pressure system. This equation is helpful in pressure drop prediction 

and contains low degree of accuracy relative to other equation. So, this is used in the 

distribution network for safety in predicting the pressure drop. Now, this equation can be 

written as Q b = 432.7 T b upon P b P 1 square – P 2 squared – E upon G Z average T average 

L to the power 0.5 D 2.667. 
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Weymouth equation can be written as: 

 

 

 

 

𝑸𝒃 = 𝟒𝟑𝟐. 𝟕
𝑻𝒃

𝑷𝒃
[

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝑮. 𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓

. 𝑫𝟐.𝟔𝟔𝟕 



 

And the transmission factor can be defined as 1 upon f = 11.19 D to the power 1 by 6.  
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The transmission factor can be defined as; 

 

 

 

 

 

Now, let us talk about the AGA fully turbulent equation. It is most frequently and widely used 

equation in high pressure, high flow rate system for medium to large diameter pipelines. It will 

help in to predict the flow rate and pressure drop and also effective roughness values with a 

high degree of accuracy. So, this equation is again represented as Q b = 38.774 T b upon P b P 

√
𝟏

𝒇
= 𝟏𝟏. 𝟏𝟗(𝑫) 

𝟏/𝟔 



1 is square – P 2 square – E upon G Z average T average L 0.54 log 3.7 D upon K e D to the 

power 2.5. And the transmission factor can be defined as 1 upon f = 4 log 3.7 D upon K e.  
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AGA Fully Turbulent; 

It is most frequently and widely used equation in high pressure, high flow rate system for 

medium to large diameter pipelines. 

It will help in to predict both flow rate and pressure drop and also effective roughness 

values with high degree of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑸𝒃 = 𝟑𝟖. 𝟕𝟕𝟒
𝑻𝒃

𝑷𝒃
. [

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝑮. 𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓

. 𝟒𝒍𝒐𝒈
𝟑. 𝟕 𝑫

𝑲𝒆
. 𝑫𝟐.𝟓 

The transmission factor can be defined as; 

√
𝟏

𝒇
= 𝟒𝒍𝒐𝒈

𝟑. 𝟕𝑫

𝑲𝒆
 



 

Now, another equation is Colebrook-White. Now, this equation used for both partially turbulent 

and fully turbulent flow regime and also suitable when pipeline is operating in transition zone. 

So, it is used for large diameter, high pressure and medium to high flow rate system. Let us 

write this particular equation Q b = 38.774 T b upon P b P 1 is square – P 2 square – E upon G 

Z average T average L 0.5 – 4 log 3.7 D K 3 + 1.4126 1 upon f upon Re D to the power 2.5. 

Now, it predicts a high pressure drop and low flow rates then AGA equation. 
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Colebrook-White; 

 

 

 

 

 

 

 

 

 

𝑸𝒃 = 𝟑𝟖. 𝟕𝟕𝟒
𝑻𝒃

𝑷𝒃
. [

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 − 𝑬

𝑮. 𝒁𝒂𝒗𝒈. 𝑻𝒂𝒗𝒈. 𝑳
]

𝟎.𝟓

. [−𝟒𝒍𝒐𝒈

(

 
𝟑. 𝟕 𝑫

𝑲𝒆
+

𝟏. 𝟒𝟏𝟐𝟔√
𝟏
𝒇

𝑹𝒆

)

 .𝑫𝟐.𝟓 



 

Now, for this we need to define the transmission factor. So, the transmission factor 1 upon f is 

defined as –4 log 3.7 D upon K e + 1.4126 1 upon f upon Re. 
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The transmission factor can be defined as; 

 

 

 

 

 

 

Now, let us go for the pressure drop calculation for pipelines because pressure drop is very 

common phenomena in the pipelines. So, there are two cases says, one is the pipeline in series 

and other one is the pipeline in parallel. So, the pipeline is series with a different diameter and 

√
𝟏

𝒇
= −𝟒𝒍𝒐𝒈

(

 
𝟑. 𝟕 𝑫

𝑲𝒆
+

𝟏. 𝟒𝟏𝟐𝟔√
𝟏
𝒇

𝑹𝒆

)

  



length, the pressure drop can be calculated in a very generalized flow equation like P 1 square 

– P 2 is square = K 1 Q b n, P 2 square – P 3 square = K 2 Q b to the power n, then P 3 square 

– P 4 square = K 4 Q b to the power n where K 1, K 2, K 3 these are the pipeline resistance at 

each segment and n is the flow exponent depending upon the type of equation used.  
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Pipelines in series; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, here we represented this in the form of pictorial diagram. Here the P 1, P 2 and P 3, P 4 

these are the pressure regime and D 1, K 1, Q b this is the parameters at this juncture and D 2 

that is the diameter K 2 Q b at this juncture and D 3 K 3 to be at this juncture. So, if three 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 = 𝑲𝟏𝑸𝒃
𝒏 

Where, K
1
, K

2
, and K

3
 are pipeline resistance at each segment and n is the flow exponent depending 

upon the type of equation used. 

𝑷𝟐
𝟐 − 𝑷𝟑

𝟐 = 𝑲𝟐𝑸𝒃
𝒏 

𝑷𝟑
𝟐 − 𝑷𝟒

𝟐 = 𝑲𝟒𝑸𝒃
𝒏 



equations are added together, then we get P 1 square – P 4 squared = K 1 + K 2 + K 4 Q b to 

the power n and K T is equal to all K’s to be added. So, if we combine these two equations, 

then we get P 1 square – P 4 square = K T Q b to the power n.  
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Now, let us talk about the pipelines in parallel or looping. So, we need to consider the two 

different pipes are connected in parallel as shown in this figure Q b P 1, Q b 1, Q b 2 and these 

are the two pipelines K 1 and K 2 D 1 and D 2 and P 2 is the outlet temperature. So, the 

governing equation for pressure drop for each segment will be represented as P 1 square – P 2 

square = K 1 Q b 1 n. 
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If above three equations are added together, we have; 

𝑷𝟏
𝟐 − 𝑷𝟒

𝟐 = (𝑲𝟏 + 𝑲𝟐 + 𝑲𝟒)𝑸𝒃
𝒏 

Assume, 𝑲𝑻 = (𝑲𝟏 + 𝑲𝟐 + 𝑲𝟒) 

On combining above equations, we have; 

𝑷𝟏
𝟐 − 𝑷𝟒

𝟐 = 𝑲𝑻𝑸𝒃
𝒏 



The governing equation for pressure drops for each segment will be represent as; 

 

 

 

 

 

 

Now, P 2 square – P 3 square = K 2 Q b 2 to the power n where Q b 1 + Q b 2 = Q b and 

generally P 1 squared – P 2 square = K Q b to the power n. Now, K is the total resistance of a 

pipe substituted for loop. So, if we rearrange the above equation, we get Q b 1 = P 1 square 

minus – P 2 square upon K 1.  
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                                  Where, 

 

                                       Generally, 

Where K is the total resistance of a pipe substituted for loop, on rearranging the above equations 

we have; 

 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 = 𝑲𝟏𝑸𝒃𝟏
𝒏  

𝑷𝟐
𝟐 − 𝑷𝟑

𝟐 = 𝑲𝟐𝑸𝒃𝟐
𝒏  

𝑸𝒃𝟏 + 𝑸𝒃𝟐=𝑸𝒃 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 = 𝑲𝑸𝒃
𝒏 

𝑸𝒃𝟏 =
√𝑷𝟏

𝟐 − 𝑷𝟐
𝟐𝒏

√𝑲𝟏
𝒏

 



 

Now, similarly Q b 1 is equal to or Q b 1 is represented as minus P 2 square upon nth root of 

K 1 and Q b 2 = nth root of P 1 square – P 2 square upon nth root of K 2 and the general 

equation can be represented as Q b = n root of P 1 square – P 2 square upon nth root of K. Now, 

if we substitute the value of Q b 1, Q b 2, and Q b we have nth root of P 1 square – P 2 square 

upon nth root of K that is equal to nth root of P 1 square – P 2 square upon nth root of K 1 + P 

nth root of P 1 square – P 2 square upon nth root of K 2. 
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Similarly, 

 

 

 

General equation, 

 

 

Now substitute values of Q
b1

, Q
b2

 and Q
b
, we have; 

 

 

𝑸𝒃𝟏 =
√𝑷𝟏

𝟐 − 𝑷𝟐
𝟐𝒏

√𝑲𝟏
𝒏

 
and 

𝑸𝒃 =
√𝑷𝟏

𝟐 − 𝑷𝟐
𝟐𝒏

√𝑲
𝒏  

𝑸𝒃𝟐 =
√𝑷𝟏

𝟐 − 𝑷𝟐
𝟐𝒏

√𝑲𝟐
𝒏

 

√𝑷𝟏
𝟐 − 𝑷𝟐

𝟐𝒏

√𝑲
𝒏 =

√𝑷𝟏
𝟐 − 𝑷𝟐

𝟐𝒏

√𝑲𝟏
𝒏

+
√𝑷𝟏

𝟐 − 𝑷𝟐
𝟐𝒏

√𝑲𝟐
𝒏

 



 

Similarly, K = K 1 K 2 upon K 1 to the power 1 over n + K 2 to the power 1 over n n. Now if 

n = 2 this above equation given the total resistance of two pipelines in parallel and which can 

be given as K = K 1 K 2 upon K 1 to the power half + K 2 to the power half square, where K 

is the total resistance of two pipeline looped together. Now, if two pipelines have equal 

diameter, then K = 1 upon 4 K 1. 
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Similarly, 

 

 

If n=2, the above equation giving total resistance of two pipelines in parallel is given as;  

 

 

 

 

Where, K is the total resistance of the two-pipeline looped together. If two pipelines have 

equal diameters, then K= ¼ K1. 

 

 

 

𝑲 =
𝑲𝟏. 𝑲𝟐

(𝑲𝟏
𝟏/𝒏

+ 𝑲𝟐
𝟏/𝒏

)𝒏
 

𝑲 =
𝑲𝟏. 𝑲𝟐

(𝑲𝟏
𝟏/𝟐

+ 𝑲𝟐
𝟏/𝟐

)𝟐
 



 

Now, let us talk about the pipeline segmental looping. Now, segmental looping it is not 

necessary to loop the entire pipeline to obtain the desired flow or downstream pressure, but 

only segment of the pipeline is looped to meet the requirement. Now, let us assume that the 

pipeline has the length L and diameter D and the total resistance is K 1 + K 1 dash and the inlet 

and outlet pressures are P 1 and P 2. Now to increase the existing gas flow rate from Q 1 to Q 

2 without any change in the downstream pressure, the value of X that is the length of the 

pipeline to be looped to existing system must be determined.  

(Refer Slide Time: 26:19) 

 

Now, by using the larger diameter pipes, the required length of the segment to be looped is 

usually reduced. Now, Weymouth equation can be used to obtain total pipeline resistance, 

which is start with one of the major transmission equations and continue to develop the 

equation to calculate the length of the loop.  
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So, again coming back to Weymouth equation, that is P 1 square – P 2 square and that is equal 

to 0.000466 G T f upon L over D 16 by 3 Q 1 squared or P 1 square – P 2 square = K Q 1 

square where K = K 1 + K 1 dash, this is the total resistance of the single line. For the total 

resistance of Weymouth equation, the value of 0.000466 G T f is constant and named as C. 
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The Weymouth equation; 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 =
𝟎. 𝟎𝟎𝟎𝟒𝟔𝟔𝑮. 𝑻𝒇. 𝑳 

𝑫𝟏
𝟏𝟔/𝟑

𝑸𝟏
𝟐 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 = 𝑲.𝑸𝟏
𝟐 Or 



 

Now, K 1 = C x D 1 16 by 3, K 2 dash = C x upon D 1 16 by 3, K 1 = C L – x upon D 1 16 by 

3 and K = C L upon D 1 16 by 3. The equivalent resistance for looped segment is K e = C x 

upon D 1 16 by 3, C x = D 2 16 by 3 upon C x D 1 16 by 3 + C x upon D 2 16 by 3 whole 

square.  

(Refer Slide Time: 28:54) 

Where, K= K1+K’1 is the total resistance of the single line. 

For total resistance of Weymouth equation, the value of 0.000466GTf is constant and 

named as C. 

 

 

 

The equivalent resistant for the looped segment is;  

 

 

 

 

 

 

 

 

𝑲𝟏
, =

𝑪.𝑿

𝑫𝟏
𝟏𝟔/𝟑, 𝑲𝟐

, =
𝑪.𝑿

𝑫𝟏
𝟏𝟔/𝟑, 𝑲𝟏 =

𝑪.(𝑳−𝑿)

𝑫𝟏
𝟏𝟔/𝟑 , 𝑲 =

𝑪. 𝑳

𝑫𝟏
𝟏𝟔/𝟑

, and 

𝑲𝒆 =

𝑪.𝑿

𝑫𝟏
𝟏𝟔/𝟑 .

𝑪. 𝑿

𝑫𝟐
𝟏𝟔/𝟑

(
𝑪.𝑿

𝑫𝟏

𝟏𝟔
𝟑

+
𝑪.𝑿

𝑫𝟐

𝟏𝟔
𝟑

)

𝟐 



 

Now, if you simplify then then K e = C x D 1 16 by 3 D 2 16 by 3 whole square. Now K e total 

= K e + K 1. So, if we rearrange K e, then K e becomes C x upon D 1 16 by 3 + D 2 16 by 3 

square + C L – x upon D 1 16 by 3.  
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On simplification K
e
, we have; 

 

 

 

 

 

 

 

 

 

 

 

K
E Total 

= K
e
 +K

1
 (i.e., Pipes in series) 

𝑲𝒆 =
𝑪.𝑿

(𝑫
𝟏

𝟏𝟔
𝟑 + 𝑫

𝟐

𝟏𝟔
𝟑 )

𝟐 

Then, on rearranging for K
E
 total we have;  

𝑲𝑬 =
𝑪.𝑿

(𝑫
𝟏

𝟏𝟔
𝟑 + 𝑫

𝟐

𝟏𝟔
𝟑 )

𝟐 +
𝑪. (𝑳 − 𝑿)

𝑫𝟏
𝟏𝟔/𝟑

 



 

Now, upon dividing the flow equation for existing pipeline after segmental looping we have P 

1 squared – P 2 square upon P 1 square – P 2 square = D 1 C L D 1 to the power 16 by 3 upon 

K e Q 1 upon Q 2 square or 1 = C L D 1 to the power 16 by 3 whole upon C x upon D 1 16 by 

3 + D 2 16 by 3 whole square + C L –x upon D 1 16 by 3 Q 1 upon Q 2 whole square.  
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On dividing the flow equations for existing pipeline and after segmental looping, we have; 

 

 

 

 

 

 

 

 

 

 

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐

𝑷𝟏
𝟐 − 𝑷𝟐

𝟐 =

𝑪𝑳

𝑫𝟏

𝟏𝟔
𝟑

𝑲𝑬
. (

𝑸𝟏

𝑸𝟐
)
𝟐

 

Or,  𝟏 =

𝑪𝑳

𝑫𝟏

𝟏𝟔
𝟑

𝑪.𝑿

(𝑫𝟏

𝟏𝟔
𝟑 + 𝑫𝟐

𝟏𝟔
𝟑 )

𝟐 +
𝑪. (𝑳 − 𝑿)

𝑫𝟏
𝟏𝟔/𝟑

. (
𝑸𝟏

𝑸𝟐
)
𝟐

 



 

So, the equation becomes X = L Q 1 upon Q 2 square – 1 upon 1 upon 1 + D 2 8 by 3 upon D 

1 – 1.  
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The equation will become; 

 

 

 

 

 

 

 

Where,  

X= length of pipeline to be looped, miles 

L= length of existing pipeline, miles 

Q
1
= initial gas flow rate 

 

 

 

 

 

𝑿 = 𝑳.
(
𝑸𝟏
𝑸𝟐

)
𝟐

− 𝟏

[
 
 
 
 

𝟏

𝟏 +
𝑫𝟐
𝑫𝟏

𝟖
𝟑

]
 
 
 
 
𝟐

− 𝟏

. 



 

Now where X that is a length of pipeline to be looped that may be in miles, L is the length of 

existing pipeline in miles. Q 1 that is the initial gas flow rate, Q 2 is the final gas flow rate if 

you see and D 1 is the existing pipeline inside diameter in inches and D 2 is the looped segment 

inside the diameter which is represented in inch.  
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Now, this equation demonstrates that the looping will increase pipeline flow capacity without 

any changes to the upstream and downstream pressures. Now, there are two important 

parameters which we need to consider when choosing the location for a pipeline loop that is 

temperature and pressure. So, a class in this particular segment we discuss the various pipeline 

configuration series and a parallel, we devise the equations with respect to the other parameters 

in question.  
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For reference, we have enlisted a reference for your convenience. Thank you very much. 


