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Hello all of you. So, in the last lecture we have been looking at how can we extend the NVT 

ensemble Monte Carlo to an NPT ensemble Monte Carlo. And where we have been in the last 

class where we ended is, we were assuming that the system is in placed in a reservoir that is an 

ideal gas and the system can exchange volume with the reservoir. 

 (Refer Slide Time: 00:52) 

 

So, in total the volume of the system plus reservoir is constant that is the V0 in here and the 

number of molecules in the system and the reservoir are also constant that is the N and M - N 

here or N and M are constant but the volume of the system can change. And the reason why 

we started with this kind of prescription is because in the NPT ensemble the volume of the 

system can change the N and T are constant anyway and we know the partition function for the 

ideal gas we do not know the partition function for the system but we know the partition 

function for the ideal gas so that means that we do not have to actually simulate the ideal gas 

reservoir we can analytically evaluate the partition function and the free energy whenever is 

needed and we will only simulate the system and that will give me the behavior of interest in 

the NPT ensemble so it is one easy way to extend the NVT ensemble to and NPT ensemble.  

 



I would like to remind you that when we were doing the pressure control in the molecular 

dynamics the idea was very different from what we are doing here. So, in that case we placed 

a Barrostat that was controlling the pressure of the system. In the Monte Carlo the pressure 

control is done in a completely different way and the reason is that in a Monte Carlo simulation 

we can pretty much simulate the volume changes in a way we like to because our goal is not to 

simulate the true dynamics of system, our goal is to capture the equilibrium behavior.  

(Refer Slide Time: 02:50) 

 

 

So, the volume changes that we are introducing in a Monte Carlo simulation are completely 

artificial. As long as they give me the equilibrium behavior it is fine, we do not care about the 

actual or true dynamics of the equilibrium behavior. So to get the partition function for this 

particular ensemble in the NPT case. Let us first look at the canonical partition function of the 

system plus reservoir where I am not looking at the volume change in the system. So, I am 

looking at a particular value of the system volume and a particular value of the reservoir 

volume. So, in this kind of canonical kind of a case we can write the partition function in the 

canonical way for both the system and the reservoir once we write that then we worry about 

how to account for the volume changes but for this case we are assuming that the volume of 

system is also constant.  

 

So, we already have derived the ideal gas partition function and in this case the volume of the 

ideal gas either where is V0 - V in what we discussed in the last lecture it was V. That is the 

only difference the formula is pretty much same as earlier and the number of molecules are M 



- N in the last class it was N or something the formula itself is pretty much same as earlier and 

then for the system it is something like this- 

𝑄(𝑁, 𝑉, 𝑇) =
𝑉𝑁

Λ3𝑁𝑁!
∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
]

1

0

 

 

So, the system also contains an ideal gas part but for the system and some access part that 

contains the effect of the interactions. Now I can define the total partition function of the system 

plus the reservoir as the product of the partition function of the system and the partition 

functions of the reservoir. So, partition function refers to the number of ways and therefore, 

they are always multiplied whenever we look at a composite system. On the other hand, the 

energies are added up. So, free energy in this case will add up because free energy goes like ln 

of the partition function. So, let us say if Q is for system and Q id for outside when I take a ln 

of that they will add up so free energy will add up. But the partition function themselves will 

we have to take a product to get the total partition function. So, this is what we do here so we 

take a product of whatever we have obtained for the system and for the reservoir.  

𝑄𝑇(𝑁, 𝑀, 𝑉, 𝑉0, 𝑇) = 𝑄(𝑁, 𝑉, 𝑇)𝑄𝑖𝑑(𝑁, 𝑀, 𝑉0, 𝑉, 𝑇)

=
𝑉𝑁(𝑉 − 𝑉0)𝑀−𝑁

Λ3𝑀𝑁! (𝑀 − 𝑁)!
 ∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
]

1

0

 

And once we have that then for the entire system plus reservoir thing here. I can find the 

Helmholtz free energy as - kB T ln of that partition function for the total thing that is system 

plus reservoir.  

𝐹𝑇 = −𝑘𝐵𝑇 ln 𝑄𝑇 

 

So, now I want to allow the volumes to change because ultimately, we want to extend to the 

NPT ensemble. So, the only change that is going to happen is that now instead of the V being 

constant for the system we have some volume V prime that is changing at different states of 

the system. So, if I want to find the partition function for the new case the partition function 

always refers to sum over all the possible states so in that case whatever canonical partition 

function we had for a constant volume we have to integrate over all the possible volume of the 

system and this is what is given by ZT there that is-  

𝑍𝑇 = ∫ 𝑄𝑇(𝑁, 𝑀, 𝑉0, 𝑉′, 𝑇)𝑑𝑉′

𝑉0

0
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I can imagine any volume V prime for the system in the range 0 to V0 because V0 is the total 

volume of system plus reservoir. So, minimum volume of system is 0 and the maximum is V0. 

So, I can find the canonical partition function QT for all the V prime value in the interval 0 to 

V0 and then integrate that over the V prime variable and that will give me the partition function 

for the case where volume is allowed to change or for the NPT ensemble case.  

 

Now once we have that we can also find the probability density of the system having a volume 

V and that is given as the canonical partition function we have obtained for the case when the 

volume was V by the total partition function now that is basically an integral of the Q T over 

all possible volume.  

 

So, I am simply dividing if you have to think about it dividing the number of ways in which I 

am getting the volume V by total number of ways. The number of ways in which I am getting 

volume V is basically given by the partition function and the total number of ways is given by 

the integral of the canonical partition function over all the possible value of volume and this is 

what we are doing in here.  

 

So, now if I do the math then my ρ of V that is the probability density for volume V can be 

written like this. So, ZT is simply an integral of whatever QT we have obtained earlier the 

canonical partition function of the system plus reservoir. But for V replaced with V prime and 

now we are integrating over all the possible value of volume.  



𝜌(𝑉) =

𝑉𝑁(𝑉0 − 𝑉)𝑀−𝑁

Λ3𝑁𝑁! (𝑀 − 𝑁)!
 ∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝐿)
𝑘𝐵𝑇

]
1

0

∫ 𝑑𝑉′ 𝑉′𝑁(𝑉0 − 𝑉′)𝑀−𝑁

Λ3𝑁𝑁! (𝑀 − 𝑁)!
 ∫ 𝑑𝑠′𝑁 exp [−

𝑈(𝑠′𝑁; 𝐿)
𝑘𝐵𝑇

]
1

0

𝑉0

0

 

 

 

So, with this I can then define using an idea that the reservoir is very large in comparison to 

the system and that can always be assumed because we are not worried about the reservoir 

because we are not simulating it. So, we can always choose a larger volume than compared to 

the system. 

𝐹𝑜𝑟 𝑉 ≪ 𝑉0 

(𝑉 − 𝑉0)𝑀−𝑁 = 𝑉0
𝑀−𝑁 (1 −

𝑉

𝑉0
)

𝑀−𝑁

→ 𝑉0
𝑀−𝑁 exp [−(𝑀 − 𝑁) 

𝑉

𝑉0
] 
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So, where for V much smaller than V0 what we can see is that whatever factor we are having 

(V0 – V)M - N. That I can approximate by taking V0 common and then we have (1 - V by V0)
M - 

N. V by V0 is a small number so I use the rule for an approximation of something like this for 

small x and M minus N is large number because M - N is the number of the molecules in the 

ideal gas reservoir so this is for small x and large n and we can approximate that by an 

exponential function. So, this is what we get here. And then we can approximate simply the 

ideal gas density. And it is not really an approximation so as to speak. The density is given by 

the number of molecules per unit volume. So, it is M - N is the number of molecules in the 

reservoir divided by the volume of reservoir that is V0 – V but then I use V less than much less 

than V0 here. That is the approximation in the expression and that is M - N by V0 because I can 



drop V here because V is pretty small. And then we know the ideal gas density is given by P 

by k B T from the ideal gas low. So, M - N by V0 can therefore be replaced by the P by kBT.  

𝜌𝑖𝑑 =
(𝑀 − 𝑁)

(𝑉 − 𝑉0)
→

𝑀 − 𝑁

𝑉0
=

𝑃

𝑘𝐵𝑇
 

 

So, that I will put in there so what you will have then is something like V0 to the power M - N 

exponential of minus ρV and I can replace the ρ by P by kBT. So, this can be V0 M - N 

exponential of minus PV by kB T 

𝑉0
𝑀−𝑁 exp[−𝜌𝑉] = 𝑉0

𝑀−𝑁 exp [−
𝑃𝑉

𝑘𝐵𝑇
] 

(Refer Slide Time: 11:26) 

 

So, therefore I can now define the probability density now for the NPT ensemble because now 

I am basically counting the number of ways in relation to total number of ways where total 

number of ways is for all possible values of volume and the number of ways is for a particular 

value of volume. So, basically, we are allowing volume to change. So, we are looking at the 

probability density of the NPT ensemble and this is pretty much given by the expression where 

the only change that we have done from earlier is we have replaced that factor (V0 – V)M – N  

with the exponential of minus PV by kBT.  

(𝑉 − 𝑉0)𝑀−𝑁 → 𝑉0
𝑀−𝑁 exp [−(𝑀 − 𝑁)

𝑉

𝑉0
] = 𝑉0

𝑀−𝑁 exp (−
𝑃𝑉

𝑘𝐵𝑇
) 

 

And there was a V0 to the power M minus N here that got multiplied with another volume there 

and got cancelled. So, this is what you get after simplification and therefore for a particular 



configuration. So, now a particular configuration is given by a particular value of SN that is the 

scaled coordinates of all the n particles and in here we are integrating over all configuration.  

𝜌𝑁𝑃𝑇(𝑉) =
𝑉𝑁 exp (−

𝑃𝑉
𝑘𝐵𝑇

) ∫ 𝑑𝑠𝑁 exp [−
𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
]

1

0

∫ 𝑑𝑉′𝑉′𝑁 exp (−
𝑃𝑉′
𝑘𝐵𝑇

) ∫ 𝑑𝑠′𝑁 exp [−
𝑈(𝑠𝑁; 𝐿′)

𝑘𝐵𝑇
]

1

0

𝑉0

0

 

 

So, if I now ask what is the probability density of a particular configuration at volume V in that 

case we are interested in the term inside the integral not the integral because this is integrated 

over all the configuration. If I ask the question that what is the probability density of having a 

volume V then we have to integrate over all the possible configurations having volume V.  

 

On the other hand, if I am looking at any particular configuration at volume V I can only look 

at the term inside the exponential and this is what we have done here. So, I simply look at the 

term inside that. And then denominator is any way a normalizing factor. So, the probability 

density is basically given by the numerator where we have dropped the integral over ds.  

𝜌𝑁𝑃𝑇(𝑠𝑁; 𝑉) ∝ 𝑉𝑁 exp (−
𝑃𝑉

𝑘𝐵𝑇
) exp [−

𝑈(𝑠𝑁; 𝑉)

𝑘𝐵𝑇
] 
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So, therefore we have got the expression of the probability density of having a configuration at 

volume V and now we can use the arithmetic of the metropolis algorithm. The reason why we 

can do that is because the probabilities or transition probabilities in the metropolis algorithm 

was basically represented in terms of the probability density of configurations and we have 

already obtained that so simply these will become the transition probability once it gets in there. 



And this is what we have done. So, before we do that what we can see here is that this and this 

can be coupled together. So, PV by kBT can be placed inside the other exponential. And this 

can also be written as something like exponential of N ln V and therefore, both these terms can 

be added to a single exponential that already had minus U by kBT.  

𝜌𝑁𝑃𝑇(𝑠𝑁; 𝑉) ∝ exp [−
1

𝑘𝐵𝑇
{𝑈(𝑠𝑁; 𝐿) + 𝑃𝑉 − 𝑁𝑘𝐵𝑇 ln 𝑉}] 

 

Now when we are doing in the NPT ensemble, we have to worry about I would say two other 

contributions that is, one is PV and other is N kBT ln V but other than that, the basic scheme of 

the Monte Carlo is unchanged only the acceptance criteria or the transition probability has 

slightly changed. So, in this case what we do is we still keep on doing the particle displacements 

as we would in the canonical ensemble but also, intermittently we will try some volume 

changes. So, let us say I want to go from the original volume V to some new volume V prime. 

Or let us say we are doing some volume change delta V. So, that is accepted now with a 

modified probability for the NPT ensemble it is given by the difference of the energy of the 

new state minus the old state plus the difference that will come in the two new contributions 

we have that is PV and N kB T ln V.  

𝑚𝑖𝑛 [1, exp [−
1

𝑘𝐵𝑇
{𝑈(𝑠𝑁; 𝑉′) − 𝑈(𝑠𝑁; 𝑉) + 𝑃(𝑉′ − 𝑉) − 𝑁𝑘𝐵𝑇 ln

𝑉′

𝑉
}]] 

 

So, we get P multiplied with V prime - V and - N kBT ln V - N kB T ln V prime and that 

basically will be minus N kB T ln V prime by V. That is the last term here in here and everything 

else in the Monte Carlo will remain pretty much similar to earlier we generate the system 

randomly or whatever way we are doing that the only change from the NVT Monte Carlo is 

now we are doing also trial moves of volume changes in addition to particle displacement. 

They may not happen in conjunction with particle displacement. For example, there can be two 

types of move let us say hundred times you try particle displacement and every so often you 

try a volume change may be after 100 you try a volume change or something of that sort and 

whenever we are doing a volume change the only difference is we now compute with a 

modified transition probability that contains two new terms when I compare with the canonical 

ensemble Monte Carlo simulation so this is about it.  

 

Keep in mind that what we have discussed is assuming that we are having some kind of an 

isotropic deformation of the simulation box. So, in our case since the pressure is kind of like 



constant the box will deform pretty much like this or like this in other words, it can deform in 

a manner that preserves its shape because pressure is same in every direction.  

(Refer Slide Time: 17:35) 

  

In general, we can think of working in some kind of an N sigma T ensemble where sigma is 

the stress that is being held controlled or that is being held fixed and in that case the stress can 

be different along different phases in fact, stress will have 9 components when I look in the 

three dimensions. So, we can have variable stresses along different boundaries of the simulation 

box and that will pretty much allow change in the shape of the simulation box. So, now the 

simulation box will not only change in the volume but they can also change in the shape 

because the stresses can be different along different phases.  

 

Now there are more mathematical details of doing that I will not get to that but basic idea 

remains the same. So, the NPT ensemble is valid whenever we are having some kind of an 

isotropic kind of a fluid when we have the same pressure in every direction. On the other hand, 

if there is significantly different stresses among different directions then in that case we can 

use a constant stress ensemble that is also useful for certain applications especially in the 

context of solids because they are in the system itself is not isotropic. So, the stresses existing 

along different crystalline planes happen to be different and therefore, we are worried about 

the deformation of crystalline unit cells and that has to be done in somewhat different manner 

then compared to for liquids and gases where pressure can be assumed to be pretty much 

isotropic and the simulation box can deform while keeping its shape as cubic.  

 



So, next I want to generalize to the grand canonical ensemble that is the μV T ensemble. So, in 

this case the number of molecules can undergo a change unlike in the NPT case where the 

volume could change now the number of molecules can change again, we can start with the 

canonical partition function and again we can use the prescription of the system in an ideal gas 

reservoir. Now the only difference is that the system can exchange molecule so it is no longer 

isolated with the reservoir so in this case there is some molecule exchange that has to be taken 

care of but this volume itself is constant.  
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So, in this case the volume of the system is fixed the volume of the reservoir is fixed and the 

total number of molecules counting the system and the reservoir is fixed that means whenever 

there is a molecule leaving the system it enters the reservoir and there is an increase in the 

number of molecules of reservoir whenever a system gains a molecule there is a decrease in 

the number of molecules of a reservoir. So, pretty much overall system is assumed to be having 

a constant number of molecules.  

(Refer Slide Time: 21:16) 



 

So, again I will start with the canonical partition function. Now the only difference that we 

have to keep in mind is that now when I look at the energies now, they are changing when N 

is changing. So, whenever we look at u, we have to be careful what is the N value that I am 

putting in there and therefore, I have put an N there the box size in this case is constant. When 

I was doing the NPT ensemble, I put an l here to signify the fact that the box size may change. 

Now I have put an N here this is also good whenever we are doing this kind of math to make 

sure that we; make no mistakes in writing the expressions.  

 

But still I can get the ideal gas partition function pretty much similar to earlier. Earlier I was 

representing the volume of reservoir as V0 - V. Now I am writing as VR. But other than that, 

the functional form is pretty much same and I can write the partition function of the system.  

𝑄(𝑁, 𝑉, 𝑇) =
𝑉𝑁

Λ3𝑁𝑁!
∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
]

1

0

 

And again, I can define the total canonical partition function and when I am doing that, I am 

keeping the number of molecules of system fixed. So, I am writing in the canonical ensemble 

only. So, this is product of the system partition function with the reservoir partition function 

and again we got an expression for the total partition function.  

𝑄𝑇(𝑁, 𝑀, 𝑉𝑟, 𝑉, 𝑇) = 𝑄(𝑁, 𝑉, 𝑇) 𝑄𝑖𝑑(𝑁, 𝑀, 𝑉𝑟 , 𝑇)

=
𝑉𝑁𝑉𝑟

𝑀−𝑁

Λ3𝑁𝑁! (𝑀 − 𝑁)!
 ∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
]

1

0

 

 



And again, we can evaluate the Helmholtz free energy of the system plus reservoir as minus 

kBT ln of this total partition function.  

𝐹𝑇 = −𝑘𝐵𝑇 ln 𝑄𝑇 

 

 

Now however; when I want to look at the partition function for the case where N is a variable. 

Now in this case I have to basically sum over all the possibilities of N value. So, now when I 

was doing it in the volume space I was basically integrating over the volume but in this case, I 

prefer to do a summation over all possible number of molecules because the, number of 

molecules are discretely defined in the way we are representing the system. So, therefore we 

should basically sum over all the possible number of molecules as opposed to doing an 

integration because N is and M are discretely defined.  
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So, therefore the partition function when I allow for the number of molecules to change is given 

by all the possible value of N. And the N can range from pretty much zero that means system 

vanishes to and equal to M where the system fills the entire reservoir. So, all the possible 

molecules in the reservoir they come and become part of a system. So, this is the integration 

for and this is the again the canonical partition functions for the cases when the number of 

molecules is N prime the only difference is I am summing over N prime equal to 0 to M.  

𝑍𝑇 = ∑ 𝑄𝑇(𝑁′, 𝑀, 𝑉𝑟 , 𝑉, 𝑇)

𝑀

𝑁′=0

 

 



Again, I can define the probability density now for a system containing N molecules unlike ρV 

we had in the NPT ensemble case. Now I write ρN for this case which is pretty much similar 

to the way we wrote. It is the ratio of the canonical partition function of given number of 

molecules and divided by the total partition function that is sum over all the possible values of 

N prime.  

𝜌(𝑁) =

𝑉𝑁𝑉𝑟
𝑀−𝑁

Λ3𝑁𝑁! (𝑀 − 𝑁)!
 ∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝑁)
𝑘𝐵𝑇

]
1

0

∑
𝑉𝑁′

𝑉𝑟
𝑀−𝑁

Λ3𝑁𝑁′! (𝑀 − 𝑁′)!
 ∫ 𝑑𝑠′𝑁′

exp [−
𝑈(𝑠𝑁′

; 𝑁′)
𝑘𝐵𝑇

]
1

0
𝑀
𝑁′=0
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And therefore, I can also write the probability density of a given configuration as N and that is 

basically the numerator here without the integral over all, the configuration. This is what we 

did in the last case as well. Now we are doing it for ρ (N, SN) as opposed to ρ (V; SN) that we 

did for the isothermal isobaric ensemble.  

 

𝜌(𝑁; 𝑆𝑁) ∝
𝑉𝑁𝑉𝑟

𝑀−𝑁

Λ3𝑁𝑁! (𝑀 − 𝑁)!
exp [−

𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
] 

 

Now when I am doing the Monte Carlo simulation for this case we can imagine that we will 

have moves where molecules are going to be added or removed and the probability density is 

ultimately should be divided by the new configuration or the old configuration as appropriate. 

And therefore, we should be interested in the ratio of the probability density for N + 1 with 



respect to N whenever I am doing an insertion of molecule and N - 1 with respect to N whenever 

I am doing a removal of molecule.  

 

So, when I am doing insertion in that case, I am interested in the ratio of the probability density 

of the new state that has N + 1 molecule relative to the old state that has N molecules. And it 

is their ratio that will dictate our transition because metropolis basically goes towards or favors 

more the states which are having higher probability. This is what basically what is there in the 

metropolis and therefore you should compute this particular ratio unlike in the NVT and NPT 

ensemble case, in this case the changes in the system configurations are discrete whenever we 

talk in terms of the number of molecules, they can only increase by units of one.  So, when I 

do that and I do the math what I get is something like this. So, again we have a pre factor to 

worry about which we can approximate using the ideal gas.  

𝜌(𝑁 + 1; 𝑠𝑁+1)

𝜌(𝑁; 𝑠𝑁)
=

𝑉(𝑀 − 𝑁)

𝑉𝑟(𝑁 + 1)
exp [− (

𝑈(𝑠𝑁−1; 𝑁 − 1) − 𝑈(𝑠𝑁; 𝑁)

𝑘𝐵𝑇
)] 

 

And similarly, I can do it for the removal where the new configuration will have one molecule 

less that is N - 1 molecule and the old one has N molecule. So, again we have slightly different 

ratio of the old to new configuration so with that I can basically use the expression of the 

chemical potential of ideal gas that is given by this- 

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓 𝑔𝑎𝑠, 𝜇 = 𝑘𝐵𝑇 ln(Λ3𝜌𝑖𝑑) 

Therefore, 

𝜌𝑖𝑑 =
1

Λ3
exp (

𝜇

𝑘𝐵𝑇
) 
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And using that; I know that the density of an ideal gas is basically a function of its chemical 

potential. And therefore, for the ideal gas in reservoir that is the number of molecules per unit 

volume that is M minus N in our model divided by V r that is equal to whatever expression that 

we have for the ideal gas.  

𝜌𝑖𝑑 =
𝑀 − 𝑁

𝑉𝑟
=

1

Λ3
exp (

𝜇

𝑘𝐵𝑇
) 

Again, I want to remind you that we are not simulating the ideal gas in the reservoir because 

we know the expressions and therefore, we can then write the expression for the ratio of 

probability densities. In this case for insertion using the formula for the ideal gas and therefore, 

there would be a mu coming there if I do the arithmetic in this particular problem. 

𝜌(𝑁 + 1; 𝑠𝑁+1)

𝜌(𝑁; 𝑠𝑁)
=

𝑉

Λ3(𝑁 + 1)
exp [− (

𝑈(𝑠𝑁+1; 𝑁 + 1) − 𝑈(𝑠𝑁; 𝑁) − 𝜇

𝑘𝐵𝑇
)] 

 

Now the same thing has to be done for the removal case as well so this is purely arithmetic 

manipulations I will not derive that. So, basically what the Monte Carlo simulation will work 

will do in this case what the metropolis algorithm will do in this case is we will make trial 

moves which will be insertion or removal keep in mind that in a given time we are only 

inserting one molecule or removing one molecule. Now that molecule that is being inserted or 

removed is done at any arbitrary random location inside the system and that point is very 

important because if it is not put in a random location; then if for example, we fix the location 

where we insert the particle in that case the criteria of detailed balance will not be satisfied.  

(Refer Slide Time: 29:14) 



 

So, we really have to insert at a random location and for that we will have certain probability 

of acceptance or for example we can remove from a random location whatever particle is there. 

And in that case, we will have slightly modified criteria that, the reason why the criteria are 

different is because the ratio of probability densities are different.  

 

So, for the insertion case we had V over N plus 1 multiplied with lambda cube. And for removal 

case we had Vr multiplied with N divided by V multiplied with M - N + 1. And therefore, only 

the pre factor is changing in these cases and therefore, when I include the pre factor effect by 

approximating using the idea of ideal gas or using the expression of ideal gas basically, we get 

slightly modified forms of the transition probability in these two cases.  

 

And then basically we can keep on going again we are still doing the particle displacement as 

we were doing in the canonical ensemble intermittently or after every step as convenient to us 

or as required for the problem. We will also try some insertion and removal. Both must be done 

to satisfy the detailed balance condition. We should try both insertion and removal but having 

said that the; acceptance rates of the insertion removal can be very small because you may 

imagine that if the system is pretty dense in that case it will be very difficult to place a particle 

inside the system.  

 

There will be no room for the particle particularly when I randomly choose a location. Removal 

is somewhat easier to think about but then that may also have lower probability of acceptance 

in certain cases because the removal may come at a large energetic penalty.  

 



So, it turns out that grand chronicle ensemble is not generally the most convenient way to 

simulate any phase equilibrium kind of a problem because the acceptance rates happen to be 

pretty low. And therefore, it takes forever to actually get the statistics that is required to get the 

coexistence behavior. However, there are cases for example looking at adsorption processes or 

for example for simple systems like Lennard Jones systems the grand canonical ensembles 

have been shown to be like very efficient but particularly for atomic systems it turns out that 

acceptance rates for grand canonical Monte Carlo is pretty low and in those cases, we have to 

think of something else apart from doing this kind of simulations.  

 

So, with this I want to conclude the lecture today. In the next lecture we will discuss a method 

called the Gibbs ensemble method that is an alternate strategy for studying the phase 

equilibrium where we simulate both the system and the reservoir in contact. So, in the two 

methods that we have discussed the reservoir was not being simulated. So, there was only 

system being simulated in the Gibbs ensemble method we parallelly simulate or simultaneously 

simulate two boxes which can exchange particles between them and therefore, it is found to be 

extremely useful when we are studying the phase equilibria of liquids and all that.  

 

So, with that I want to conclude here and we continue from this point in next lecture. 

 

 

 

 

 


