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Hello all of you, in the last lecture we have been discussing the basics of the Monte Carlo 

scheme, how it can be a method to sample the phase space and how Monte Carlo method that 

is actually a method for numerical integration can be important for thermodynamics. So, in 

today’s lecture we will take the discussion a bit further and try to develop a workable algorithm 

for a Monte Carlo simulation.  

(Refer Slide Time: 01:02) 

 

So, start with, I will do the same phase space that I have been doing in the last few classes we 

are interested in sampling this particular phase space p and q that is momenta and generalized 

coordinates and Monte Carlo really works if we are interested in the equilibrium behavior, 

because it is then the density or the probability density of the states. So, all of these are different 

states or phase points, so the probability density becomes stationary, that is it becomes 

independent of time and that is the equilibrium state where the Monte Carlo ideally works and 

it is in that state that instead of following any particular state point we can simply sample 

different points in the phase space and get the properties of interest.  

 



 

 

So, going further if I want to determine any evidence property in any of the ensembles. So, I 

have been discussing the canonical ensemble, so let us say if I am interested in computing any 

evidence property in that ensemble. We have discussed that it is given by something like- 

�̅� = ∑ 𝑀𝑗𝑃𝑗

𝑗

 

where p j is the probability of that state. 

 

 

So, in here we are typically talking about, so as to speak a macro state in there, because many 

possible p and q values can give rise to the same energy values. But in general description since 

I was telling you that in classical mechanics we are talking about a continuous phase space 

since the number of possible phase points are very very large equally endless we can assume 

that it is a continuous space and therefore I can replace this summation by an integration 

similarly this can be replaced by an integration over the p and q or in general an integration 

over the Γ that is the representation of the p and q together.  

 

So, in general then I can write m bars we prefer the representation <m> under brackets where 

this thing corresponds to an ensemble average. So, that the meaning of the average is kind of 

more clear, we are already always referring to some sort of an ensemble on which the average 

is being conducted, when we are doing it numerically using Monte Carlo or molecular 

dynamics, of course we are not doing the entire theoretically possible ensemble but a subset 

of that. So, the ensemble level is computed over whatever I would say reduced ensemble or 

whatever part of the ensemble that we had sampled. So, this M, this average value of m can 

then be represented in continuous space as something like- 

�̅� =< 𝑀 > = ∫ 𝑑Γ 𝜌Γ 𝑚Γ
 

and why is that, because I am replacing mj by m of Γ and replacing the property values at 

different energy states by property value as a function of Γ because in continuous limit it 

becomes a continuous function the probabilities in discrete space are replaced by the 

probability density in continuous space and the summation is then replaced by the integration.  

 

So, it is this integration that I want a Monte Carlo simulation to perform and towards the end 

of the last lecture I was telling you that, of course we can do random sampling in the phase 

space, but that is probably not the way to go because this entire integrand here can take very 

large value in some part of the phase space and take a small value in other parts of phase space. 



 

 

So, whenever we are sampling it since our computational efficiency of sampling is limited to 

how many samples we are doing, it is better to sample more in the regions of interest, just for 

the sake of illustration let us say for example, this is my reason of interest that is where this 

integrand has a high value. So, whenever I am sampling it I will tend to sample more in the 

region inside this which is having a high value of the integrand and I will tend to sample less 

in other regions so because we want to get the correct value of I would say as accurate value 

of the integrand integral as possible and therefore since the larger values of integrands 

contribute more to the integral, this will at least get the large values right and smaller values 

anyway are small, so they will contribute less in there and since it is an exponential function in 

there if you may recall there was a Boltzmann factor which has exponential functions so they 

decay pretty fast as an exponential and therefore what is found generally is for a majority of 

phase space the integrand is almost negligible only in some part of the phase space it is quite 

significant.  

 

So, that is the reason why we need to have some sort of an important sampling, so the basic 

idea in the important sampling is the following. So, we assume some weighting function and 

let us say I want to call the waiting function by some ρw and this need not be the same as the 

probability density that we have, but it can be like any function of the phase space. So, then I 

will compute M as 

< 𝑀 > =  ∫ 𝑑Γ 𝜌𝑤Γ 
𝜌(Γ)𝑀(Γ)

𝜌𝑤(Γ)

 

 

So, effectively what we would be doing in that case is we will generate points with this 

distribution, it is not going to be a uniform distribution we will generate points using this 

distribution and once we generate that we compute this quantity under the curly brackets and 

by taking an average of that quantity given that the points have been generated using ρw Ω, ρwΓ 

we can get the average value for the property at the interest.  

 

So, now a clear choice you might imagine that I can take ρwΓ = ρΓ that is same as the 

probability density that is present and if we are doing that then we are pretty much sampling 

according to the ρΓ distribution and in that case i will be simply be averaging over the 

MΓvalue. So, when I was doing with ρw in that case I am sampling with these properties 

computed at every point and I am averaging over that, when I take ρw to be equal to ρ in that 

case I will average simply the M values over that. So, clearly when I keep the waiting density 



 

 

ρw to be same as ρ, it is clearly more convenient, now no matter how we are doing it the key 

question is that do we really know this quantity ρ(Γ) and the answer is no because this ρ in 

fact is coming from the probability of states and the probability of states themselves where 

something like- 

𝑃𝑗 =
exp (−

𝐸𝑗

𝑘𝐵𝑇
) 

∑ exp(−
𝐸𝑗

𝑘𝐵𝑇𝑗 ) 

 

 

where the denominator is actually the partition function in continuous space the partition 

function can be written as something like- 

∑ exp(−
𝐸𝑗

𝑘𝐵𝑇
𝑗

) = ∫ 𝑑Γ exp (−
𝐸(Γ)

𝑘𝐵𝑇
) = 𝜌Γ

 

 

So this is essentially something like my ρΓ in that particular case and I do not really know this 

particular integral because if I already know that why exactly are we using Monte Carlo 

simulation, because ultimately if I know the partition function, I have already said that I know 

everything about the system. I can compute its derivative find the properties of interest as a 

derivative of that because partition function is generating function and then I am pretty much 

done, so the whole idea was to obtain the thermodynamic behavior and so far the argument is 

like you have to give me the partition function, that is clearly not the way forward.  

 

So, is there any alternative and the answer is yes there is an alternative and that is a very 

interesting I would say a mathematical trick that works here. So, instead of computing the 

partition function in Monte Carlo simulation, we directly compute the average properties by 

this particular trick and the way it works like is the following.  

(Refer Slide Time: 12:00) 



 

 

 

So, what we do is we assume what is known as a Markov chain of steps in our simulation and 

this means actually two things first of all I assume that there are certain number of states that I 

am going to sample and let me call those states Γ1, Γ2, Γ3, Γ4, Γ5 to some Γm and of course m 

is going to be very large there is no particular order that I want to represent here. I just want to 

mention that there are certain number of states that I am going to sample and these constitute 

what is known as the state space and then that is the first assumption, so we assume a state 

space and system can only be in these states.  

 

So, in some sense we can therefore say that the state space is like the ensemble, I will do keep 

in mind that since we are doing some kind of a numerical simulation we are not counting all 

possible states. So, we will be counting only a small subset of that, so that has to be kept in 

mind that whenever we are doing a Monte Carlo simulation it is not that we are doing over an 

infinitely many possible states or all possible states of a system some possible states that we 

want to explore and that has to be a good representation of the ensemble that comes later. So, 

the number of states or the value of M should be very large and so on but let us not get there 

let us assume that there are certain number of states there.  

 

Now the next thing we assume is we one can transition from one state to another in one Monte 

Carlo step and whenever we are saying that in general, we are saying that we can go from any 

state in the state space to any other state in the state space but the state at any given step of 

Monte Carlo depends only on the previous step just to give you one example. So, let us say in 

one Monte Carlo step, I transition from Γ1 to Γ4 and this may happen with certain probabilities 

we will get to that. Now from Γ4, I can go pretty much anywhere in the next step. So, let us say 



 

 

in second step I get to Γ3. So, if I am at Γ3 now I can say with certainty that I came from Γ4, I 

transitioned from there. But I cannot say what happened prior to that. So, the memory of the 

system is only of the previous step, so at any given time the state is determined only by where 

I was last.  

 

One example of I would say one simple example of a Markov chain is a for example a random 

walk. So, let us say for example if I am walking left and right, so where I am right now it clearly 

depends on where I was in the last step, because from there I took a left or a right but it does 

not quite depend on where I was 2 steps back, 4 steps back, 8 steps back and so on. So, decision 

is made at every step of the Monte Carlo simulation there is no memory so as to speak when 

we go to more than one steps, that really is somewhat of a difficult concept to think of but the 

idea here is that for thermodynamic purposes the probability of the transitions will only depend 

on the previous step and the current step. It does not depend on anything else that where I was, 

what has happened there and where I want to go after several number of steps and so on. Only 

the last step determines the current state only the current state will determine the future states, 

the previous states will not affect the future states only the current state will affect the future 

states only the last step affects the current state of the system and so on. 

(Refer Slide Time: 18:20) 

 

So, with these two ideas I can then define something known as a transition matrix πmn, where 

πmn is the transition probability from state Γm to state Γn and just to think about it we can think 

about it as some sort of a matrix, because in general there can be a large number of states to 

begin with that is my state space and starting from any of that I can go to any other state and 

into this brackets here I will populate the transition probabilities.  



 

 

 

 

So, let us say for example for Γm here and Γn here the corresponding element will represent the 

probability to go from state m to state n that is πmn. So, now I can also write the probability 

density of states as something like- 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 (�⃗�) = (𝜌1, 𝜌2, … … … … … … … . 𝜌𝑚) 

 

where ρ1 is the probability density to be at Γ1, ρ2 is the probability density to be at Γ2 and ρm is 

for the Γm. So, now what we can then say and until so far we have not made any assumption 

regarding ρ except that it has to be there, something has to be assumed.  

(Refer Slide Time: 21:00) 

 

So, now we can argue that once we reach a stationary solution, what is going to happen is my 

rho multiplied with π will become equal to ρ and the reason for that is the following. So, let us 

say for example I start with some probability density ρ1, so you can talk about probabilities as 

well since it is discrete state but I have used ρ for the density. So, let us keep on that notation 

but keep in mind that this can also be discrete probabilities. 

 



 

 

So, let us say if I start with some probabilities ρ1 of the states. So, if I start from there I know 

that I have some value of the probability density for all the states that I am considering and this 

is the some sort of an initial distribution of the system among various states and many of the 

probabilities can be like even 0, if there is no system in that particular state. So, what will 

happen after one step? 

 

So, after one step what will happen is the new distribution will be ρ1 multiplied with my 

transition probability π, because π is telling me the probability of going from state m to state n. 

So, if I multiply the probability density vector with the transition probability matrix what I will 

get is the new probability density vector. So, if I want to then compute in the next step it is 

going to be the ρ in the previous step π and that is equal to ρ1 π2 and I keep on doing it then 

after some τ plus one step it is going to be- 

𝜌𝜏+1 = 𝜌𝜏𝜋 = 𝜌1𝜋𝜏+1 

 

I can keep on doing that and the probability density at the states will keep on evolving as the 

Monte Carlo simulation proceeds. Now this means that my probability density is changing as 

the Monte Carlo is going on, keep in mind here is that there is no time here so as to speak. So, 

I can simply defined transition from one state to the other, but I did not mean to say that one 

step correspond to some certain time, it is simply a hypothetical sort of a step, there is no real 

dynamics that is taking place in this kind of situation.  

 

So, then what exactly a stationary solution means. A stationary solution means when the 

probability density is not changing and what is that, that will happen when the ρ multiplied by 

π that is the probability density in the following step becomes same as ρ that is the density in 

the current step. So, ρ should eventually converge to a stationary solution because as long as 

that does not happen we cannot say that we are at equilibrium, because equilibrium is defined 

as the stationary state that is when the probability densities do not change and therefore the 

condition to get that is simply ρπ = ρ and this has been done without any consideration to the 

actual mathematical form of the probability densities without much consideration to even the 

partition function and so on this is simply I would say a result that has come by construction 

whenever we are doing a Markov chain.  

 



 

 

So, the key assumption here is that at any given step let us say step two the probability density 

only depends on the previous step that is ρ1 multiplied by the transition probability and this π 

is a kind of a constant matrix that does not depend on the probability density so as to speak.  

 

So, with this sort of an idea we can write this so ρ keep in mind is a vector and π is a matrix, 

so we can write this as something like the nth element of ρ is equal to- 

𝜌𝑛 = ∑ 𝜌𝑚 𝜋𝑚𝑛

𝑚

 

 

So, that really comes from the multiplication of the ρ vector with the π matrix, so ρ vector is 

actually a ρ vector that has m columns and the π matrix has m rows. So, the new matrix will 

again be a ρ vector and every term will be given by this, you can do the matrix algebra here 

and find that it is true. There is another way to show that what exactly it means, so all it means 

is that when we reach the stationary state in this kind of a picture what should happen- is that 

since at every state we are coming from some other state, so if I want to find the probability 

density in that state is it has to be sum over the probability density of other states multiplied by 

the transition probability. So, let me put that in a slightly better way in the plot.  

 

So, let us say if I am looking at this Γ1 here and let us say there are these three other state Γ2, 

Γ3 and Γ4 and the probability density for these ones are ρ1, ρ2, ρ3 and ρ4. So, we are trying to 

say that ρn is sum over m ρm πmn. So, what this means is at the stationary solution for example 

for n equal to 1, ρ1 = ρ1 π11 + ρ2 π21 + ρ3 π31 + ρ4 π41. 

 

It is some kind of a material balance that we can think of as chemical engineers. So, if we are 

here either we were here in the last step or we came from here or we came from here or we 

came from here. So, in the new state the probability density is given by if I have been here 

multiplied by the transition probability of remaining wherever I was,  

𝜌1 = 𝜌1𝜋11 + 𝜌2𝜋21 + 𝜌3𝜋31 + 𝜌4𝜋41 

(Refer Slide Time: 27:29) 



 

 

 

 

So, although this may seem quite natural to be valid we have to keep in mind is that this is like 

true for some sort of a stationary solution. So, these quantities are no longer changing over 

time, so this should be like valid when the rho’s kind of converge to a fixed value at a given 

phase point, over the course of the Monte Carlo simulations the rho’s may change. But we have 

to wait until that stationary solution is obtained and only for that this is this particular relation 

is kind of valid. So, there is one more way to put this relation this is called somewhat a weaker 

condition, but there is a stronger condition that also ensures this particular weak condition and 

that condition is referred as the condition of microscopic reversibility or detailed balance.  

(Refer Slide Time: 31:25) 

 

So, in detailed balance condition or the condition of Microscopic Reversibility, what we say is  

𝜌𝑚𝜋𝑚𝑛 = 𝜌𝑛𝜋𝑛𝑚 



 

 

 

and that is essentially means that if I look at two states in the state space, let us say state n and 

state m. Then the ρ multiplied by π that is how much of n is going to m should be matched by 

how much of m goes to n and that can be thought of as a condition of equilibrium. So, the 

forward and reverse processes are having the same rate that is the condition of equilibrium.  

 

So, the number of ways in order to speak in which I am going from state n to state m is kind of 

compensated by the number of ways I am coming from m to n and what has to be kept in mind 

is that I am actually representing the number of ways by the probability density multiplied with 

the transition probabilities and we have some control on the choice of the transition 

probabilities and we have I would say some control on ρ as well, but we have to wait until the 

stationary solution when the ρ become constant. So, we still have some control over how I am 

making the transition and no matter what is the function that I have working with whatever π 

function I pick it should be such that we should always go towards the condition of detailed 

balance as long as the detailed balance is satisfied that is called a stronger condition we can 

rest ensured that we will get to the equilibrium or stationary solution and therefore the Monte 

Carlo simulation scheme is valid.  

 

So, we can have any choice of π because in any case we are not bothered about the actual 

dynamics. So, what when we say that I jump from state n to state m that is not really happening 

in any actual system that is simply our way to sample the phase space that we are allowing 

transition from state n to state m there is nothing like an actual process going from here to there, 

it is only happening on a computer just to sample the phase space whatever we are doing is 

simply a numerical scheme so as to speak to sample the phase space there is no dynamics in 

there.  

 

So, I have full control on π matrix that I pick provided that I have made a choice that satisfies 

the detailed balance so most algorithms therefore satisfy the detailed balance condition it turns 

out that even if the detailed balance the condition that I wrote is not valid, but this weaker 

condition is valid even then you can build some Monte Carlo simulation schemes which are 

still giving me the equilibrium behavior, but for most schemes we look for the detailed balance 

condition because that ensures the weaker condition we can see why it is valid. 

 



 

 

So, let us say for example if I sum both sides by m here, so on the right hand side ρn does not 

depend on n. So, I can move that on the other side, so we have- 

∑ 𝜌𝑚𝜋𝑚𝑛 = 𝜌𝑛 ∑ 𝜋𝑛𝑚

𝑛𝑚

 

 

and what is that so I am basically adding the transition probability of starting from state n and 

going to every other possible state. So, m is a sum over every possible state, so πnm therefore 

must sum to 1, because from state n I can only go to the available state space. So, if I sum over 

all the probabilities from starting from state n that must should go that must go to 1 and that is 

the condition that was the weaker condition I discussed earlier.  

 

So, using detailed balance I can get the weaker condition, but using the weaker condition I 

cannot get the detailed balance, detailed balance I would say is therefore is a more stronger 

condition and as long as the detailed balance is valid we can pretty much choose any transition 

probability of interest whatever helps me sample the phase space in an efficient manner. So, 

with that I want to conclude the discussion today in the next lecture we will discuss one type 

of the choice of π or one type of the Monte Carlo scheme that is known as the metropolis 

algorithm and I will also touch upon the idea of boundary conditions.  

 

So, with that I conclude here thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 


