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Hello all of you. So, in the last lecture we started discussing the Monte Carlo simulation of 

multi particles systems. We have already done the ideal gas example and I showed you how to 

visualize and make a movie of Monte Carlos simulations. We were already in the middle of 

the molecular simulation. We discussed the beauty of it already because once you have very 

nicely playing movies, they pretty much tell you how the system is evolving that is much more 

revealing than compared to the just the map of it that we discussed earlier.  

 

So, today, I will take the discussion a bit more realistic we discuss the hard sphere and soft 

sphere simulations where in addition to the movements there is also some energetic interaction 

between the particles.  
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So, let us start with first the hard sphere case. So, there are basically the hard sphere case. There 

is only one change from the ideal gas model and that is particles have a finite size and they 

cannot overlap. So, apart from that as long as the particles are not beginning to overlap, there 

is no such problem, there is no interaction but if there is an overlap happening then we should 



reject that move because in Monte Carlo we have an option of accepting and rejecting a move. 

So, you may imagine why I am doing in molecular dynamics, why it is a problem of molecular 

dynamics because in molecular dynamics we cannot reject any move. So, we have to make 

movements that prevent overlapping that is more difficult than making random movements and 

rejecting all the moves that give rise to overlap. Therefore, we can simulate hard sphere in 

Monte Carlo but not in molecular dynamics.  

 

So, the other problem is that since the energy function is discontinuous the forces are not 

defined, that is a derivative of the energy. So, in Monte Carlo, it is not a problem. So, the way 

we should do it is we should follow pretty much the ideal gas model approach. But whenever 

an overlap is happening we should reject and whenever an overlap is not happening we should 

accept, because there is no energy apart from the hard sphere energy.  

 

So, with this particular idea if I want to simulate one of the things that I have to compute now 

is the distance between the particles. Because the hard sphere interaction is like this. So, my u 

rij versus rij will be something like that. That is it is going to be infinity. When we are less than 

the overlap distance it is going to be zero beyond that. In other words, we need to accept only 

when rij greater than equal to r overlap.  

 

So, therefore we have to compute the distances for every pair of particles and figure out if any 

of them are less than the overlap distance. If it is less we reject it, if it is higher we have no 

other problem. So, in any particular frame or at any particular Monte Carlo step if there is even 

a single overlap we should not accept that particular movement. So, now it turns out that I can 

define clearly the r as something like- 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
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2
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2
 

 

So, this involves a square root operation and I was telling you in some other lecture that square 

root is difficult for the computers, it takes more time. So, we should as a rule avoid as many 

square roots as we can because those will improve the efficiency of the code because you may 

imagine since we have some n square pairs, we are going to have n square square root operation 

after every Monte Carlo step. So, in order to avoid that we have to remove that particular 

operation. It turns out it is very easy in this case. Instead of saying this I can say rij
2 is greater 

than or equal to r overlap square and this quantity is anyway constant.  



 

So, therefore, you simply can work with the squares of the distances as it turns out that even in 

more complicated cases it is often possible to work with only the squares of distances as 

opposed to the actual value. So, I will simply evaluate the square of that is I would say one of 

the tricks that we do in Monte Carlo simulation. 

𝑟𝑖𝑗
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Now there is one more point that we have to be bothered about and that is the interaction 

between the particle and its images in the system because what I was telling you is that even if 

we are simulating only that central simulation box I assume that the same configuration is being 

repeated in all the image boxes that we have. Now you may well say that the images essentially 

was the same particle it was moving. So, why exactly we are bothered about images apart from 

the fact that one particle will leave then the other will enter only in that case the image would 

be important in other cases it is not important and the answer is, in fact, no because let us say 

for example if this particle wants to cross the box this particle is actually pretty far from it.  

 

So, you may imagine that this particle has no influence on small movement of particles. So, let 

us say if this is A and this is B so when A crosses the box B is on the other side. So, what role 

does B has to play in that? But A can very well cross it and overlap with B prime that is the 

image of that should be allowed and the answer is no because we have the whole idea of images 

is that we should allow free movement through every simulation box. So, B prime is actually 

the same particle as B. So, if I overlap with B prime then this basically corresponds to an 



overlap of an A prime with B because as A comes out another A comes from the opposite end.  

 

So, therefore what I was trying to convince you is it is not that we have to consider the 

interaction between the particles only in the box but in principle we should also consider the 

interactions with all possible images everywhere. And now suddenly the problem becomes 

completely intractable because just imagine you already had n square pairs of particles with 

particles in the simulation box and now if I also account for the particle image interaction, we 

are pretty much going to like infinitely many possible pairs to worry about if indeed the particle 

image interactions are important. So, two things help us here.  

 

The first thing is we assume that range of interaction is much less than the box size. So, beyond 

that small range where the interactions work, the interactions have no role to play. So, therefore 

if that range is much higher than box size then in that case we should only look in the 

neighborhood of A. So, I should not go too far from A here. I should look at only the small 

neighborhood of A and compute interactions in that regime. So, let us say for example that is 

defined as a neighborhood of some radius ri or rc.  

 

So, what is that neighborhood in the case of a hard sphere interaction? It is not very difficult to 

see. So, beyond that r overlap distance there is pretty much no problem. So, if the particles are 

at a distance more than r overlap why should we care? So, we should only look at the distances 

which are less than the overlap distance only then we see an interaction in those cases we are 

rejecting the move.  

 

In general I was telling you that interactions can be of various shapes and then the interactions 

may not decay to zero even at long distances and in those cases we need to make an assumption 

and I will come to that in the next example of a soft sphere gas but for the hard case it is no big 

deal.  

 

So, therefore we can only consider in the neighborhood. So, that solves the problem of particles 

with all the images because many of the images are going to be beyond the interaction range 

and therefore essentially we will be looking at only the nearest image of the particle. So, the 

next thing then is then how to account for the nearest image of a particle? And I will show you 

an example in one dimension. The same idea we can employ in the three dimensional case.  
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And the idea is called the minimum image convention. So, let us say that this is my original 

box. And I am looking at two particles located in different locations. That is my A and B. And 

A is located at 0.4 L and B is located at minus 0.4 L. So, now clearly A and B are going to have 

their images in the adjacent box. So, you will have another B prime that is L distance to the 

right of B that has to be minus 0.4 L + L, that is 0.6 L and then we will have an A prime that is 

0.4 L + 1 that is at 1.4 L.  

 

 

So, now if I look at the A particle near to it there are two options for B. One is B that is located 

in the original box and the image of B that is located on the adjacent box. So, if I look at the 

distance between A and B prime here, that is actually 0.2 L. On the other hand if I look at the 

distance between A and B, that is actually 0.8 L and therefore I should only consider AB prime 



because we are interested in the pairs that are nearest to each other because pairs which are 

farther are going to have no interaction because I have assumed that the range of interaction 

should be much smaller than the box size. So, only the nearest combination of the particle-

particle or particle-image is going to matter and any further than that is going to be not 

important.  

 

So, a better way to do that is I can say that I will look at a box that is centered around A. So, A 

is at 0.4 L. So, instead of looking in the original box, I can look in a box centered at A of same 

length as the box. So, I define a new box here that is centered at A. So, it is - 0.5 L from 0.4 L. 

That is - 0.1 L to 0.5 L to the right that is 0.9 L. So, this becomes the box to consider for 

interactions of A.  

 

 

So, for every particle that is located in the original box - 0.5 to 0.5 L, we are going to have an 

image in the new box. So, therefore instead of like looking in the original box, I can look in the 

new box for a particle and this I can do for every particle in the system. And the reason why 

we can do that another way to think about it is that our choice of origin as the center of the 

simulation box is arbitrary even if I shift that origin to somewhere else then also I will have the 

same system because the system repeats itself. So, you have the same cube stacked over each 

other. So, even if I make the center of the cube as the center of the box center of the phase as 

the center of the box, it does not really matter because the same thing will repeat itself. As long 

as the box size is L any box is a valid box because it repeats itself.  

 

If there was some other boundary condition like fixed boundary condition it is no longer true 

that really comes as a virtue of the periodic boundary condition because anything that leaves 



the image of that comes from the other end. So, therefore the location of the center of the box 

is completely arbitrary.  

 

Now, you may imagine that this is going to be complicated because for every particle in the 

system and there are n particles we have to think of a different box. And that is clearly not the 

way we should do it because then you have n possible boxes and I have to worry about the 

coordinates of the n possible boxes. It turns out that all that effort is not really needed you can 

just imagine that this idea is what we are using but for the computation of distance, we can 

simply do a small arithmetic manipulation with the original particle positions in the original 

box using that I can find the distance for the case of the minimum image and the way that works 

and I am using in the code here is that I am saying that I will compute something like absolute 

value of xA – xB 

 

So, there are A and B located in the original box. I compute the absolute distance. If it happens 

to be less than 0.5 L then we can clearly see that it is going to be present in the new box centered 

around A because around the box centered at A with length of L, I am starting from 0.5 L to 

the left of A and going until 0.5 L to the right of A. So, if xA - xB is already less than 0.5 L we 

simply can assume that the distance even for the minimum image case is going to be xA - xB 

in this case.  

 

But if this is not true then we have to compute the minimum image in the box keep in mind 

that you can only have one image in the box. If the particle is there image cannot be there, if 

the image is there then the particle cannot be there. There cannot be two images in the box 

because every image is located at L distance from each other. So, there cannot be two images 

in the box. So, if xA - xB turns out to be less than 0.5 L, then the particle is located the B 

particle located in the minimum image of A.  
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And therefore I should simply take the distance as that particular value. If this is not true then 

what we do is a manipulation like 0.5 L minus the d modulo 0.5 L. And modulo here gives the 

remainder once we divide d with 0.5 L and let us see how it works in the case that we were 

doing.  

 

So, in this case clearly the original position of B was not lying in the minimum image around 

A. So, what we do is we compute 0.5 L minus the quantity d modulo 0.5 L. The d in this case 

is absolute value of 0.4 L minus 0.4 L and that is going to be equal to 0.8 L. So, we will have 

d modulo of 0.5 L and that is 0.5 L - 0.8 L modulo 0.5 L. So, if I divide 0.8 L with 0.5 L, the 

remainder is going to be 0.3 L. So, this is 0.5 L minus 0.3 L. That is equal to 0.2 L and this is 

the distance with the nearest image of B starting from A.  

 

So, this really works and we can show that it works even if I jump multiple boxes to the right 

and left and this is the idea we always use whenever we compute the distance. There are other 

ways to code that but this is one of the example. So, now I have to do it for all the three 

directions x, y and z and this is what we are doing along x, y and z direction and then I want to 

start the Monte Carlo simulation. 

 (Refer Slide Time: 23:04) 



 

So, first of all, I have to generate the coordinates and then I have to start moving it. So, the only 

change from the ideal gas code will come here is I have to basically check for the overlap 

between the particles. So, whenever I am going to move the particle I will have some sort of a 

check for whether it is an overlapping or not and if it is overlapping in that case we will not 

accept the move, otherwise we will accept the move. So, you see I have added a while loop 

here. So, what the while loop is doing is it is running it until overlap is not found. So, when 

overlap is found, check overlap is true. So, I am running it until I can generate particles without 

any overlap and that has to be done only in the initial step because in the initial step I want to 

generate positions of all the particles so that they are not overlapping to begin with.  

 

Now I start the Monte Carlo simulation. So, I want to again save files and all that as I have 

been doing and then what will change here is the condition of accepting and rejecting unlike 

the ideal gas case where accepted every move in this case I will reject according to a distance 

criteria. If distance is higher than the overlap distance and we compute the square of the 

distances as I was telling you we will accept it. If distance happens to be less than that then we 

reject it. So, σ2 in here in the code refers to the overlap distance squared and this is what we 

are doing. So, now if I accept it, I will store the new coordinates. If I reject it then I do not store 

the new coordinates. I simply move to the next system.  
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However, we keep track of how many moves are we accepting. So, I basically have a counter 

that does a plus 1 every time we accept and I keep count of how many steps we have taken that 

is the initial number of steps I have started with and I can get the percentage of moves I am 

accepting. So, in this particular case, I am for example accepting 46% moves in this case. Now, 

let us say for example, if very few moves are being accepted what can we possibly do.  

 

So, it could be that my step size is large because if the step size is large, there is more likelihood 

of overlap because if your step is very small then the particle is only moving in the vicinity of 

it. So, therefore the overlaps are less likely. If I give larger displacements overlap become more 

likely and therefore there are more rejections which are happening. So, in that case I should 

reduce these step sizes.  

 

On the other hand, if I am accepting almost all the moves, it means that I am probably not 

having overlaps at all. So, it will do no harm to actually increase the step size and the reason 

why we want to increase it is because if I increase the steps size then I would be simulating 

behavior over longer distances within less time because every Monte Carlo step is costing us 

computational time.  

 

So, with smaller step size, it will take more time to simulate something as opposed to the larger 

step size. So, again, just like for example that we have discussed earlier of error versus 

computational cost. In here as well, our choice of step size is determined by how much moves 

are we accepting. If we are accepting all the moves we should basically increase the step size. 

If we are rejecting all the moves we should reduce the step size and in general as some called 



kind of a thumb rule we should have the step size such that we are accepting like 40 to 60% of 

the move.  

 

Now, in the example here what we are saying is we do not have really a constant step size. We 

have a maximum possible value of step size. So, we can tweak that in the example when we 

had a constant step size you can simply replace step size. Ultimately it does not have any 

physical significance so as to speak because in Monte Carlo we are interested in sampling 

configurations and the configurations are not really connected to each other by any means. The 

way we are doing it, our objective is to sample different states of the system. So, we are not 

trying to do any dynamics so that larger step size will give me more error or something of that 

sort it is just our convenience of choosing a step size to generate different configurations and 

we should choose it such that it is efficient.  

 

So, if I am using lower step size then I am sampling less efficiently, I am exploring the free 

space slowly. If I am using a larger step size then I am sampling more efficiently but it also 

depends on how many moves are being accepted. And you should go with a thumb line like 40 

to 60% to identify what can be a good step size for the problem. This is not to say that the 

equilibrium behavior will change if you are accepting only 20% moves. It may take longer to 

equilibrate but you should get the same equilibrium behavior provided you will run long 

enough.  

 

So, whatever we are doing here is simply increasing the efficiency of the code or making the 

equilibrium faster. It has no consequence on the equilibrium behavior as such. The next 

example we do is instead of like just rejecting moves that are overlapping we actually add an 

interaction between the particles and the interaction that we add is of the form popularly known 

as the Lennard Jones interaction. And it is something like this.  



. 
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So, it has a repulsive component and it has an attraction component and if you think about it, 

it falls over very long distances. If you really want uij to be 0 but we can imagine a finite value 

of r beyond which the interactions are very small. Let me call that as rc.  

 



Earlier I was saying you when I was discussing the hard sphere case that our interaction range 

should be much smaller than the box size. So, why not manually choose an interaction range 

that will make it happen and there is one advantage of doing that tells me that I can define 

something called a cut off distance. Unlike the actual value of the rc in the example that I was 

telling you it tells me when the interaction goes to 0. I will use an arc cut that is a cut off 

distance that is something that we can choose and therefore if I want to if I have computational 

power I can run for larger value of r cut and that will be more accurate in comparison to smaller 

value of r cut if I really want to capture this particular interaction. This is the first point that I 

wanted to make here.  

 

The second point is let us say if I do that what will happen is my new interaction will look like 

this because beyond the distance r cut I am assuming that there is no interaction. I am not even 

counting those interactions. So, it goes to zero beyond that. So, I am approximating the actual 

interaction that is the red line with the green line and where we have a small discontinuity at 

this particular point.  

 

 

As such it is not a problem in Monte Carlo simulation because we are not interested in forces. 



But it turns out that it can give you some discontinuity in the final result because there is some 

jump that has been artificially introduced by the r cut.  

 

So, the practice is that when you do that you also shift the potential a bit so that it kind of 

becomes smooth at this so it really falls down to zero. So, whatever that small discontinuity we 

are having let me call it e cut that I basically subtract from the potential or add to the potential 

so that it falls down to zero smoothly and the dotted line is what I call a shifted and truncated 

potential.  

 

 

I want to leave the discussion of the actual form of potential later when we do the molecular 

dynamics. But in this particular example, we are using the shifted and truncated Lennard Jones 

potential that has this r cut variable built into this that is we are considering interactions only 

within a cutoff distance. It really reduces the number of pairs, for which in the forces because 



if the distances happen to be more than cut off we simply do not compute the forces or energies 

in the case of Monte Carlo here.  

 

So, now that is one change that we have. So, we have defined an energy function that is 

basically computing my uij between the pair of particles and now in the code again I can 

generate the initial configuration using the previous code of hard sphere that is what I am doing 

right here. So, I have an overlap check built into this because even in this case the overlaps are 

coming with large energetic penalty. It is not like hard sphere. It is not going to infinity but the 

energetic penalty is high. So, why to do that? So, we begin with a configuration that has no 

overlap and we do the Monte Carlo simulation. In that case we also add the energetics 

condition.  
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So, I am interested in finding the ΔU which is equal to the U in the new configuration minus 

U in the old configuration. This is what we are interested in finding. 

Δ𝑈 = 𝑈𝑛𝑒𝑤 − 𝑈𝑜𝑙𝑑 

 

So, this will depend on the r in the new configuration and r in the old configuration. Now in a 

given Monte Carlo step I am still moving only one particle. So, only the interaction of that 

particle with every other particle will change. So, I will not compute the entire U. I will only 

compute the energy difference that has resulted in the pair interactions of that particular particle 

but that particle with every part in the system. Let us say if I am moving particle i, I will 

compute ΔU for particle i interactions with j not equal to i and j equal to 1 to N.  



 

So, I can go over all the particles except that particular particle and see how much the ΔU has 

changed and for each of those cases I have to again compute the pair interactions where i is 

fixed but j is changing. And this is what we are doing in this particular code everything else is 

very similar to the hard sphere code, except when I am accepting or rejecting the move I do not 

have a simple overlap condition criteria. I have to first compute the energy difference that will 

result from the move that is why I am finding the new and old distances.  

 

First of all this case is when i is equal to j here. So, in the code i is presented by m. So, i I am 

using for something else. So, then this is where you can see in the code so I am putting the 

condition of cut off. So, I check for whether the distances are less than cut off then I do this 

otherwise I do this and so on. And then finally I apply the metropolis criteria. So, if Δenergy is 

less than 0 that means I am going to a lower energy state. So, I clearly accept the move. On the 

other hand if the ΔU is higher than 0, then I accept with a probability of exponential of minus 

ΔU by kB T. So, the Δ in this code is the entire thing, Δu by kB T.  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 = exp [−(
Δ𝑈

𝑘𝐵𝑇
)] 

 

And it has to be done with this probability. So, where to implement that is I generate a random 

number between 0 to 1 and I find whether this quantity is more than that random number I 

generate in the range 0 to 1.  

 

So, let say, for example, if this quantity is equal to 0.1 what is going to happen? So, if I generate 

between the range 0 to 1 then if the value that comes out is more than 0.1 in that case this 

condition is not met when values are less than 0.1 then only this is met. And what is the 

probability that value is going to be less than 0.1? If I generate in the range 0 to 1 is 0.1. So, 

therefore I am able to accept a move with a probability of 0.1. Now if the probability becomes 

0.2 and I generate in the range 0 to 1 then the number I generate will be in the range 0 to 0.2 

with a probability of 0.2 because I am generating in the range 0 to 1 and I am generating it 

uniformly.  

 

So, it can be just anywhere between 0 to 1. So, the probability for 0 to 0.2 ranges 0.2 probability 

for 0 to 0.5 range will be 0.5 and so on. Clearly as the probability increases we will have more 

range that we can cover. At probability equal to 1 it is true always because every number 



between 0 to 1 is less than 1.  

 

So, this is what this condition is doing with the again, this is a very nice mathematical trick that 

implements the condition that I want to accept with a certain probability without worrying 

about like too much math, how many outcomes are there, what is the total number of outcomes 

and so on. A very beautiful trick takes care of the fact that I have to accept the moves with a 

certain probability.  

 

So, in that case, I accept that I have a flag that is counting rejections if it is true, then we reject 

otherwise we accept. So, if it is not true, then we expect the rejection or the reject the move. 

So, and then I store the new coordinates only when the move is accepted just like the earlier 

case and we pretty much print the new coordinates in the file as earlier.  
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So, compared to the hard sphere code, there are only few changes in soft sphere code that is 

why I did not go through this code entirely and that is instead of simply rejecting moves that 

are resulting in an overlap, now we find the energy change ΔU that energy change gives me 

the metropolis criteria of accepting or rejecting move. If ΔU is less than 0 we always accept, if 

ΔU is higher than 0 then we accept with the probability of exponential of minus ΔU by kB T. 

And in this case we already work in kB T units. So, my delta in the code is ΔU by kB T.  

 

So, with that particular discussion, I want to conclude the discussion on Monte Carlo scheme. 

I will revisit the soft sphere simulation problem in the context of molecular dynamics wherein 

we will discuss the idea of the cutoff and we will Lennard Jones interactions in somewhat more 



detail.  

 

So, keep in mind that all the discussions of the interactions or cut offs or any kind of numerical 

scheme that I am using is true for both Monte Carlo and molecular dynamic simulation because 

many of them are related to computational efficiency. So, if the same feature is happening in 

MD simulation, we should use that particular feature. So, from that perspective in terms of the 

computer we can use the same tricks in Monte Carlo and molecular dynamic simulations 

provided that they are applicable in those situations, same applies to a choice of boundary 

conditions. So, when I apply for example, the periodic boundary condition and we discuss the 

idea of the images, minimum images all of this will translate, also in the case of the molecular 

dynamic simulations because the system remains the same. So, this entire specification of the 

interactions or the boundary conditions are what is characterizing my system. So, system 

specification will remain the same even the way we initialize it can also remain the same 

between molecular dynamics and Monte Carlo simulation what however is changing is how 

we are evolving the system.  

 

So, in molecular dynamics, we do not have any acceptance and rejection and in Monte Carlo 

we have acceptance and rejection. In Monte Carlo there is no notion of time. In molecular 

dynamics we have a notion of time but the prescription of the system the way we are building 

the system, the way we are defining the boundary conditions are going to be pretty much the 

same and therefore I am postponing some of the stuff that I wanted to discuss in the Monte 

Carlo simulation for discussion in the molecular dynamics part of the course but keep in mind 

that the same idea will also apply in Monte Carlo.  

 

 

So, with that I want to conclude the discussion today, thank you. 

 

 

 

 

 

 

 

 


