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Hello all of you. So, in the last couple of lectures we have been discussing the molecular 

dynamics or MD scheme. Before that we have looked at the particle simulations and the Monte 

Carlo methods. So, in this lecture we will start talking about the numerical implementation of 

the molecular dynamics scheme.  

(Refer Slide Time: 00:44) 

 

So, as we have set out in the last lecture. We can write the equation of motion in Cartesian 

coordinates for molecular dynamics as the following. So, where ri double dot is the acceleration 

the second derivative of position of particles with respect to time. 

𝑚𝑖𝑟�̈� = 𝑓𝑖 

And this equation itself is a second order differential equation. So, we need two initial 

conditions for the position and the velocity at time t equal to 0. And we discussed that we can 

write it as two first order ordinary differential equations. 

�̇�𝑖 =
𝑝𝑖

𝑚
 



�̇�𝑖 = 𝑓𝑖 

One for the definition of momenta and other for the Newton’s laws of motion essentially a 

representation of the equation of motion in terms of first order ordinary differential equation.  

 

In addition to this, in most cases we also have some conservation equations that has to be valid. 

For example, when we are working in the macro canonical or NVE ensemble the energy of the 

system has to be conserved.  

(Refer Slide Time: 01:44)  

 

 

Similarly, in many cases we may have some total momentum conservation that is if I sum over 

the momenta of all the particles in system that has to be constant. In certain cases, we also have 

conservation of angular momentum that is defined as the position dot crossed with the 

momentum of particle again summed over all the particles. It is not true in every MD case but 

in certain cases this also has to be there.  

 

So, these conservation equations should be satisfied along with the equation of motion and we 

should make sure that whatever algorithm we are building is satisfying the conservation 

equation. It turns out that it is not always valid for the numerical algorithms. And in those cases, 

it is really important that our departure from the conservation equation should be somehow 

corrected for or accounted for in how we analyze the results or how we implement the 

algorithm. 

 



So, this is basically the scheme that we use in molecular dynamics. It is preferred to use a 

simpler finite difference scheme because this really has to be something, that has to be robust 

over I would say computation over long times. So, any particular scheme containing many 

steps and all that is typically may be giving rise to some more accuracy but it is not robust 

enough and simpler schemes are always preferred. Having said that it is preferred that we 

should do it for the time steps as small as possible, because as we increase the time step the 

error in the scheme or the difference from the accurate integration if we could do the integration 

increases and therefore, we should ideally do it for δt going to 0. It turns out that as we decrease 

the time step in order to simulate the same time, we require to, perform more MD steps and 

therefore, the computer time also increases as we decrease the time step and it is always a 

compromise therefore of what time step we can use. 
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It turns out that for atomistic MD simulations the typically used time steps are of the order of 

1 femtosecond that is 10 to the power minus 15 seconds.  

𝛿𝑡~1 𝑓𝑠 = 10−15𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

Any steps higher than that result in typically numerical errors which cannot be ignored or some 

instability in the computational algorithm. So, having said that the; basic idea remains the same 

as with any finite difference scheme that is, if I know the position and velocity at time t, I can 

basically discretize the two first order differential equations. And use that to get the position 

and velocity at time t + δt. This is essentially what we are trying to achieve from finite 

difference scheme. 



𝑟𝑖(𝑡) → 𝑟𝑖(𝑡 + 𝛿𝑡) 

𝑓𝑖(𝑡) → 𝑓𝑖(𝑡 + 𝛿𝑡) 
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And what is desired from the scheme I have already said it has to be robust. But more 

importantly it has to be fast. It should require less memory that is typically not a consideration 

in most CPU machines. But nowadays it has become important or it has become I would say 

possible or feasible to do computation using GPUs which are much cheaper alternative to CPUs 

but there is more memory limitation. So, in order to implement a finite difference scheme that 

can harness the power of GPUs, we have to make algorithm that is requiring less memory that 

is true for GPUs. For CPUs it is typically not a big deal but nonetheless we should prefer 

algorithms that require less memory. It should permit the use of longer time steps that is, if I 

use longer time step. First of all, the integration should be numerically stable we should not get 

any divergence or any kind of instability in the simulation.  

 

Having said that it also has to be reasonably accurate and these are both these things are 

something that we must keep in mind in order to choose the time step of our simulations. And 

finally, we should be able to duplicate the classical trajectory as closely as possible. And also, 

our algorithm should be able to satisfy the conservation laws and these two things are actually 

the most critical part that determines whether algorithm is good algorithm or bad algorithm.  

 

If there is large violation from the conservation laws, if there are significant departures from 

the trajectory in those cases the algorithm is definitely not a good algorithm. And finally, it has 



to be simple in form and ease to program that is again not a big concern now a days because 

mostly, we use software’s for MD calculations but having said that for programmers or 

developers at least this is also an important point to keep in mind.  

 

So, it turns out that an ideal algorithm that meets all these objectives to sufficient precision is 

yet to be invented. And we always make some compromise one way or the other depending on 

the application that we have in mind or the machine we are working with we really have to 

choose an algorithm that is best out of the possibilities. And there is no one algorithm I can say 

that can meet all the objectives in all the possible application or all the possible architectures.  

 

So, one of the most common schemes that is implemented in most software’s is the velocity 

verlet scheme for integrating equation of motion. It is a finite difference scheme. And the way 

it works is like. Let us say for example, if I look at time t and I know the position, the velocity 

and acceleration that is I know the force at time t because if I know the force, I can find the 

acceleration of all the particles. Then for every particle I can go ahead and find the position 

and velocity at time t + δt by doing the following. 
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So, first what we do is we half advance the velocity that means if I am having the initial time 

point as t and the new time point as t + δt. So, the objective is that I know the position, velocity, 

acceleration here and I want to find the position, velocity here. Then in this case what I first do 

is I pick the midpoint of the interval. And compute the velocity at the midpoint this is what we 

mean by half advance. And this clearly is given as the velocity at time t + half δt multiplied 

with the acceleration this has to be the case.  



𝐻𝑎𝑙𝑓 𝑎𝑑𝑣𝑎𝑛𝑐𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑣 (𝑡 +
1

2
𝛿𝑡) = 𝑣(𝑡) +

1

2
𝛿𝑡 𝑎(𝑡) 

 

So, for this interval essentially between t 2 t + δt by 2, I am assuming the acceleration to be 

constant and equal to the acceleration at time t. And then I use the simple equation of rectilinear 

motion and we get the expression of the velocity at time t + half δt.  

 

And using this velocity that is the velocity midway between t and t + δt, I now find the position 

at t + δt we could have used the velocity at time t in place of velocity at time t + δt that is the 

standard Euler scheme we could have used that. It turns out that the procedure of half advancing 

velocity and using the velocity at midpoint instead provides more accuracy and stability to the 

algorithm.  

 

So, then we simply compute the new position as the old plus delta t multiplied with velocity at 

the midpoint.  

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡(𝑣 +
1

2
𝛿𝑡) 

And then I find the new acceleration at time t + δt. And finally, I compute the velocity at time 

t + δt as the velocity at t + half δt + δt multiplied by acceleration at time t + δt.  

𝑣(𝑡 + 𝛿𝑡) = 𝑣 (𝑡 +
1

2
𝛿𝑡) + 𝛿𝑡 𝑎(𝑡 + 𝛿𝑡) 

 

So, in the very beginning we are kind of doing some sort of an explicit scheme and towards the 

end we are doing some sort of an implicit scheme that means that in the beginning in the first 

part of this the new velocity depends on only the previous velocity and acceleration but towards 

the end the new velocity depends on also the new acceleration. So, in some sense it is an 

implicit scheme. But in reality, we have already computed the acceleration using the force 

value at time t + δt and I can find the forces because we have already found the position.  

 

So, it really works as a nice trick of finding the velocity at midpoint and using that to first 

update the position then update the acceleration and finally update the velocity. And it turns 

out that it really works very well for most of the cases and then once we have done that then 

we have found the position and velocity and also acceleration at the new time.  

 

 



Now I set that equal to my old time and use that to find the position, velocity and acceleration 

at the following time step and that would be at t + 2 δt and we can keep on doing it until we 

have done the simulation for the time over which we want to simulate the system.  

 

So, the next thing in an MD simulation is in sometimes we have to control temperature. So, 

what we have discussed so far was assuming that we are doing simulation in the NVE or micro 

canonical ensemble.  
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If we want to simulate in the canonical or NVT ensemble, then we have to have some 

mechanism to control temperature that means we have to have some mechanism to simulate 

the presence of a bath that can control the temperature of the system and if you recall we are 

not really simulating bath in our molecular dynamics we are only simulating the system 

although in the thermodynamic ensemble picture we had discussed the system was in infinite 

bath and I am looking at many systems in that infinite bath, when I am doing an MD simulation 

I am only simulating the system not the bath and so there has to be some mechanism essentially 

to simulate the effect of an infinite bath if I want to control the temperature.  

 

And there are two clause of methods to achieve that, one is the stochastic method and second 

the Deterministic method. In the Stochastic methods comes methods like Andersen 

Thermostat, Langevin Thermostat and Dissipative Particle Dynamics there are some standard 

methods that are being used. On the deterministic method there are methods like Velocity 

Rescale or Nose-Hoover method and there are others as well. 
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So, just to give you an example of the stochastic method. In the Andersen Thermostat what we 

essentially do is we use the fact that velocity distribution at equilibrium at temperature t should 

essentially follow the Maxwell Boltzmann distribution that is well established in 

thermodynamics and that goes like the following.  

𝑓(𝑣) = (
𝑚

2𝜋𝑘𝐵𝑇
)

3
2

exp (−
𝑚𝑣2

2𝑘𝐵𝑇
) 

So, the probability density to have a velocity of magnitude v is given by this particular function 

and in fact, this function is what we use to generate the initial momenta of the particles in the 

simulation. So, if I want to simulate a temperature t, I first generate an initial distribution using 

the Maxwell Boltzmann distribution.  

 

Now what is going to happen is as the system evolves the distribution will start to depart from 

the Maxwell Boltzmann distribution because of the collisions between the molecules and so, 

in order to control the temperature then what we can then do is we try to basically refresh the 

velocity in a manner that basically goes back to the Maxwell Boltzmann distribution at that 

temperature.  

 

So, essentially, we start with a Maxwell Boltzmann distribution and then as the system evolves 

and we start to depart from there that means our temperatures depart from the temperature I 

want to put I will basically try to refresh the velocity of particles so that we can recover the 

Maxwell-Boltzmann distribution and the way we do that is we do not refresh velocity of all the 

particles we randomly select some particles with certain probability every so often with certain 



time intervals. And then we refresh their velocity that is we reset their velocities in order to get 

to the Maxwell Boltzmann distribution and this can be done with a probability of some ν δt. 

For example, where; ν is the collision rate per particle.  

 

So, the more refreshing we are doing the easier would be to control temperature. But then 

farther we will depart from the true dynamics because every time we do this kind of refreshing 

we are also not quite stimulating the true dynamics because true dynamics was only there in 

the NVE ensemble, when there was no external interference with the motion of the particles. 

Now since we are randomly choosing particles and providing them velocities this is clearly not 

following the true dynamics in a sense it simulates the effect of bath but it does not quite capture 

the true dynamics as in the NVE ensemble. We can only hope that the classical trajectory for 

the NVT ensemble case would be reproduced at least to some approximation, when we are 

doing the NVT ensemble simulation.  

 

Having said that; in many applications the classical trajectory is not of our interest we want to 

use the MD as a method to sample points in the phase space. So, as long as the motivation is 

not to look in detail how we are going from one state to the other. We can still use MD to 

sample points on the phase space and that part of it is unaffected by our application of 

thermostat.  

 

The next method that is also a Stochastic Langevin Thermostat. This is also used in the non-

equilibrium simulations like Brownian dynamics but since we are focusing on the equilibrium 

behavior now let us keep the discussion of Brownian dynamics later.  
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So, in this case what we do is we slightly modify the equation of motion itself. So, we use the 

definition of momenta as it is, it is mass times velocity. But the Newton’s law of motion we 

represent by a modified equation where in addition to the force term that was always there, we 

also add two extra terms. 

�̇� =
𝑝

𝑚
 

�̇� = 𝑓 − 𝜁𝑣 + 𝜎�̇� 

 

And the first term kind of represents some sort of a frictional force or a drag force that is acting 

on the particle and the last term represents some kind of thermal motion that is introduced by 

using a random force. And both of these are essentially simulating the effect of bath. It turns 

out that we can relate sigma with zeta using a theorem called the fluctuation dissipation 

theorem. w here is found using what is called a Weiner process in random number theory and 

using this particular idea we can also basically establish that the temperature will remain 

controlled at temperature we want to do. So, we want to simulate the effect of temperature or 

the effect of bath by addition of these two terms in our equation of motion.  

 

There is another method called dissipative particle dynamics that is essentially same as the 

Langevin Thermostat. Except that we represent the Langevin equation in terms of the pair wise 

forces. So, the pair potentials can be written such as you will have additional terms because of 

the frictional force and additional term because of thermal part that is the sigma W dot part in 

this particular equation.  

 



So, next comes, the deterministic methods of temperature control. So, one of the; I would say 

most intuitive method is to basically rescale velocity at every step by some kind of a factor and 

the idea to do that is the following.  
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So, let us say if I start the simulation with the Maxwell Boltzmann distribution and we ensure 

that the v2 is proportional to temperature. As the simulation proceeds, we will start to deviate 

from that particular temperature. And what this would mean is v2 will not remain proportional 

to this temperature, the v2 that is during simulation proportional to some other temperature and 

we give it a name instantaneous temperature. That is to say that we can define a quantity called 

instantaneous temperature that represents basically the mean square velocity. In other words, 

we can use the equation like this where the kinetic energy of particle can be written as 

something like Boltzmann constant multiplied with the instantaneous temperature.  

𝑘𝐵𝑇~𝐾𝐸 

 

And since we have a way to figure out the new temperature, we basically rescale the velocities 

such that I basically multiply this both sides with T by TI and the new velocity therefore would 

be something like the velocity multiplied with square root of T by TI. And this would ensure 

that the mean square of the new velocity will again go like proportional to T. 

𝑣′ = 𝑣√
𝑇

𝑇𝐼
 

< 𝑣2 >∝ 𝑇 



 

And this will pretty much ensure that we are going back to the temperature that we wanted to 

work with.  

 

The next method is the Berendsen method wherein what we do is? We again use the idea of 

instantaneous temperature and the TI and T as my target temperature or the; controlling 

temperature. But now what I do is basically, I correct for the deviation from T rather slowly 

using some kind of a exponential method. In velocity rescale method it is quite drastic change 

because we rescale velocity of all the particles. In this case we do somewhat slower change and 

we keep a parameter τ that essentially controls how slow we are going to do the change.  

𝑑𝑇𝐼

𝑑𝑡
=

𝑇 − 𝑇𝐼

𝜏
=> 𝑇𝐼(𝑡) = [𝑇𝐼(0) − 𝑇]𝑒−

𝑡
𝜏 + 𝑇 

If τ is larger then, we are correcting for the deviation slowly it is called what is known as weak 

coupling. On the other hand, if τ is small, we are correcting for the temperature deviation very 

quickly and in that case, we call it a strong coupling. 

 

And in both these cases we basically have an exponential decay of TI to the target temperature 

T. And τ is essentially a time constant that determines how much time it roughly takes to get 

there actually the first order time constant to be precise. 
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Then finally there is a Nose-Hoover Thermostat. So, in this case we what we do is we modify 

the equation of motion and actually introduce a new degree of freedom that simulates the 

presence of bath. So, in this case you already have the first term of the equation in the previous 



slides as well but now I include a new term where I have some variable to represent the 

momenta of some arbitrary bath variable.  

𝑟�̈� =
𝑓𝑖

𝑚𝑖
−

𝑝𝜁

𝑄
�̇�𝑖 

𝜕𝑝𝜁

𝜕𝑡
= 𝑇𝐼 − 𝑇 

 

And for that variable, I write another equation that gives me how it changes with time it does 

not have a physical meaning as such except that using doing this helps to control temperature 

to a target value and just like tau in the previous case we have a parameter called Q in this case 

that is the called the mass parameter of bath. Because it has a unit of mass that again, does 

some kind of coupling with the bath by variation of Q, I can go from a strong coupling regime 

that means we can control temperature pretty quickly to a weak coupling regime where we can 

control temperature rather slowly. 

 

So, similar to the temperature control we also will need to control pressure if we work in the 

NPT ensemble and just like we have used thermostat for temperature control we use something 

called a barostat for pressure control. And the idea remains pretty similar to thermostat just like 

the Berendsen Thermostat we can also use a Berendsen Barostat. 

𝑑𝑃𝐼

𝑑𝑡
=

𝑃 − 𝑃𝐼

𝜏𝑝
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We can define an instantaneous pressure that represents the pressure at a point in the simulation 

and P is the target pressure or the controlling pressure where I want to go to. And τP again is 

some sort of a coupling parameter. So, for a small τP we will have a strong coupling and for 

large tau P we will have a weak coupling because it will take longer for the pressure to come 

back to the target value. 

 

And similar to the Nose-Hoover temperature coupling where we introduced an artificial 

variable for the bath. There is a Parrinelo-Rahman method that introduces an artificial degree 

of freedom to account for the effect of the bath.  

 

In that case the bath is kind of applying the pressure on the system or controlling the pressure 

of the system just like the bath was controlling the temperature of the system in the case of 

thermostat and since we are doing in the NVT ensemble the volume will change in the 

simulation the simulation box volume will has to be changed and while doing that the box may 

not even remain cubic all the time. So, you can think of like two ways of deforming it.  

 

It can be isotropic where it remains cubic or it can be an anisotropic change where the box may 

also change in shape and both of these are possible in most software’s depending on the 

application we can go for the isotropic pressure or we can have anisotropic deformation as well. 

In the anisotropic case what we make use of something called a pressure tensor, where 

essentially the pressure or the stress may vary along different faces of the simulation box.  

 

So, I told you about the strong coupling and the weak coupling so, which one to use? So, it 

turns out that a strong coupling is typically not preferred in the equilibration phase and the 

reason is that when we are using the strong coupling any deviation from the velocity that takes 

the temperature away from the controlling temperature is suddenly controlled by the thermostat 

and same is true for the volume change deformation. So, it turns out that it is not really helping 

in the equilibrium of the system because the system will equilibrate only by relaxing to different 

configuration and typically, the relaxation process involves sufficient deformation or sufficient 

velocity changes and the strong coupling kind of delays that equilibration process.  

On the other hand, when I am doing a production run then strong coupling will give you lower 

fluctuations in the properties and therefore it is more preferred in the production run.  

 



On the other hand, weak coupling provides relatively poor control but it takes lesser time to 

equilibrate because the system is evolving naturally kind of there is lesser interference by the 

Thermostat or the Barostat. So, in most cases it is preferred that we start with weak coupling 

relax the system to the temperature that we are interested in get near the equilibrium state. And 

then finally use the strong coupling in some cases, it is even better to use strong coupling from 

the beginning itself if the equilibration time is relatively small but in other cases where 

equilibration is an issue it is a good idea to start with weak coupling and then once the 

equilibration is over then switch to the strong coupling, because you will have large fluctuations 

in the case of weak coupling that is not good for the prediction of properties, for prediction 

properties in production phase, we tend to prefer the strong coupling.  

 

So, with that I want to conclude today's lecture what we have discussed is the numerical 

implementation of the molecular dynamics scheme. We have discussed the finite difference 

scheme especially the velocity verlet scheme. And then we discussed how can we control 

temperature and pressure in a molecular-dynamic simulation.  

 

In the next class I will discuss how exactly we can parallelize the molecular dynamics and what 

exactly we can compute out of the MD simulations, thank you. 

 

 

 

 

 

 

 

 


