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Lecture 09 

Extensive and Intensive Variables; Gibbs Duhem Relation; Euler Theorem; Maxwell 

Relations 
 

Hello all of you so in the last lecture we have been discussing the idea of thermodynamic 

functions why this should be minimized at equilibrium. We discussed the case of multi 

component systems and discuss the idea of chemical potential. So in this lecture we will discuss 

an important relation called the Gibbs Duhem relation and then discuss about extensive and 

intensive variables and finally we conclude with something called Maxwell relations. 
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So essentially what we have done so far is we have defined four thermodynamic functions the 

internal energy, the enthalpy, the Helmholtz free energy and the Gibbs free energy and then we 

have written the differential form of these in terms of different choice of control variables for 

example- 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 



𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

So obviously what is different in this thermodynamic functions are the control variables. For 

example- 

𝑈(𝑆, 𝑉, {𝑁𝑗}) 

We use a curly bracket because we have different number of molecules of different 

components. Similarly- 

𝐻(𝑆, 𝑝, {𝑁𝑗}) 

𝐹(𝑇, 𝑉, {𝑁𝑗}) 

𝐺(𝑇, 𝑝, {𝑁𝑗}) 

And the way to get these functions if you recall was from the Legendre transformation we 

converted U to H by replacing V as a control variable to p and similarly we have done for other 

free energies and so on. However you must have noticed one thing in its all these functions I 

have still kept the last term as the same so chemical potential we have defined as the change in 

energy per unit mole or the change in energy by adding a molecule in the system so we can 

define on a molecular basis or we can define per mole but the key point is that this chemical 

potential always is the partial derivative of whatever energy that we have defined.  

 

So in the case of U it is- 

𝜇𝑗 = (
𝜕𝑈

𝜕𝑁𝑗
)

(𝑆,𝑉,𝑁𝑘≠𝑗)

 

and of course the partial derivative is for constant S constant V and constant number of all the 

species except j. I can write the same thing as in terms of the enthalpy- 

𝜇𝑗 = (
𝜕𝐻

𝜕𝑁𝑗
)

𝑆,𝑝,𝑁𝑘≠𝑗

 

but now we have constant as constant p constant k not equal to j and I can write as in the same 

form in term of F as- 

𝜇𝑗 = (
𝜕𝐹

𝜕𝑁𝑗
)

𝑇,𝑉,𝑁𝑘≠𝑗

 

Similarly- 

𝜇𝑗 = (
𝜕𝐺

𝜕𝑁𝑗
)

𝑇,𝑃,𝑁𝑘≠𝑗

 



You may imagine that why are we not doing a transformation of variable in the last term, why 

we cannot have a function which is basically something like this- 

𝑑𝑋 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

 

and for that function let us give it some name let me call that function some d of (x) cannot we 

define a function like this for which the controlling variable are T p and μj and the answer is 

we cannot; and that is where the idea of extensive and intensive variable comes into picture.  
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So what you may have noticed here is that we had formed three pairs of variables which we 

call conjugate variables. So, T, S is a conjugate variable p, V is a conjugate variable and the 

μj’s and the Nj's are the conjugate variable.  

 

However there is something interesting about this particular pairs that we have in all these pairs 

one of the variables is not changed if I change the amount of the substance or if I change the 

size of the system and the other variable does change. Let’s say for example temperature if for 

example I have a glass of water at 30 degree Celsius if I look at half of the glass the temperature 

remains the same. The same is not true for entropy we have already discussed that entropy 

increases as the number of molecules increases. So entropy depends on the number of 

molecules or the size of system under consideration but temperature does not. 

 

Similarly pressure when we have a system at one bar pressure it does not matter whether we 

have one litre of that or 10 litres of that the pressure is independent of the quantity. Similarly 

the chemical potential it is a change in energy by adding one molecule. So even if we have 



10000 molecules since we have defined chemical potential as per molecule it is going to be 

independent of the system size of course chemical potential may depend on composition but it 

will not depend on the system size itself for same composition for a larger system versus a 

smaller system we will have the k same chemical potential however number of molecules 

clearly will change when we change the system size. The volume will clearly change when we 

change the system size or the number of molecules the entropy as I said will clearly change if 

I change the number of molecules or the system size. So all these three variables are therefore 

called extensive variables and when I call something extensive it means that it depends on the 

quantity of the substance.  

 

So now if I go back to our previous slide what you notice is that in all these cases of 

thermodynamic functions we have always kept at least one extensive variable as the control 

variable. In the first case when we had U all these three entropy, volume and the number of 

molecules all of them are extensive, when we did the transformation H, p is no longer extensive 

but S and Nj are still extensive. When we did transformation F temperature is not extensive 

anymore but the volume and the number of molecules still is and when we did for G number 

of molecules are the only extensive variable actually number of molecule for every species so 

we have almost N1, N2 to the number of components we have all of these are extensive 

variables. 

 

So what happens if I choose only the T, p and μj for this function- 

𝑑𝑋 = −𝑠𝑑𝑇 + 𝑉𝑑𝑝 + ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

 

for this case all the control variables become intensive variables. So this means this x is going 

to be a function of temperature pressure and the chemical potentials and of course we have so 

many chemical potentials for every component.  

 

Now if I do that so now I was telling you that control variables are the one we are controlling. 

So in some sense we are representing the system in terms of those control variables. So if for 

example I do not include any extensive variable as a control variable what this means is that 

we have nothing that characterizes the system size as the control variable. So our system 

description is in some sense incomplete because if I specify the temperature pressure and the 

chemical potential we are not specifying the system size. If we are we specified temperature 

pressure and the number of molecules, the number of molecules contained the description of 



the system size but now when we are doing temperature pressure and chemical potential that 

description has been lost.  

 

So therefore the argument we are trying to make is there must be at least one variable in the 

control variable that should be extensive and if it is not happening we will not have a 

thermodynamic function. So therefore x is not a thermodynamic function and in fact the 

particular relation that we have just written that must be equal to 0 and this relation is known 

as the Gibbs Duhem relation.  

 

There are several ways to derive this it will suffice to say that once we have all the extensive 

variables, all the intensive variables as the control variables that thermodynamic functions is 

not defined and for that case a differential form we get should be equal to 0 and that is the 

Gibbs Duhem relation right that is one way to look at this there are other ways to also prove 

the same argument.  

 

So now using the Gibbs Duhem relation we can now get something else and that is the 

following. So now since we know that- 

−𝑆𝑑𝑇 + 𝑉𝑑𝑝 + ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

= 0 

and now if I start with the expression for dU we had- 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

I can now add this entire expression on the right hand side here because that is anyway equal 

to zero. So this I can write as you something like this- 

𝑑𝑈 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

+ ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

 

So this I can write as you something like this you have to be slightly careful here actually this 

should have been a minus sign. So what essentially we are adding is this multiplied by a minus 

sign here and this should have been a minus sign that is what should have appeared in the in 

the Gibbs ah Duham equation. It becomes- 

0 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 − ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

 

and you can see why this happens because when we went from dU to dF the TdS was replaced 

by - SdT when we went from dU to dH - pdV was replaced by + Vdp there is a sign change in 



the transformation. So when we go from μj dN j to Nj dμj we should have a minus sign in that 

particular expression. So keep in mind that in Gibbs Duham relation there is a minus sign in 

front of Nj dμj.  

 

So with this kind of an idea what you can see now is that this becomes a derivative of T, S and 

this becomes a derivative of p, V and this becomes a derivative of μj multiplied by N j. So 

therefore I can write this as- 

𝑑𝑈 = 𝑑(𝑇𝑆) + 𝑑(−𝑝𝑉) + 𝑑(∑ 𝜇𝑗𝑁𝑗

𝑗

) 

𝑑𝑈 = 𝑑(𝑇𝑆 − 𝑝𝑉 + ∑ 𝜇𝑗𝑁𝑗

𝑗

 

𝑈 = 𝑇𝑆 − 𝑝𝑉 + ∑ 𝜇𝑗𝑁𝑗

𝑗
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So if I go back to our previous expression we have not had an expression for U we had an 

expression for dU but using the Gibbs Duhem relation we have been able to find an expression 

for absolute value of U right and that expression is given by the expression right here- 

𝑈 = 𝑇𝑆 − 𝑝𝑉 + ∑ 𝜇𝑗𝑁𝑗

𝑗

 

and you can see it clearly demonstrate that my energy is composed of basically three kinds of 

energy and let me give them some names. The first relates to temperature so let me call this 

thermal energy. The second relates to the pressure volume work so let me call it the mechanical 



energy thinking of a piston that is trying to do a work when the volume is changed and then 

finally the last one relates to components being added or removed so we call this the chemical 

energy.  

 

Using now the definition of U we can find the value of other thermodynamic functions for 

example- 

𝐻 = 𝑈 + 𝑝𝑉 

𝐻 = 𝑇𝑆 + ∑ 𝜇𝑗𝑁𝑗

𝑗

 

𝐹 = 𝑈 − 𝑇𝑆 

𝐹 = −𝑝𝑉 + ∑ 𝜇𝑗𝑁𝑗

𝑗

 

𝐺 = 𝐻 − 𝑇𝑆 

𝐺 = ∑ 𝜇𝑗𝑁𝑗

𝑗

 

 

So what this tells me is that indeed chemical potential and the Gibbs energy are very closely 

related if I multiply the chemical potential with the number of molecules and sum it over all 

the components we get the Gibbs free energy. So when we define the chemical potential as the 

partial molar Gibbs energy we are not wrong in doing that but when we look in the differential 

expressions then we have to keep in mind that the chemical potential is also a partial derivative 

of other energy functions actually whatever energy function or thermodynamic function is 

appropriate given the control variable should be used for the description of chemical potential.  

 

So this should be like very clear on our minds that although the chemical potential has a close 

relation with the Gibbs energy that does not mean that we have to always use the Gibbs energy 

all it means is that we have to first look at which variable is being controlled in the particular 

problem. 

 

So using these ideas we can now define I would say more rigorously why exactly we get that 

and to do that we first discuss the idea of homogeneous functions. The thermodynamic 

functions are examples of homogeneous functions and on these functions there is a theorem 

called the Euler theorem and if I use the Euler theorem I basically get the same result that I 



have got using the Gibbs Duhem relation. So the homogeneous function is defined in the 

following way. 
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Let us say for example a function of variable x1 x2 to some variable xn is such that if I multiply 

every variable with λ we get- 

𝑓(𝜆𝑥1, 𝜆𝑥2 … … … … … … . . . 𝜆𝑥𝑁) = 𝜆𝑛(𝑥1, 𝑥2 … … … … … … … 𝑥𝑁) 

this is what we call a homogeneous function. 

 

Let us take an example let us say we have- 

𝑓(𝑥, 𝑦) = 𝑥𝑦 

𝑓(𝜆𝑥, 𝜆𝑦) = (𝜆𝑥)(𝜆𝑦) = 𝜆2𝑥𝑦 = 𝜆2𝑓(𝑥, 𝑦) 

So in this case n is equal to 2 and n is the order of the homogeneous function so this is a 

homogeneous function of order 2 if we have some other function it may have a lower order.  

 

Let us say for example we have- 

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 

𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑥 + 𝜆𝑦 = 𝜆𝑓(𝑥𝑦) 

So now in this case we have an order 1 homogeneous function in the other case we had order 

two homogeneous function. 

 

We can think of functions which are not homogeneous, let us say for example if we had- 

𝑓(𝑥, 𝑦) = 𝑥𝑦 + 3 



𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆2𝑥𝑦 + 3 ≠ 𝜆2𝑓(𝑥, 𝑦) 

this is not equal to λ2 multiplied with function of x and y because if I do that the constant term 

will be 3 λ2 not equal to 3.  

 

So only some functions are homogeneous not all the functions are homogeneous. However the 

functions that we are interested in are all homogeneous function but will come to that in a 

minute. Let us first discuss the property of homogeneous functions called the Euler theorem. 
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So if I start with this particular relation so if I go back to the expression we had for the Euler 

theorem we had this- 

𝑓(𝜆 𝑥1, 𝜆𝑥2 … … … … … … … 𝜆𝑥𝑁 = 𝜆𝑛(𝑥1, 𝑥2 … … … … … … 𝑥𝑁) 

Now if I take a derivative of this function with respect to λ what do we have is- 

𝜕𝑓(𝜆𝑥_1 … … … … 𝜆𝑥_𝑁 )/𝜕𝜆 = 𝑛𝜆^(𝑛 − 1)  𝑓(𝑥_1, 𝑥_2 … … … … … 𝑥_𝑁) 

because f of (x1 to xn) is not a function of λ so if I now want to take a derivative with respect 

to λ on the left hand side what you notice is that I want to first take a derivative with respect to 

the first argument. So the way to do that is we do something like this- 

𝜕𝑓(𝜆𝑥1 … … … . . )

𝜕(𝜆𝑥1)

𝜕(𝜆𝑥1)

𝜕𝜆
+

𝜕𝑓(𝑥2 … … … )

𝜕(𝜆𝑥2)

𝜕(𝜆𝑥2)

𝜕𝜆
+ ⋯ … … … … .. 

So what do we get from here is we get- 

𝑥1

𝜕𝑓

𝜕(𝜆𝑥1)
+ 𝑥1

𝜕𝑓

𝜕(𝜆𝑥2)
+ ⋯ … … … … … … 𝑥𝑁𝑥1

𝜕𝑓

𝜕(𝜆𝑥𝑁)
   



So now if I set the value of λ is equal to 1, what we get is the statement of the Euler theorem 

that says that- 

𝑛𝑓(𝑥1, 𝑥2 … … … … … ) = 𝑥1

𝜕𝑓

𝜕𝑥1
+ 𝑥2

𝜕𝑓

𝜕𝑥2
+ ⋯ … … … … .. 
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So this is what establishes the Euler theorem, we start with the description of the homogeneous 

function and then take a derivative with respect to λ on both sides and then finally set λ equal 

to 1 and we get the relation for the Euler theorem.  

 

So now let us see how it is applied in practice let us say for example if I am interested in my 

Gibbs free energy. So my Gibbs free energy is in terms of temperature pressure and number of 

molecules. Now clearly temperature and pressure are intensive variable but the number of 

molecules is not. So in this case I cannot simply multiply temperature with λ or pressure with 

λ it does not have any meaning but we can multiply Nj with λ and if I do that my system 

becomes λ times. So my system becomes λ times my energy should also become λ times. So 

let us say for example if I am working at a constant temperature and pressure because clearly 

multiplying temperature and pressure by λ time does not make any sense what we have is that- 

𝐺(𝑇, 𝑃, 𝜆{𝑁𝑗}) = 𝜆𝐺(𝑇, 𝑃, {𝑁𝑗}) 

So therefore the Gibbs free energy is a homogeneous function of order 1. Now even if I am 

doing some other thermodynamic function that still is homogeneous function of order one and 

why that is- Let us say for example if I look at my internal energy. So now we have S, V and 

Nj now if I multiply all of them with λ what do we have we have energy of a system of entropy 



λS of volume λV and of number of molecules λNj. So clearly if I make my number of molecules 

λ times entropy automatically becomes λ time volume automatically become λ time and the 

energy should also become λ times it should not be λ2 times. So when we increase the system 

size energy increases in proportion to the system size. So this is also λ (U, S, V, Nj).  

 

So if I use that argument for the first function that we started with and I use Euler theorem what 

do we notice is that my ‘n’ that refers to the order that is equal to one. So we have G for 

temperature, pressure and Nj should be equal to- 

𝐺(𝑇, 𝑃, {𝑁𝑗}) = 𝑁1

𝜕𝐺

𝜕𝑁1
+ 𝑁2

𝜕𝐺

𝜕𝑁2
… … … … … . = ∑ 𝑁𝑗

𝜕𝐺

𝜕𝑁𝑗
= ∑ 𝜇𝑗𝑁𝑗 

 

and that is equal to chemical potential. 

 

So what we establish is that the Gibbs free energy is equal to chemical potential multiplied by 

the number of molecule summed over all the species in the in the system, which is the same 

result that I have obtained when using the Gibbs Duhem relation.  
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So finally before I conclude I briefly discussed the idea of Maxwell relations although this has 

been elaborated in the previous thermodynamics class that you may have had it can be easily 

derived from whatever we have discussed. So the Maxwell relations are based on the idea that 

if for example if I start with any of the differential forms that I wrote and I compute the first 

partial derivative what we have is- 



𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

(
𝜕𝑈

𝜕𝑆
)

𝑉,{𝑁𝑗}
= 𝑇 

(
𝜕𝑈

𝜕𝑆
)

𝑆,{𝑁𝑗}
= −𝑝 

 

And now once I have found the first derivative I can take a second derivative with respect to 

the other variable, and when I take a second derivative there are two possibilities we can take- 

𝜕

𝜕𝑉
=

𝜕2𝑈

𝜕𝑉𝜕𝑆
 𝑜𝑟

𝜕

𝜕𝑆
=

𝜕2𝑈

𝜕𝑆𝜕𝑉
 

So you have a second derivative of U either in the order that we first take derivative with respect 

to S then with V or we do opposite of that and the argument over which the Maxwell relation 

builds is both of these has to be the same there is some math that goes behind it but we are not 

getting in there.  

 

The key point is if I take the derivative in any order for the second derivative we will get the 

same result. So what we get from here is if I take a derivative with so V we have 𝜕T by 𝜕V and 

we have 𝜕p by 𝜕S here.  So therefore what we find is 𝜕T by 𝜕V is equal to - 𝜕p by 𝜕S here we 

have to be slightly careful about what is being held fixed there. So we already have held the 

volume fixed in the first derivative with S but when we take derivative with respect to volume 

we should take the other guys fixed.  

 

So when we are doing the second derivative what is being held fixed is the entropy and the 

number of moles. In the second case we are taking a derivative with respect to S the second 

derivative the first derivative does not matter here. The second derivative is with respect to S 

and therefore we should keep the volume and number of moles constant N- 

(
𝜕𝑇

𝜕𝑉
)

𝑆,{𝑁𝑗}
= − (

𝜕𝑃

𝜕𝑆
)

𝑉,{𝑁𝑗}
 

 

Just like what we have done here for U we can get the same result for other thermodynamic 

functions.  
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Let us say for example we have- 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

(
𝜕𝐻

𝜕𝑆
)

𝑝,{𝑁𝑗}
= 𝑇 

(
𝜕𝐻

𝜕𝑃
)

𝑝,{𝑁𝑗}
= 𝑉 

 

Now if I take a second derivative the first time I will take with pressure that is the second 

variable here so what we have is dou T by dou p and now since we are doing with respect to p 

the variable that is constant is S and Nj and in this case we do with respect to my S so what we 

have is- 

𝜕

𝜕𝑆
 ((

𝜕𝐻

𝜕𝑃
))

𝑆,𝑁𝑗

= ((
𝜕𝑉

𝜕𝑆
))

𝑝,𝑁𝑗

 

and the variable that is constant is p and N j and therefore these two should be the same so we 

should have- 

(
𝜕𝑇

𝜕𝑃
)

𝑆,{𝑁𝑗}
= (

𝜕𝑉

𝜕𝑆
)

𝑝,{𝑁𝑗}
 

And we can do it for all combinations of variables for all thermodynamic functions so in total 

we will have so many Maxwell relations. Now the key advantage of Maxwell relations is the 

following if for example I know the pressure volume temperature relation for any system and 

this i can get from experiments let us say for the case of an ideal gas we know PV = NRT. If it 



is some other system we may have to do experiments and find that. Now once we have found 

that then using that p, V, T relation or the equation of state that is what it is called we can find 

the thermodynamic functions by the use of the Maxwell relations. 

 

So in this lecture I have basically demonstrated few concepts the first was the idea of Gibbs 

Duham relation that is we cannot have only the intensive variable as controlling variables. Then 

we discussed the idea of homogeneous functions we established the well the relations for 

absolute values of thermodynamic functions and finally we discussed the idea of Maxwell 

relations and I touched it very briefly because this is something that you must have done in 

your undergrad thermodynamics.  

 

So with that I conclude here, thank you. 
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