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Hello all of you, so in the last few weeks, we have discussed the Monte Carlo and molecular 

dynamics method we have basically looked at what is the theory behind it and how do we 

implement that using codes in Python particularly for the Monte Carlo simulations and briefly 

we touched upon the software we can use for molecular dynamics.  

 

So, in the remaining time of this course I will touch on some advanced topics such as the 

calculations of free energies. The calculations of coexistence and then how can we generalize 

the molecular dynamics or Monte Carlo methods at mesoscale that is at larger length scales 

and time scales and how can we possibly do a non-equilibrium simulations.  

 

So, first I will begin with the idea of coexistence and phase behavior we already have discussed 

in the context of lattice model, how can we represent the phase behavior if we have the 

Helmholtz free energy density using a particular functional form of the Helmholtz free energy 

density we showed what should the form B in order to have a homogeneous system and in 

order to have a phase separating system and then using lattice model we derived the functional 

form of that. 
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So just to quickly recap what I was telling you is that let us say for example, I am interested in 

the phase separation then I am going to compare the free energy in the two cases one is a 

homogeneous solution and one is the phase separating case and whichever will happen will be 

dictated by the corresponding free energy.  

 

If for example, the free energy in this case happens to be less than the free energy in this case 

then in that case we are going to have a homogeneous solution or no phase separation.  

𝐺𝑛 < 𝐺𝑝 => ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

On the other hand, if Gh happens to be higher than Gp in that case we are going to have a phase 

separation.  

𝐺ℎ > 𝐺𝑝 => 𝑝ℎ𝑎𝑠𝑒 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

Now, if I want to track these things in a molecular simulation there are couple of problems. 

The first problem is in whatever we have discussed we have not discussed the evaluation of 

free energies. We discussed how can we compute temperature? How can we compute pressure? 

How can we compute evidence energies and so on. But if we have not quite discussed how can 

we compute the free energy? It turns out that calculating free energy is quite difficult in 

molecular simulation it is possible and we discussed some techniques in this lecture and later 

on but it is not a part of the standard arithmetic of Monte Carlo or molecular dynamics that is 

the first problem. 

 



The second problem is that whenever a phase separation happens in reality that is somewhat 

macroscopic in nature that is to say that, you clearly have formation of interface or interfaces 

that separate the two phases or the more phases. Now, that interface itself is realized when you 

have a very large number of molecules being simulated for simulations containing smaller 

number of molecules that we typically can do using Monte Carlo or molecular dynamics that 

is somewhat difficult to do. 

 

The second problem is if we think about the homogeneous state and a phase separation state 

both are somewhere like near minima of the free energy. In other words, there is a free energy 

barrier between the homogeneous state and a phase separation state, what this means is that 

even if in a given conditions my system should phase separate thermodynamically if I start 

with a homogeneous solution in my simulation I will remain in homogeneous solution because 

the free energy barrier for reaching the phase separation state is not achieved. In other words, 

let say for example, my system is somewhere here in my free energy landscape and let us do it 

with reference to some arbitrary system coordinate which can be for example, a thermodynamic 

variable like temperature or volume fraction or whatever.  

 

Now clearly in this case let us say this state has a lower free energy but if I start my system 

from here I will tend to be close to this minima because that is the local minima and it is easily 

accessible to me. So, with a few Monte Carlo steps or molecular dynamic system or a series of 

Monte Carlo steps that you perform we can get to that local minima but to come to the actual 

global minima we need to cross a free energy barrier or some sort of activation energy well do 

we do not talk about chemical reactions but even to go from two physical states which are 

simply different in terms of the their phase separation behavior there may be some kind of 

activation energy some barrier that we have to cross to make it happen and it turns out that 

although, the barriers can in principle be crossed they are not crossed in the time scales we 

simulate, if we think about the how the barriers will be crossed in reality the way it is going to 

happen is let say For example, if I start my system in here whether I am doing a Monte Carlo 

or molecular dynamics I am going to undergo fluctuations around this particular state.  

 

Now, only when the fluctuations are large enough we can pretty much cross the barrier if the 

fluctuations are small then we will not cross the barrier. For example, we can talk about density 

as an order parameter. So, in the homogeneous state we are at certain density. So to go to a 

phase separation state we need to undergo density fluctuations such that we form a denser state 



and a dilute state separated by an interface not only the interface is difficult to simulate but 

such large density fluctuations also do not happen in the typical MD or Monte Carlo simulation 

because we are probing only small length and time scales.  

 

There is one more problem and that is really physical in nature. Let us say for example, we are 

looking at a crystallization process then to form a crystal the molecules of a liquid or a gas 

should first come together and, then they have to reorient to form a unit cell of the crystal to 

form an ordered arrangement. Now, while the molecules coming together is really a fast 

process this can happen over the time scales of simulations they are reorientation to form a 

crystalline arrangement can take forever even when looking at from a physical point of view 

let us say in an experiment.  

 

So even though a crystal is state can be a minima state in terms of free energy even 

experimentally it can be very difficult to realize and therefore we have to do some tricks in 

experiments as well to cross the free energy barrier to reach the crystalline state and the same 

kind of technique or something else need to be adopted also in simulations in order to cross the 

free energy barriers and fortunately there are many methods that have been developed over the 

last couple of decades which can basically address this particular challenge or in general that 

can pretty much explore the free energy landscape of systems and this is the kind of focus of 

this lecture and what I will discuss in the following lectures.  

 

But before we do that let us first begin with a quick recap on what do I mean by phase transition 

and what do I mean by phase behavior and what can conventional Monte Carlo or molecular 

dynamics that we have already discussed can give us or how does it approach this particular 

problem. So, let us say for example, I want to simulate the phase behavior of water.  
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So, I can look at the pressure temperature diagram and it looks something like this- 

 

In here this is my triple point in here you have a solid state, in here you have a liquid state and 

in here you have a gas state.  

 

I can also draw a temperature density diagram where in you will have basically a two phase 

reason of liquid and gas forming somewhere over here and then you have a single phase region 

outside it and this is my critical point in here and this is my critical point in here.  



 

So, in reality pressure, temperature and volume or pressure, temperature and density are 

basically the variables that we are track the thermodynamic variable. So, whenever we are 

interested in the equation of a state, the equation of a state gives me a pressure, volume, 

temperature relation, so in reality this is going to be having three axis pressure, temperature 

and volume and replacing the volume by density and, what I am showing you in the next two 

plots in here the pressure, temperature or temperature volume is a 2D cross section or a cut on 

this particular diagram.  

 

So, therefore let us say for example, I am doing an NVT simulation so I can when I do a NVT 

simulation the control variable that we have is ρ and the control variable is temperature. So, in 

this case we are pretty much somewhere in this diagram and I can pretty much lie anywhere in 

there. So, as long as I am in the single phase regime there is pretty much no problem because 

there is no interface I just mentioned that but when I am in the two phase regime then it depends 

where I start from if I start from the homogeneous phase then falls simulation to reach a phase 

separation state where you can see the two phases may take forever there will be a free energy 

barrier with that and this is a part that will be I would say difficult to get there but nonetheless 

if I am controlling the density and temperature and as long as we are in the single phase regime 

we can compute the value of the pressure in this particular case, I am working at a fixed value 

of density and temperature I can compute the pressure but the pressure in this case would be 

for NVT ensemble the pressure is going to be fluctuating.  

 

So, there is no meaning to say that the pressure value is this we should talk about the average 

value of pressure and the fluctuation in the pressure that I can represent for example, by the 



variance in the pressure it turns out that since our system sizes are pretty small in what we can 

simulate these fluctuations are pretty large and therefore the pressure value that we get from 

the NVT simulations are not very reliable and this is really coming from the fact that we are 

simulating a small system that is main reason.  

 

The other reason is pressure is computed using the virial equation of a state and that equation 

of a state itself has certain assumptions built into it basically, we represent the pressure as an 

ideal term plus an excess term that we come from the virial which in turn depends on the 

positions and the forces acting on the particles and it turns out that this is really an 

approximation there can be more terms in there and therefore the pressure estimates although 

we can obtain that they are not very reliable.  

 

In the other hand what we can do is we can do an NPT simulation now in the NPT simulation 

we can be anywhere on the pressure - temperature diagram. Again, as long as I am in the single 

phase regime there is pretty much no problem but once I come to the coexistence now the 

coexistence part are these lines in the diagram. So, in the temperature density curve it was a 

region in the graph and in the pressure - temperature diagram it is like along the three lines we 

have for different coexistence.  

 

Now, it turns out that whatever problem we mentioned regarding NVT ensemble for the two 

phase regime it same problem will also happen for two phase regime in the NPT ensemble 

because when I am trying to simulate at a pressure and temperature value near the coexistence 

we will have large free energy barriers to cross. But again when we are in the single phase 

regime for pressure and temperature value given or being controlled we can find the 

corresponding density of the system or the volume the n is constant, so the density can be 

obtained and by v and those density estimates again are going to fluctuate.  

 

So, you will have again some average value of density and some fluctuation in the density that 

we can represent using some variance there. It turns out that the estimates of density are quite 

reliable then in comparison to the pressure estimates in the NVT simulations and the reason is 

because density is rather well defined quantity there is no approximation when we define it 

density is simply given by the number of molecules by V or we can represent in terms of 

volume fraction if we need to and that quantity is well defined there is no approximation in 

there and, it turns out that the density fluctuations are not as serious in comparison to the 



pressure fluctuations.  

 

So typically when I am interested in the phase behavior if I have to pick one of these two we 

should go for the NPT simulations not only because the pressure and temperature is usually 

specified in the experiments and therefore NPT ensemble makes more physical sense but also 

because the density fluctuations are less serious than compared to the pressure fluctuations or 

measurements are more reliable than compared to the pressure measurements.  

 

Now, we can do something else here instead of working with NPT or NVT variables we could 

have worked with μVT and that is the grand canonical ensemble. In this case, now we are pretty 

much simulating an open system where the number of molecules can also change and it turns 

out that the grand canonical ensemble therefore is more convenient in terms of the description 

of the phase transitions because first of all we are working for an open system.  

 

So, in that case the number of molecules can change and secondly we are working with the 

variables that we can easily control in also simulation. Let us say the chemical potential dictates 

the phase equilibrium so if we are working at different chemical potentials we can eventually 

reach a condition where the chemical potentials in the two phases are equal and that will 

represent the condition of phase equilibrium.  

 

So, in that sense working with the μVT ensemble in some cases is more convenient and this is 

the grant canonical ensemble. So, first of all we will discuss how can we generalize our Monte 

Carlo scheme that we discussed in the NVT ensemble to the NPT ensemble and then more 

importantly we will discuss how can we generalize the grand canonical ensemble and the 

particular scheme that we are aiming at is called the grand canonical Monte Carlo or GCMC.  

 

Later on, I will show that and do we can develop a scheme for doing that is not very convenient 

in win many cases, particularly this cannot be applied in the context of molecular dynamics for 

sure and therefore we need to think of some other schemes for analyzing the phase behavior 

and one of the ways is to compute the free energies because free energy computations can 

provide I would say an alternate way to look at the phase transitions using the kind of math that 

we have discussed earlier that we can find the free energy of the two possible states and 

whichever gives me the lower free energy is the state that we should go for so, in that case we 

can imagine doing two different simulations and computing the free energy for that or as we 



will discuss we are interested in the free energy difference between the two states and therefore 

we will have a clear sense of when will we have a phase separation or when will we have a 

phase transition not only that this can also help me explore the coexistence reason in somewhat 

better way that in comparison to the conventional Monte Carlo or molecular dynamics.  

 

So, the way to go about it is I first will discuss how can I extend the canonical ensemble Monte 

Carlo to NPT Monte Carlo and therefore I will go back to the mathematical description of 

canonical ensemble and then how can we generalize to NPT ensemble and then how can we do 

that in practice. So, the canonical ensemble partition function is given by something like this- 

𝑄(𝑁, 𝑉, 𝑇) = 𝑐 ∫ 𝑑𝑃𝑁 𝑑𝑟𝑁 exp [−
𝐻(𝑝𝑁, 𝑟𝑁)

𝑘𝐵𝑇
] 
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This is my Boltzmann factor H is my Hamiltonian I use slightly different representation for the 

momentum variables and the position variable. Earlier, I represented using P now I am 

representing using P power N to emphasize the fact that we will have N such variables and also 

because later on we want to do cases where N becomes a variable. So for from now on I will 

represent the dp by dp N and dr by dr N keep in mind that in both these cases it was representing 

the momentum and the coordinates of all the particles in the system.  

𝑝𝑁 ≡ 𝑝 ≡ (𝑝1, 𝑝2 … … … . 𝑝𝑁) 

𝑟𝑁 ≡ 𝑟 ≡ (𝑟1, 𝑟2 … … . 𝑟𝑁) 

Now, my Hamiltonian in most cases can be broken down into two distinct terms one that 

depends on momentum only and the second that depends on the positions only or the 



coordinates only.  

𝐻(𝑝𝑁, 𝑞𝑁) = 𝑘(𝑝𝑁) + 𝑈(𝑟𝑁) 

𝐾(𝑝𝑁) = ∑
𝑝𝑖

2

2𝑚𝑖
𝑖

 

The first term is the kinetic energy part that is given by something like sum over the kinetic 

energy of all the molecules and that is basically p square by 2 m summed over all the molecules 

and then you have a potential energy part that is coming from the inter particle interactions. 

(Refer Slide Time: 21:02) 

 

 

Now it turns out that, if we can write the kinetic energy like that, and if my U does not depend 

on the movement are then we can factor out the P integral from the total integral and that is 

what we have done here.  

𝑄(𝑁, 𝑉, 𝑇) = 𝑐 ∫ 𝑑𝑝𝑁 exp [−
𝑘(𝑝𝑁)

𝑘𝐵𝑇
] ∫ 𝑑𝑟𝑁 exp [−

𝑈(𝑟𝑁)

𝑘𝐵𝑇
] 

So, I just wrote the kinetic energy part separately and the potential energy part separately, the 

first integral only depends on p and the second integral only depends on r and therefore we can 

pretty much factor out these two and this is how you may recall we got the expression of the 

partition function of an ideal gas.  

𝑄(𝑁, 𝑉, 𝑇) =
1

Λ3𝑁𝑁!
 ∫ 𝑑𝑟𝑁 exp [−

𝑈(𝑟𝑁)

𝑘𝐵𝑇
] 

So now it turns out that the first integral is something like this there is a small detail here there 

is a small constant that appears here that constant relates to the degeneracy of the energy states 

and therefore as we have discussed in the case of ideal gas partition function we get some 



particular term that I define as in this case as thermal de Broglie wavelength.  

Λ = √
ℎ2

2𝜋𝑘𝐵𝑇𝑚
= 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒 𝑏𝑟𝑜𝑔𝑙𝑖𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

So, this is really a constant for a constant value of N. So, we have 1 over lambda to the power 

3 N. where lambda is the thermal de Broglie wavelength and that will be constant for particles 

of constant mass and at a given temperature value, h is the Planck's constant. So, it is also a 

constant.  

 

So, now we basically have the expression of the partition function where we have factored out 

the momentum integral and now for convenience in what we will discuss later I am going to 

introduce scaled coordinates instead of actual coordinates. So, in general the particles are in 

the box and the box is of length L. So pretty much every coordinate within the box can be 

normalized by the box size if it is a cubic box then the length is the same in every direction.  

 

So, I can divide every coordinate by L and that particular scaled variable will now range from 

0 to 1 because, we can say that the box is going from 0 to L or from like - 0.5 to + 0.5 in what 

we have discussed but we can also scale from 0 to 1. The main point is that we are pretty much 

removing the effect of box size by introducing the scaled coordinates. 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑠𝑖 =
𝑟𝑖

𝐿
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So then I can now write the drN integral by an integral over the scaled coordinates and therefore 



the volume to the power N factors out because we are basically integrating over the r in reality 

so but the r is factored by L and every r has three components. So for example, for one particle 

the dr one let say for particle one will be the dx1, dy1, dz1 that is the x y z coordinates of that 

particle and, I am scaling all of them by s and therefore we will have something like ds1x, ds1y, 

ds1z and L cube will factor out and that L cube is my volume and now we are doing it over all 

the particles and therefore we have V to the power N, factoring out of the integral. So, what we 

then have is under integral we are integrating from 0 to 1 in the scaled coordinates but now the 

U that is the potential energy depends clearly on the scaled coordinates but also depends on L 

because clearly, if L is different you will have different interval energy or potential energy in 

the system. So, therefore we have simply written in a manner that the integral goes from 0 to 1 

but that does not mean that the U is changed in the representation it is simply a way to make 

the coordinates dimensionless there is no change otherwise in the result.  

𝑄(𝑁, 𝑉, 𝑇) =
𝑉𝑁

Λ3𝑁𝑁!
 ∫ 𝑑𝑠𝑁 exp [−

𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
]

1

0

 

So then the advantage now is what you see in the red part in the first expression that becomes 

the partition function of an ideal gas. This we have derived earlier, but you can also see it from 

here because for the case of ideal gas U is going to be 0. So the term inside exponential will be 

1 and since I am integrating from 0 to 1 for all the variables what we get is the entire integral 

will be 1 and therefore the result will be whatever is in the red in the expression here. 

𝑄(𝑁, 𝑉, 𝑇) =
𝑉𝑁

Λ3𝑁𝑁!
 

 

So, therefore I can now write my partition function as the ideal gas partition function multiplied 

by whatever we have under the integral and therefore I can define the Helmholtz free energy 

which is defined as - kBT ln Q in terms of the partition function. So, the ideal gas part comes 

out and the second term is the contribution to the free energy apart from the ideal gas 

contribution which will I refer as the excess free energy. That is the free energy in excess of 

the ideal gas contribution the F excess is F - Fid.  

𝐹(𝑁, 𝑉, 𝑇) = −𝑘𝐵𝑇 ln 𝑄

= −𝑘𝐵𝑇 ln 𝑄𝑖𝑑

− 𝑘𝐵𝑇 ln ∫ 𝑑𝑠𝑁 exp [−
𝑈(𝑠𝑁; 𝐿)

𝑘𝐵𝑇
] = 𝐹𝑖𝑑(𝑁. 𝑉, 𝑇) + 𝐹𝑒𝑥(𝑁, 𝑉, 𝑇)

1

0

 

And,  



𝐹𝑒𝑥 = 𝐹 − 𝐹𝑖𝑑 

 

So, you already are talking about a free energy difference as opposed to the free energy in this 

case so I can look at the same system for the same N, V, T with the interactions turned off and 

that becomes the ideal gas counter part of the system, I can compute the free energy from for 

that and for the free energy of that we know the partition function analytically because for ideal 

gas case we can evaluate the partition function this is what is done here and therefore all that 

is important to us is to evaluate the excess part of the partition function or the excess part of 

the free energy and, this is the kind of term that we are actually most bothered about whenever 

we talk about the free energy calculation.  

 

So, now I want to extend this N, V, T ensemble to an N, P, T ensemble and the way to do that 

is I assume that the system is placed in an ideal gas reservoir and the system can now exchange 

volume with the reservoir and it cannot exchange the any other thing like the molecules or 

energy it can only exchange the volume with the reservoir because for the N, P, T ensemble 

the volume can change so essentially what we want to do is we want to extend the N, V, T 

ensemble to the N, P, T ensemble, so the only variable that changes is the volume is replaced 

by the pressure and therefore volume can now change and therefore we are assuming that the 

system volume can change the number of molecules remain the same and therefore we 

basically assume some reservoir outside having certain number of molecules and certain 

volume and, whatever volume the system is expanding or compressing that is coming from the 

reservoir.  

 

So, total volume of the system plus reservoir is constant total number of molecules is constant, 

the number of molecules of the system is a constant, the number of molecules of reservoir is 

constant. 
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In this case M - N is constant and N is constant, so basically N and M are constant and V0 that 

the total volume is constant but V is not constant and that would be an easier way to go form 

an N, V, T ensemble to N, P, T ensemble.  

 

Keep in mind, that this prescription although is we are making it for the N, P, T ensemble does 

not mean that we are actually simulating the molecules in the reservoir what we will see in the 

next class is that just by doing the simulation of the system itself I can include the reservoir 

effect formally and the reason is I already know the partition function and the free energy of 

the ideal gas and therefore I do not need to simulate the ideal gas reservoir, I will only simulate 

the system but I will allow for the exchange of volume and that will provide me an extension 

to the N, P, T ensemble.  

 

So, with that I want to conclude this lecture in the next lecture we will go through the math and 

derive the metropolis algorithm for the N, P, T ensemble, so I want to conclude with this. 

 

Thank You.  

 


