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Hello all of you. So, in the last week, we have been discussing the basics of the Monte Carlo 

simulation method. So, in this week, we will discuss how do, we actually numerically 

implement that on a computer and we will first do the basic algorithms and then we will discuss 

some of the case studies where we can employ the Monte Carlo simulations. 

 (Refer Slide Time: 00:54) 

 

So, before I proceed I want to mention here that all the programs that I will do will be done in 

the python language. If you look at the actual molecular simulation programs, they are mostly 

written in either C, C++ or FORTRAN but python is much easier to work with that is why I 

have chosen python. But keep in mind that if the efficiency of the program is not so good 

particularly for very large systems, then we typically have to move to C or C++ but for the 

purpose of demonstration I think python is much easier language.  

 

So, if you are comfortable with python, it is great. If you are not very comfortable it is very 

easy to learn you can go to the python website and learn the basics of the python language. I 

will try to go through some of them in the course that I will discuss but clearly whenever you 

are in doubt, you can go to the python website and that is a great reference for learning python.  



 

Now there are several development environments in python. The one I will use is Jupyter and 

just like python the Jupyter also is kind of open source, you can download for free and when 

you download it you typically download some kind of library of pythons in addition to the 

basic python code. The ones library that I would be using are numpy and matplotlib but there 

are a whole host of libraries like scipy and all that.  

 

So, it is better to get an installation of python. One of the packages where python comes 

packaged with all these libraries is the Anaconda package you can download on any platform 

that you have a Windows, Mac or Linux and you should be able to install then the Jupyter 

notebook and typically when you open the Jupyter notebook it opens in a browser that does not 

to mean that it needs internet to run. It can be offline but it is just more comfortable to work in 

the browser. It does not have any separate editing thing, you can just operate in the browser.  

 

So, all the examples I will show you will tend to show in a browser but keep in mind that the 

codes you can pretty much code in your computer. I will try to provide the codes later in the 

course. I will tell you where to get it from but for the time being I am pretty much giving you 

all the code or at least the code snippets that are necessary for whatever we will discuss.  

 

So, with this background, let us first start with the first demonstration of the Monte Carlo 

scheme where we are not doing thermodynamics where we are interested in the computation 

of π. I already have demonstrated the algorithm or how can I use Monte Carlo for π 

computation.  

(Refer Slide Time: 04:06) 



 

Now I want to do the same thing on a computer. So, just to, quickly recall. The idea was I will 

look in a unit circle and one quadrant of that because four times that will be the area of the 

circle. So, the area of this thing is therefore π by 4, excuse my drawing. So, this is 1 here and 

1 here. It is indeed a circle, the quadrant of that and the way the Monte Carlo should work is I 

imagine a square again of unit length and unit width and I generate points within that square 

and then the number of points that lie within the circle. So, the number of points in the circle 

divided by total number of points that I generate in the range x going from 0 to 1 and y going 

from 0 to 1 and that will give me that ratio of the areas that is π by 4 divided by 1 that is the 

area of the square and from therefore I can get the value of π.  

(Refer Slide Time: 05:39) 

 

 

Now let us see how it is done on a computer. So, essentially whenever I start a python code, I 



first import all the libraries that I need for the python code and there are several ways I can 

import the libraries. If I am using many functions from that library I can just import the entire 

library something like let us say I am using a numpy library. If I say from numpy import* I can 

import the entire library and of course as you may expect since that is ultimately going to be a 

burden on the RAM of the computer that is typically not a good idea if you are using only some 

command in the library.  

 

So, you can also import a particular function let us say my code only needs the square root 

function I can say from numpy import sqrt and now the code can interpret sqrt because it is 

coming from the numpy library. So, only one function. We can add more functions by adding 

a comma, let us say sqrt comma some other function name and so on and then what we can 

also do is and that is necessary for when we are using the code with multiple libraries because 

sometimes what may happen is that the same function name is defined in two libraries that you 

are using. So, in that case there can be a possible conflict.  

 

So, therefore instead of importing it as it is you can import as some particular name. So, let us 

say import numpy as some name I am giving, let us say np. So, now I am importing the entire 

numpy library, but now the function has to be called by something like np. sqrt, sqrt for square 

root.  

 

In the earlier case I could have done simply sqrt and the code will interpret. So, by as and the 

name that I can give so if you give any name as I have chosen the name np. So, then it is 

basically imported as some kind of an object and the functions have to be called from that 

particular object. So, this is standard coding practice.  

 

In most cases it does not make any difference how you are doing it but just as a good coding 

practice I will be using something like that many cases or something else that I will also see 

later. So, that is the first thing. So, every code does not really need libraries. I mean, like I want 

to do basic arithmetic operations even the basic version of python without any libraries can do 

that but if you need some sort of mathematical functions, it is typically essential to use numpy 

libraries. Similarly when you want to do some kind of matrix manipulations and all that 

sometimes you use also a scipy library and if you want to do some kind of plotting you need 

some plotting libraries and there are a whole variety of rich libraries.  

 



And the good thing is that most of them are open source. So, we do not have to pay any money 

in doing that. So, with this particular idea if you look in this particular code, I am importing 

two libraries; a matplotlib dot pyplot that is for the plotting functions I will use in the code and 

I am importing as plt.  

 

So, I will call the command from the library as plt dot whatever the function name is. Similarly 

I am importing numpy as np. So, I will call all the function from numpy library as np dot 

something. And then I define num rand is equal to 10, that is the number of points that I 

generate.  

 

So, clearly you can use any number here the more numbers you put you may expect there will 

be more accuracy but at the same time it is going to take more time and but in this particular 

simple code you can pretty much do a very large number of points and it runs within a minute.  

So, then I need to store the coordinates of the points that I generate. So, in the example I was 

showing you all the points we will have some coordinates x y, let me call it something like xi, 

yi where i goes from 1 to n the number of points. So, I want to store those values because using 

that coordinates only I can find out whether the points will lie in the circle or outside the circle.  

 

So, therefore I create an empty array to hold these x and y coordinate values. So, the array will 

contain the coordinates. So, one of the good things about python is that the flexibility with 

which you can use the arrays. So, when you are used to a C language you either define an array 

size as a-priori and if I want to increase the size in between the core it is quite complicated. 

You can of course use pointers and all that, that is somewhat better but of course more 

computationally more difficult to code but in python it is extremely easy on the behind of it 

may be doing something of that sort what C is doing. But when you are coding it you do not 

have to worry so much about all these things. It is much much easier in this particular language 

that is python.  

 

And if you are also coming from the C background you may recall that you have to do many 

includes, hash include this, hash include that and so on that is not really needed in the python. 

It is much easier to compile and run. Of course, we are calling libraries but that is of course 

true so that is true also in the C, let us say I want some mathematical function I use the math 



dot x library. So, I have to include that and so this particular import functions are kind of 

analogous to that. But apart from that for the basic version of python you do not have to do any 

kind of inclusions and all that the compiler is much simpler to interpret both for the user and 

also on the behind effect.  

 

So, then what I really want to do is I want to basically have some mechanism in which I can 

plot that circle. So, I want basically what I want from here is something that looks like the 

drawing that I have that is not necessarily required to do but just for the sake of plotting it will 

look nicer if something like this happens. So, I want to basically show an axis and show the 

circle and clearly we know that the circle is given as something like- 

𝑦 = √(1 − 𝑥)2 

So, in a computer the way to do it is I will compute y value for many points in the range 0 to 1 

and basically plot that array. So, that is what I do here. So, I basically compute the y function 

as sqrt of 1 - i square where i is so this is the definition of a python array. So, what it tells me 

is i is going in the range 0 to 1 that is the range and I am generating thousand points between 0 

to 1. There is no Monte Carlo here so far. I am just plotting the circle.  

 

So, I am generating 1000 points between 0 to 1 and the points are uniformly located and this is 

done by the ‘linspace’ function that is present in the numpy library that I have called using np. 

And for i in that means I will start with the first element of that. So, ‘linspace’ will give me 

something like I want thousand points between 0 to 1. So, 0.001, 0.002 and so on until 1. That 

is what the array would be. And when I say for i in this it will in the first time it enters the loop 

it will start from i is equal to 0. Next time it will take i is equal to this, next time it will take i 

is equal to that and so on and for all these cases this becomes the x value, whatever I pick from 

here and the y value I get like 1 - x square, that is 1 minus i square.  

 

And then now once I have done that so now I want to generate my points and to do that I again 

declare two arrays, rx and ry that will contain the x and y coordinates at the point. Before I get 

there keep in mind that how the ‘for’ loop has been defined here. So, I put a column after the 

‘for’ loop that means that the loop has started and then this tab that I did or an indent I did is 

very important because as long as I am indented from the, for loop so this part is indented from 



the ‘for’ I am inside the ‘for’ loop. As soon as I go back to the same indent as the; for, let us 

say when I come to the r x it is in the same line as ‘for’ I am out of the loop.  

 

So, it is much simpler than the C way of doing it of defining curly brackets and all that, you 

simply do a tab and shift tab to enter the loop and exit through and also there is an append 

function that is appending the value. So, I start with an empty array x and y and I am appending 

the new value of x as I am going in the loop and I am running the loop from 0 to 1 for thousand 

points. So, it is simply storing the thousand points in the array. So, at the end of the first ‘for’ 

loop you will have a thousand point array of x and y that represents the circle, the quadrant of 

the circle.  

Now I am starting with the points themselves. So, I declare again array ‘rx’ and ‘ry’. This ‘val’ 

I have defined this will store the number of points in circle. So, before starting to generate the 

points I said that to 0 is to initialize it and now every time I find a new point in there I will 

simply increment it by one. It will be seen in a minute. So, now I go in the ‘for’ loop, that is 

where I am generating my points. And now I am generating something like a range of num 

rand. So, what it does is since num rand is 10 the number of points that I have started with what 

it will do is create an array from containing 10 elements from say 0 to 9. So, every time you 

enter the loop the i will be the element in the array. The first time it is 0, then 1, then 2 and the 

last will be n minus 1. So, i will be 9 this pretty much tells me that I will enter the loop 10 times 

or n times the number of points.  

 

Now once I have done that then I want to uniformly generate points randomly, uniform 

distribution but randomly between 0 to 1 and that has been done by the random dot uniform 

function in the numpy library that I am calling as np. So, I generate a value of x and a value of 

y once in the loop and then since the loop is done 10 times or the number of point times this 

will be done for the number of points that I have started with.  

 

So, I am saying that the x coordinate is rxi and y coordinate is ryi. And naturally I will append 

that into my rx and ry array that is going to contain the coordinates of my x and y points of the 

points that I am putting in. Now, I want to check whether the point lies in the circle or not and 

the way to check it is if x2 + y2 happens to be less than 1 then it is inside because the equation 



of a circle is x2 + y2 is equal to 1, it is a unit circle. If it is more than that then we are lying 

outside. So, outside will be x2 + y2 greater than 1.  

 

We can say something like that with precise but friendly speaking we are doing in the range 0 

to 1, so that does not really matter. So, then that is what I check for this is the condition where 

I am checking for whether the x square plus y square for the point is less than 1. So, x for a 

point is rx i, y for a point is ryi. The sum of the square is if it is less than 1 then I mean that I 

am inside the circle and I increment the value by 1. That is what I am doing here. If on the 

other hand, If it is greater than 1 that would have been the else condition. But I did not write it. 

Then the value will remain unchanged. So, either this condition is correct in that case I 

increment the value by 1 or the condition is wrong in case I do nothing because value remains 

same as earlier.  

 

So, this loop will be run for the number of points that I have and then in the end I compute the 

number of points that are inside the circle that is given by val divided by the total number of 

points that is given by num rand and multiply by 4. And that will give me the value of π from 

the Monte Carlo code.  
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So, with this particular idea I can then proceed to print the value of π and plot it. So, first of all, 



I am printing the value of π on the screen and that is the first thing that will print in here and 

then I want to also plot it. So, I want to plot first the x and y for the circle. So, it will show the 

circle nicely. Then I want to plot the points which are the arrays rx and ry. I want to plot in the 

range 0 to 1 in the x, 0 to 1 in the y we can set the aspect ratio to be equal and you can also 

have some title of the plot, some label of x, some level of y and you can beautify the plot the 

way you want to be.  

 

The key point here is when I am plotting the rx and ry that is the points that I am randomly 

generating I am doing with something like a label rx right here. And that means it is r means 

red. It is going to be a red point and x means it will show like crosses on the screen. On the 

other hand when I am doing the plot for the circle I am not putting that thing that means it will 

simply plot a line. So, you will get a line for the circle and you will get crosses, red crosses for 

the points that you will generate in there and then you can also save it, give it some name, save 

it on the computer and you can also show it on the screen. So, you have to do the show 

command and then only it will show and also save the file there.  

 

So, you can customize all these things and I am not going in details here pretty much this part 

of the code remains the same in many functions. Once you know how to plot it the same thing 

applies everywhere else simply the array definitions will change the x and y will change. So, 

once we have done that this is what we get- 

 



So, we have plotted the circle, I am doing in the range 0 to 1 in x, 0 to 1 in the y. So, the x is 

pretty much defines the unit square that we have and these are the points that I am generating. 

And then I am simply finding the value of π by counting the number of points inside the circle 

dividing by total number of points and multiplying by 4. So, in this particular case if I run for 

n equal to 10, I get a π value of 2.8.  

 

Now keep in mind that you will not get the same answer if you do it on your computer. Even 

if you run the same code twice you will not get the same answer because every time the code 

is running it is generating a new set of random numbers. It is a uniform generator so where you 

generate points will keep on changing as you do the code. So, every two runs of the code will 

not give you the same coordinates of the points and that is the whole idea of Monte Carlo that 

we can pretty much sample the entire reason. The points can be uniformly generated anywhere 

in there. So, you have equal probabilities to generate points here versus here or somewhere else 

in the system.  

 

So, with this particular idea keep in mind that you will get a value of π and clearly it is not 

close to 3.14. It is quite far from there. If you run it again, you may get a value closer to 3.14 

or slightly farther from this. We do not know we can keep on trying but it is still not too far 

because 2.8 is still very close to I mean, like itself close to 3.14. The error is still as you can 

say is around 10% from the value of point. But now if I increase the N to 100, so clearly we 

have more points and therefore we expect that we will have a more accurate value of π and that 

is kind of true. The first decimal seems right but we are still not there may be that if I run again 

I may get 3.15 if I am fortunate enough. But still I am not very close to the π value.  



 

So, then I can do it for thousand and now you can see I get the first decimal. We are getting 

more points in there. And if I do 104 now the points are pretty much filling that entire square 

and then even my second decimal is kind of getting there. Not 3.14 but it is kind of 3.12 that is 

close to 3.14, if I compare to something like 3.17 here. 
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I keep on doing it and this takes way less time to run because very simple code. For 105 points 

I get both the decimals, first and second decimal. And if I am doing it 107, then I am getting 



pretty much all the 3 decimals and you see now this entire region is now red and the reason is 

because I have generated way too many points. So, I have pretty much sampled the x and y 

space.  

 

Now even though it seems like full. It is not still full because the markers I was drawing had a 

size and that is why it seems to fill the entire region. Markers were actually points on the 

diagram. Since I could not generate a point of 0 width that is why the markers have a finite 

width. So, it may seem like full but it is not quite full. But we have 107 points. That is the key 

idea and that is quite hues and then the accuracy is also quite reasonable and this pretty much 

tells me that Monte Carlo is an efficient way to sample the space. This is not a thermodynamic 

example but nonetheless you see the beauty of the Monte Carlo. I started with randomly 

generating points and as soon as the number of points started to increase I was able to sample 

the entire region from 0 to 1 in x and 0 to 1 in y. So, clearly the sampling part is quite efficient.  

 

We do not expect that with just 10 points you can get the correct answer but with hundred we 

are quite reasonable we can say and with thousand or ten thousand we are even closer and 

beyond 105, we are pretty much getting the two decimals or three decimals correct. So, this is 

how a Monte Carlo scheme actually integrates or performs a numerical integration. And this is 

what I wanted to do to demonstrate on how we can use the Monte Carlo for numerical 

integration.  
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So, now I want to come to my next example and that is the example of a 2-dimensional 

diffusion. So, now we will do a diffusion process and diffusion is represented as a random 

walk. So, you already have discussed the drunkard walk we were doing a walk in one 

dimension. The drunkard who is fully unconscious kind of he has totally forgotten the memory 

and now he is making steps randomly to the left or to the right.  

 

Now if you imagine the same situation in 2 dimensions, this is a random walk in 2 dimensions 

and that is actually representing some sort of a diffusion process or you can say this is how the 

molecules really move. The molecules of particularly the ideal gas you can see to move like 

that. So, every molecule is experiencing very frequent collisions and the collisions appear to 

be quite random because every other molecule can just come from anywhere with any 

particular momenta. So, the motions of the molecules are going to be quite random. So, I am 

doing it in two dimensions.  

 

You can imagine this represents some sort of a surface diffusion but now after that we will also 

do the 3D case. So, what I am doing here essentially is I start with only one particle and I start 

moving it randomly. So, in one Monte Carlo step I make a movement that is of like a unit 

length. So, in this particular case I am not working in any kind of ideal units. I am working in 

some sort of dimensionless units. So, one is the step length and that is the unit of my system. 

So, I come here and from there again I take a random unit length step and I come somewhere 

else. Again I take a random step. I go somewhere else and I continue doing that. So, the step 

size has been fixed and this is in some sense representing the trajectory of a single molecule as 

it is moving in a gas that is what a diffusion process is.  

 

So Einstein has shown that for diffusion processes there is a very beautiful relation called the 

Einstein relation that he developed before he got to relativity. He became famous for relativity 

but this was one of his first paper on the Brownian diffusion that explained the diffusion process 

that has been experimentally observed before him. So, what he said that the mean square 

displacement of a particle in the diffusion process will be proportional to time. In fact for a 

general walk in some D-dimensions it goes like 2d Dt where d is my dimension in this case it 

is 2 and D is my diffusion coefficient. This means that if I plot the mean square displacement, 



I will call it as MSD versus time, we expect that to be a line with a slope of that is proportional 

to the diffusion coefficient.  

 

Now in the Monte Carlo simulation there is no time but you may imagine that the steps that I 

am making are of the unit length, that the steps is some measure of some sort of time step that 

I am making. It is not any kind of real time to be precise but that kind of represents something 

that will also happen in time because the particles are undergoing a random walk in reality as 

well. So, with that thing in mind that it is not very true dynamics, we are not doing molecular 

dynamic simulations. We can still say that if I do a random walk like using Monte Carlo scheme 

my mean square displacement is going to be proportional to the number of steps and the slope 

therefore when even if I replace t with n here that is going to give me some measure of the 

diffusion coefficient that is the idea that is always true whenever we have a diffusion process. 
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This is not completely true if we think about it because let us say we have a system containing 

molecule and for sake of argument let us say one of the molecules was moving with a velocity 

v. Now before it collides with any other particle it will keep on moving with that velocity v. 

So, before the collision the distance traveled will be actually something like v multiplied by t 

that will give me an r2 that is proportional to t2. So, we can say even on average my average r2 

will be going like t2 as opposed to going like t that is what Einstein tells me. But if I am looking 

at time scales much larger than that I mean like within the time scale or time step that I am 

making or step I am making if many collisions have taken place then it is no longer true because 

if I think of like times τ much more than or even significantly more than the collision time then 



in that case in that τ period the molecule would have experienced many collisions and by virtue 

of which the velocity would have changed many times because of momentum transfers and 

this would have changed both its magnitude and its direction.  

 

So, whatever we have said is actually true when we look in the limit of many collisions and 

only then we have r2 proportional to t, it turns out that this regime is happening for very small 

times. The reason being that the particles are really close, the molecules are close. They will 

collide in very less time and therefore that regime is not extremely important. But it can be 

important in very specific cases. So, this is what is called a rectilinear motion and this is what 

is called a diffusive motion.  

 

So, here I am trying to code that in here. So, let us go over this code query quickly. So, now 

the first two parts are the same as the earlier code. I am importing a plotting library, I am 

importing a numpy library.  

 

Now we define the number of steps that is I will make ten thousand steps in this particular case 

I am showing and I again declare two areas to contain the coordinates after every step. And let 

us say if I start from the origin so in that case, I will put the initial value as 0, 0 to begin with. 

Now I go in the ‘for’ loop that pretty much runs this code num steps times there is the number 

of steps I am doing inside that I am generating first of all two numbers x and y between - 1 to 

+ 1 and then I am dividing by square root of the x square plus y square of that, that will generate 

basically a step of length unity. So, let say, for example, if I am here, I can pretty much be 

anywhere on either side. So, I can go towards positive x, positive y, negative x, negative y, 

positive x negative y and whatever.  

 

So, therefore what I am doing is I am generating that x, y in any particular direction. But I am 

dividing them by something like x square plus y square and if I do that then the step length that 

is the length of the x that is now normalized by this plus length of the y that is normalized at 

this. So, square of both of them added together, it is going to be something like that and that is 

clearly equal to 1 that means here that I am generating a step of length unity. But since I have 



generated x and y randomly that is going to be in any direction from the particular point. So, 

that is why I am dividing that by norm here and now I am appending not the x value I generate 

but the x value of the previous point plus this x value the y value of previous point plus this y 

value because I am making that step from the previous point to the new point. So, if you 

remember this is going to be a Markov process. So, the position at any point depends on the 

previous point. So, I simply add whatever step I have to the previous coordinates that we have. 

And now I go ahead and I want to plot the trajectory of the system. These are very standard 

plotting commands. I will do basically a plot of x and y coordinates as they are moving with 

time and what we do see is something like this. 
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So, I am starting from somewhere here that is my 0, 0 and I am making random steps and now 

you can see the steps every time are in very different directions. Again for 10 steps it may look 

like this. But if I run again it may look like something else. So, from anywhere I can go to 

pretty much in any direction and that is what is happening here. If I go to larger value of N 

trajectory may look something like this. Again, there is no directionality to what we are doing.  
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And we can keep on thinking of even larger value of N and it is giving you a very interesting 

to look at trajectories of the diffusion process. So, with that point I want to stop here. In the 

next lecture we will discuss how to do the same in the three dimensions. And that is where I 

will also discuss how to implement the boundary conditions and then we do some more 

examples of Monte Carlo simulations.  

 

So, with that I want to stop here. Thank you.  

 

 

 

 

 

 

 

 

 


