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Hello all of you so in the last lecture we started discussing the thermodynamic integration 

method for the free energy calculation and the way we have defined is we need to know a 

reference state for which the free energy is known to us and, I will call that the state 1 and then 

the system under consideration is my state 2 and then I assume some path between the two 

states which is characterized by the variable λ such that U2 and U1 are basically the energies 

that we get for λ equal to 1 and λ equal to 0 and in general we can define Uλ as- 

𝑈(𝜆) = (1 − 𝜆)𝑈𝐼 + 𝜆𝑈𝐼𝐼 
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And, then we have discussed that we can also have other forms of this Uλ and we have to 

perform it for many, many lambda values between 0 to 1. So, now let us look at the partition 

function for this particular case where I have introduced an artificial variable λ. So, for any 

particular value of λ I can define the partition function as the following where the Boltzmann 

factor will have the U value for that particular λ- 

𝑄(𝑁, 𝑉, 𝑇, 𝜆) =
1

Λ3𝑁𝑁!
∫ 𝑑𝑟𝑁 exp[−𝛽𝑈(𝜆)] 
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and using the partition function I can then evaluate the free energy that is- 

𝐹 = −
ln 𝑄

𝛽
 

 

when I say, I can evaluate that is conditional to the fact that we have to evaluate Q and, we 

have discussed that Q is very difficult to evaluate in molecular simulations and therefore we 

work with derivatives of Q or derivatives of the free energy which is something that is easier 

to prove.  

 

So, in this case we can look at the derivative of free energy with respect to λ. So, now this is 

for constant value of N V and T because we are imagining along an arbitrary path defined by 

the variable λ and, along the path the N V T are constant that means all the other variables 

control variables that we have they are constant only the λ is something that we are looking the 

free energy derivative with. So, this gives me something like this using the definition of F- 

(
𝜕𝐹

𝜕𝜆
)

𝑁,𝑉,𝑇
= −

1

𝛽

𝜕 ln 𝑄

𝜕𝜆
= −

1

𝛽𝑄

𝜕𝑄

𝜕𝜆
= −

∫ 𝑑𝑟𝑁𝑒−𝛽𝑈 (−𝛽
𝜕𝑈
𝜕𝜆

)

𝛽 ∫ 𝑑𝑟𝑁𝑒−𝛽𝑈
= 〈

𝜕𝑈

𝜕𝜆
〉𝜆 

 

Now, I put in the expression of Q from here in the denominator and then if I take the derivative 

of Q with respect to λ what we have is the Boltzmann factor multiplied with minus beta dou U 

by douλ in this expression the β cancels out and essentially what we have is the canonical 



average of douU by douλ where the averaging is done for a fixed value of λ that is where we 

are computing the derivative and clearly we can do it for different λ windows or different λ 

points that we have in the simulation. 

 

Now, I can find the free energy difference by simply integrating the dau F by dau λ with respect 

to λ in the interval 0 to 1 because λ is going from 0 to 1 and that gives me the free energy 

difference from the reference state that is λ equal to 0 and this is precisely what we do in here 

and now you can see why I was telling you that we have to do it for many lambda values 

intermediate between 0 to 1.The reason is we have to actually evaluate this particular integral.  

Δ𝐹 = 𝐹𝐼𝐼 − 𝐹𝐼 = 𝐹(𝜆 = 1) − 𝐹(𝜆 = 0) = ∫ 𝑑𝜆 〈
𝜕𝑈

𝜕𝜆
〉𝜆

1

0

 

 

So, to get the better approximation of the integral we have to do it for many, many intermediate 

points where I perform a simulation, I compute the canonical evidence dou U by dou λ and 

then basically we do the same procedure for different values of λ and then once I look at the 

integral actually approximation of the integral that gives me the free energy difference. 

 

Although, it is not possibly the most efficient method for computation of the free energy, it is 

actually the most simplest method that is typically used in most software’s because there is a 

whole liberty in which how I can choose the reference state all that we have to do is simply 

turn on one of the interactions slowly and as I was talking about the Lennard Jones system and 

Lennard Jones plus coulomb system and so on we can pretty much do it sequentially over 

many, many interactions that are present in the system.  

 

At any given integration simulation we can slowly turn on one of those interactions that I am 

working with and then we have a reference state without that interaction and the final state with 

that interaction and all the intermediate values where you have intermediate or partial values 

of the interaction that is present and that can be done over all the possible interactions very 

simple straightforward way of getting the free energy. 

 

Once we have the free energy we can also find the chemical potentials from there but in 

principle there can be other ways of finding the chemical potentials as well and one of the 

methods is the Widom’s method and the way it starts from is again the starting point is my 



canonical partition function and the partition function of the ideal gas this is something that we 

have already discussed that we can write the Helmholtz free energy as an ideal gas contribution 

and the excess energy that is coming from apart from the ideal gas contribution. So, now I can 

define my chemical potential as the derivatives of the Helmholtz free energy with respect to N 

keeping the volume and temperature constant and since F is - kBT ln Q, this pretty much looks 

like this and now in here, if you look at it; so kBT comes out and then we have dou ln Q by 

douN. 

𝜇 = (
𝜕𝐹

𝜕𝑁
)

𝑉,𝑇
= −

𝜕

𝜕𝑁
(𝑘𝐵𝑇 ln 𝑄) = −𝑘𝐵𝑇 ln (

𝑄(𝑁 + 1, 𝑉, 𝑇)

𝑄(𝑁, 𝑉, 𝑇)
) 
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Now in this case, I could have done something like 1 by Q douQ by douN that is what we have 

done in the earlier examples but what you also can notice here that N is always changed in the 

increments of 1, we can either insert a molecule or we can remove a part molecule. So, n is a 

discrete variable. So, instead of doing the differentiation using the way that we have done 

earlier, in this case what we do is we write the derivative in the difference form that is I can 

write; the dou lnQ by douN as the ln Q value for N + 1 case keeping the volume and temperature 

constant minus the ln Q value for the N case keeping the volume and temperature the same as 

earlier and this has to be divided by the difference N + 1 - N and that is clearly equal to 1. So, 

therefore what we have is kBT ln Q for N + 1 V T divided by Q N V T and there was a minus 

sign in front of that and this is what we have in here. 

 



So, we have used the difference form for dou lnQ by douN because N is a discrete variable. 

So, then we can find the partition function of system containing N particles and the system 

containing N + 1 particles everything remains the same but wherever we have N in there I will 

replace with N + 1- 

𝑄(𝑁, 𝑉, 𝑇) =
𝑉𝑁

Λ3𝑁𝑁!
∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁 , 𝑁)

𝑘𝐵𝑇
]

1

0

 

𝑄(𝑁 + 1, 𝑉, 𝑇) =
𝑉𝑁

Λ3(𝑁+1)(𝑁 + 1)!
∫ 𝑑𝑠𝑁+1 exp [−

𝑈(𝑠𝑁 , 𝑁 + 1)

𝑘𝐵𝑇
]

1

0

 

 

and therefore you may recall that I have chosen to represent N in the function of U because N 

is a variable in this case and, that is the reason why I was representing dSN as the integration 

variable because that will change to N + 1.  

 

So, now if I take the ratio of these two that is required in here we get something like this- 

𝑄(𝑁 + 1, 𝑉, 𝑇)

𝑄(𝑁, 𝑉, 𝑇)
=

𝑉

Λ3(𝑁 + 1)

∫ 𝑑𝑠𝑁+1 exp [−
𝑈(𝑠𝑁+1; 𝑁 + 1

𝑘𝐵𝑇
]

1

0

∫ 𝑑𝑠𝑁 exp [−
𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
]

1

0

 

 

this that is basically having a pre factor multiplied with the ratio of two integrals one for the 

case of N + 1 and one for the case of N. So, now we can further simplify this- 

𝜇 = −𝑘𝐵𝑇 ln
𝑉

Λ3(𝑁 + 1)
− 𝑘𝐵𝑇 ln

∫ 𝑑𝑠𝑁+1 exp [−
𝑈(𝑠𝑁+1; 𝑁 + 1

𝑘𝐵𝑇
]

1

0

∫ 𝑑𝑠𝑁 exp [−
𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
]

1

0

 

𝜇 = 𝜇𝑖𝑑(𝜌𝑖𝑑) + 𝜇𝑒𝑥 
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So, the first part of this as you may expect that is coming from the pre factor becomes the 

chemical potential of the ideal gas and the second bit of it that is the part containing the energies 

become the excess chemical potential just like what you had for the excess free energy. Now, 

we have an excess chemical potential that is defined as the difference between the chemical 

potential and the chemical potential of an ideal gas under the same conditions. 

𝜇𝑒𝑥 = 𝜇 − 𝜇𝑖𝑑 

 

So, the first part of this as you may expect that is coming from the pre factor becomes the 

chemical potential of the ideal gas and the second bit of it that is the part containing the energies 

become the excess chemical potential just like what you had for the excess free energy. Now, 

we have an excess chemical potential that is defined as the difference between the chemical 

potential and the chemical potential of an ideal gas under the same conditions. 

 

Now, clearly chemical potential of an ideal gas is a function of it is density and therefore I am 

writing it as a function of the density and clearly there are analytical expressions available for 

the chemical potential of an ideal gas. 
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So, now we can let us we can focus only on the excess chemical potential and for doing that I 

will define the free energy change ΔU as the energy of the system containing N + 1 molecules 

minus the energy of the system containing N molecules- 

Δ𝑈 = 𝑈(𝑠𝑁+1; 𝐿) − 𝑈(𝑠𝑁; 𝐿) 

 

and then I can basically rewrite this particular expression in a slightly different form because 

we note that this guy is essentially U (SN, N) + ΔU and, once we do that then the first term in 

the numerator inside the integral becomes same as the denominator and then we have an extra 

term something like exponential of minus ΔU and when we do that then essentially what we 

get is a canonical average of exponential of minus ΔU by k B T and this is evaluated at a 

particular value of N and clearly there was one integration variable remaining because 

denominator is from for N particles and numerator is for N + 1 particles. 

𝜇𝑒𝑥 = −𝑘𝐵𝑇 ln
∫ 𝑑𝑠𝑁+1 ∫ 𝑑𝑠𝑁 exp [−

Δ𝑈
𝑘𝐵𝑇

] exp [−
𝑈(𝑠𝑁+1; 𝑁 + 1)

𝑘𝐵𝑇
]

𝑁

0

1

0

∫ 𝑑𝑠𝑁 exp [−
𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
]

1

0

 

= −𝑘𝐵𝑇 ln ∫ 𝑑𝑠𝑁+1 〈[−
Δ𝑈

𝑘𝐵𝑇
]〉𝑁

1

0

 

 

So, until the Nth particle we have the same scaling coordinates for one for numerator we have 

one extra variable that is SN + 1 and that will appear in here. So, therefore we have a neat looking 

expression for the excess chemical potential. Now, how do we implement that in practice? So, 

the ultimate goal is to find the canonical average of exponential of minus ΔU by kBT and, the 



way we do that is we basically perform trial random insertions and we do not accept them that 

is we do not change the number of molecules in the system because if we change the number 

of molecules in the system first of all we will not remain in the canonical ensemble and 

secondly, now I would be looking at the canonical average of system containing N + 1 particles. 

(Refer Slide Time: 13:11) 

 

 

In this case, I am interested in the canonical evidence of exponential of -ΔU by kBT for an N 

particle system when a new particle is being added or removed. So, clearly we want to do 

averaging over and particle system, so therefore we do not actually insert the particle we simply 

perform a trial insertion compute the energy changes but then we always reject all such Monte 

Carlo moves and by doing that a small trick what we can then evaluate is a quantity something 

like this. So, we can compute the arithmetic mean of the exponential of - ΔU by kBT for let us 

say M trial insertions and this is pretty much my average of exponential of - ΔU by kB T. Now, 

that kBT ln is appearing because it was appearing in the expression of μ, μex that is excess 

chemical potential. 

𝑇𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 〈exp [−
Δ𝑈

𝑘𝐵𝑇
]〉 

 

We perform trial random insertions without accepting them, 

𝜇𝑒𝑥 = −𝑘𝐵𝑇 ln
∑ exp(−Δ𝑈𝑡𝑒𝑠𝑡)

𝑀
 

 



So, we have pretty much evaluated the integrant that is the canonical average of exponential of 

- ΔU by kBT this method is called the Widom’s method and this method is again very popular 

because one of the advantage of this method is since we are not actually inserting the particles, 

we do not have to worry about acceptance rates because all the moves are pretty much being 

rejected. 

 

So, we can always find the energy change of a move if we are not really interested in putting a 

particle inside the system computing the ΔU is a very easy affair, we can always find the energy 

change be it a small change or a large change unless we are really interested in increasing the 

number of molecules in the system we can pretty much have a simple job that we have simply 

a calculation of ΔU that can be easily conducted in fact, this method can be extended again to 

mixtures using an idea similar to the semi grand canonical ensemble that we discussed earlier 

in which case I will perform a trial transformation of species α into species β and we never 

accept that, so just like we are finding the excess chemical potential for one component in the 

earlier example that is right here if I am doing transformation of species α into β we would be 

computing the difference of the chemical potential between the α and β species and generally 

the ideal gas contribution will cancel out and therefore not only this method can be used for 

single component system but also can be extended very easily for a multi-component system.  

So, the next method along these lines is the method called the overlapping distribution method 

which is somewhat more efficient in comparison to the previous method that we have 

discussed. Again, the goal is to find the free energy differences and in this case what we do is 

we assume two systems- system 0 and system 1 and we defined the energy change between the 

two systems as basically the difference in energy between the two systems that is- 

Δ𝑈 = 𝑈1(𝑠𝑁) − 𝑈0(𝑠𝑁) 

and both these systems are having the same value of N V T but they can have different 

interactions for example, because ultimately we are interested in the free energy difference that 

is the reason why we are defining two systems we should keep in mind that we never focus on 

computing the actual free energy but we are interested in always the free energy differences. 

(Refer Slide Time: 16:41) 



 

So, now once we have this particular variable representing the energy difference between 

system 0 and system 1, we can define two variables one that is the probability density of ΔU 

when we are doing the Boltzmann sampling of system 1 that is to say that we are doing my 

Monte Carlo simulation in system 1 and for every configuration that we get in my simulation 

I can pretty much map the same configuration in system 0 and compute the energy there and, 

therefore we can get a ΔU and this we can do it over all the steps of my simulation.  

 

So, in this case we are doing Boltzmann sampling of system 1 and we are finding ΔU. Now, 

this will of course have some kind of probability density, so we can for example create a 

histogram and use that to find the probability density of ΔU.  

 

Now, I can do the reverse I can perform the Monte Carlo simulation in system 0 again using 

the idea of Boltzmann sampling or by metropolis algorithm and, in this case for every 

configuration that we have in system 0, I pretty much map the same configuration that I copy 

the coordinates from system 0 to system 1 and compute ΔU for that and then I will get the 

probability density of ΔU when I am doing the Boltzmann sampling of system 0 and in fact we 

can do both of these.  

 

So, I can find p 1(ΔU) and I can find p 0(ΔU) that is pretty much representing two different 

kinds of probabilities. One defined over system 1 and one defined over system 0, but in both 

these cases we are basically looking at the same quantity that is ΔU, only the averaging or the 

method to find probability density is different in one case we are averaging over system 1 

configurations in one case, we are averaging over system 0 configurations.  



(Refer Slide Time: 19:34) 

 

So, now I can find the expression of p 1 ΔU for instance, which is basically having this 

particular partition function that is integration over the coordinates, 

𝑝1(Δ𝑈) =
∫ 𝑑𝑠𝑁 exp(−𝛽𝑈1) 𝛿(𝑈1 − 𝑈0 − Δ𝑈)

∫ 𝑑𝑠𝑁 exp(−𝛽𝑈1)
 

=
∫ 𝑑𝑠𝑁 exp[−𝛽(𝑈0 + Δ𝑈)]𝛿(𝑈1 − 𝑈0 − Δ𝑈)

∫ 𝑑𝑠𝑁 exp(−𝛽𝑈1)
 

= exp(−𝛽Δ𝑈)
∫ 𝑑𝑠𝑁 exp[−𝛽𝑈0] 𝛿(𝑈1 − 𝑈0)

∫ 𝑑𝑠𝑁 exp(−𝛽𝑈1)
 

=
∫ 𝑑𝑠𝑁 exp(−𝛽𝑈0)

∫ 𝑑𝑠𝑁 exp(−𝛽𝑈1)
exp(−𝛽𝑈)

∫ 𝑑𝑠𝑁 exp[−𝛽𝑈0]𝛿(𝑈1 − 𝑈0 − Δ𝑈)

∫ 𝑑𝑠𝑁 exp(−𝛽𝑈0)
 

=
𝑄0

𝑄1
exp(−𝛽Δ𝑈)𝑝0(Δ𝑈) 

 

In this case we are using a scaled coordinates of course we have the volume term and the p 

factors but they will cancel out because we are looking at the ratio and then we have pretty 

much the same thing in the numerator but we have added a Δ function that pretty much tells 

me that ΔU is equal to U1 - U0. The Δ function will be meaningful only when ΔU is U1 – U0 or 

U1 – U0 is equal to ΔU, because we are basically interested in finding the probability density 

of ΔU.  

 

So, now since the Δ function inherently is valid only when ΔU is equal to U1 – U0, I can replace 

U 1 in the integral here by U0 + ΔU that is what I have done here and then the Δ function 



remains itself a simple rearrangement of equation, but now I can take the exponential of - βΔU 

outside because I was looking at p 1 which is a function of ΔU. So, delta U is known to me so 

I can pretty much factor out exponential of – β ΔU outside and now what we have is the 

numerator that we will get for p0 of ΔU because, now the Δ function is being weighted by 

exponential of - βU0 still in the denominator we have the partition function for the system 1.  

 

So, we can slightly rearrange the equation again that is we multiply by the partition function of 

zero system and divide by the partition function of zero system and, by doing this small 

rearrangement what we see is that the blue guy in the expression it starts to represent the p0 ΔU 

because the denominator is the partition function of the system 0 and the numerator is the Δ 

function but now weighted by the Boltzmann weights for the system zero.  

 

So, clearly we will have exponential of – βΔU because it has factored out and this first term in 

red comes from the arithmetic rearrangement and, that essentially is the ratio of the partition 

functions in system 0 and system 1 and therefore what we have been able to relate is the 

probability density when I am sampling over system 1 with the probability density that I am, 

when I am sampling over system 0 both of these are related and since I can find both p1 and p0 

in a simulation I can therefore find the quantity in between that is Q0 by Q1 exponential – β 

ΔU.  

𝑝1(Δ𝑈) =
𝑄0

𝑄1
exp(−𝛽Δ𝑈)𝑝0(Δ𝑈) 
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So, this is precisely what we do in the overlapping distribution method. So, I can rearrange that 

and I can write in the form and what we have in the middle is- 

ln 𝑝1(Δ𝑈) = ln
𝑄0

𝑄1
− 𝛽Δ𝑈 + ln 𝑝0(Δ𝑈) 

Now, the free energy is - ln Q by β or β multiplied by the free energy difference is the first term 

here and this is precisely what we write here and then you have -βΔU and clearly we are 

computing the probability densities as a function of ΔU. 

ln 𝑝1(Δ𝑈) = 𝛽Δ𝐹 − 𝛽Δ𝑈 + ln 𝑝0(Δ𝑈)𝑤ℎ𝑒𝑟𝑒 Δ𝐹 = 𝐹1 − 𝐹0 

 

Now, we can slightly rearrange that so that it is somewhat neater. So, I can define two functions 

f0 and f1 defined over system zero and system one where I have slightly modified in a way that 

the final expression is simply f1 is equal to f0 plus β multiplied with the free energy difference 

between the two systems and, by doing that the problem would be to find f1 and f0 distributions 

and my free energy difference would be simply given by the difference between the two 

distributions divided by the value of β keep in mind it is β Δf in the final expression. 

𝑓0(Δ𝑈) = ln 𝑝0(Δ𝑈) −
𝛽Δ𝑈

2
 

𝑓1(Δ𝑈) = ln 𝑝1(Δ𝑈) +
𝛽Δ𝑈

2
 

𝑓1(Δ𝑈) = 𝑓0(Δ𝑈) + 𝛽𝐹 

(Refer Slide Time: 24:57) 

 

 

I can use this method to find the chemical potentials to do that what I can do is I will make my 

system 0 as containing N particles but N - 1 particles are interacting particles and one is an 



ideal gas particle. In system 1, we can have N interacting particles with the same interactions 

as system 0 and therefore when I take the difference in the free energy between them that 

should give me the excess chemical potential because excess chemical potential is the total 

chemical potential minus the ideal gas contribution.  

 

So, in one case we have one ideal gas particle in other case we have none and therefore we 

pretty much will be looking at the chemical potential of one interacting particle minus chemical 

potential of one ideal gas particle, because all the other N - 1 particles are the same into the two 

systems and, therefore if I take my system definitions as above we can pretty much compute f1 

and f0 for these two cases again as a function of p1 and p0 as we had defined and using that I 

can compute the free energy difference that will be in this case same as the axis chemical 

potential of the system. 

Δ𝐹 = 𝜇𝑒𝑥 =
𝑓1(Δ𝑈) − 𝑓0(Δ𝑈)

𝛽
 

 

So, now one of the key problems in this method is when we find these two distributions f0 and 

f1 for the two systems this is these two distributions should somehow overlap because if they 

do not have an overlap region let us say, for example one of them let us say this in this case is 

like having a different range from the other one in that case there would be problems because 

ultimately we are computing the offset between the two graphs the two distributions the 

difference between these two is giving me a measure of β Δf.  
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So, if they do not overlap or if they partially overlap clearly we can define offset over a smaller 

region or no region at all or if we have to define it we have to extrapolate one of those 

distributions that is again not really the correct way of doing it. So, this method will work 

ideally when you have a clear overlap between the two distributions that will be the case when 

system 0 and system 1 are not really very different from each other when they are closely 

located in terms of the model that we are using then in that case we may have an overlapping 

distribution but as soon as the two systems become different in terms of the behavior more and 

more parameters are different in that case clearly the distributions will no longer overlap.  

 

So, the applicability of this method is only for the first case when there is a good overlap and 

as shown in this example here. So, in this case this is my f1 this is my f0 and f1 – f0 is the dotted 

line that you see here is the bold line that you see here and the dotted line is the estimate that 

we get from the Widoms method, just to compare the two methods and what you find is that 

both Widoms method and this method gives you pretty much the same answer except that this 

may be slightly more efficient in certain applications.  

 

In this case however this is the result we get from the overlapping distribution method and this 

is what we get from the Widoms method. So, clearly there is a big difference assuming that the 

Widoms method was the correct result we can see that clearly our simulation is not giving me 

the correct answer and that has to be because the distributions are not significantly overlapping.  

This pretty much forms the basis for another class of methods that basically tries to match the 

two distributions by defining intermediate states between the two systems 0 and 1 where you 

always have some partial overlap between two adjacent steps in your sequence of steps and 

that is the basis of the method called the multiple histogram method which we will discuss in 

the next class.  

 

So, with that I want to conclude here, thank you. 

 

 

 

 

 

 

 



 

 

 

 


