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Hello all of you. So, in the last lecture we have been discussing the theoretical basis of the 

molecular simulations and how the molecular simulations can address the challenges that we 

saw in the lattice model. So, today I will take it further and discuss about the molecular 

dynamics approach in a little bit more detail and I will focus more on, how do we capture the 

interactions and after that in this the following lectures we will be discussing how can, we think 

of another method that is the Monte Carlo method of the simulations that essentially captures 

the same kind of thermodynamics behavior. 
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So, just to quickly recap what I have been telling in the last lecture is, we can think of the phase 

space as the space formed by the momenta of the particles and I used a collective or compact 

representation P for all the momenta of all the particles and all the coordinates of all the 

particles. These are 3N variables, these are 3N variables. The only reason I am doing a 2d plot 

is because I do not know how to do a 6N dimensional plot that simply impossible and then I 

said that I can represent a phase point as some γ that represents the state of the system at a 

given time in terms of our ensemble-based idea that is kind of a microstate or we can refer as 

state.  



 

And then I said in reality, this is all the information that we need if I know what is the phase 

space since Hamiltonian depends on the phages space the P and Q we have the energy and we 

can do the all thermodynamics that we are interested in simply it is impossible to do that 

because it may imagine there are infinitely many trajectories in starting from infinitely many 

state points which are possible out there but what is possible and that is what I was starting to 

claim is the starting from a given state point or few state points. I mean, I can do simulations 

from various configurations and look at the trajectory of that particular state. And this is when 

I am looking at this γt is the basis of the molecular dynamics or MD simulation. 

 

 

 

 

So, although I have drawn the trajectory here we should not confuse this with the actual motion. 

So, I am not saying that the molecules are moving in this way or the system is moving in this 

way. This is a trajectory in a phase space that is formed by the momentum and the coordinates 

there is not very intuitive to look at the shape of the trajectory and make any clear inference 

starting from there. So, keep in mind that the trajectory is there using that I can infer 

information and there is whole mathematical apparatus for doing that but as it is shape of the 

trajectory is not too much to worry about right now because it is not very intuitive on the shape 

that we can we can say anything is happening.  

 

So, then let us see what we will then do in the molecular dynamics? How will we make it 

happen? How will we get γ (t)?   

 



 

So, what I will do is- I will start with the system that is typically done. I will start with the 

system of certain number of molecules and I will place them in some kind of a box. So, these 

are the molecules or particles in the system and there are N of them and all of them are 

essentially moving and it is their generalized coordinates that can be any coordinate system or 

q and their generalized momenta that is p that is essentially a collection of q1 q2 and so on and 

p1 p2 and so on if we have labeled the particles in any particular way.  

 

 

So, they are evolving and therefore if I look at the evolution of the system, we are essentially 

evolving using the definition of Hamiltonian that is a function of p and q and at any given time 

you will have a particular value of p and q. After very long time and there is a name for this it 

is called Poincare recurrence time the molecules may come back to the same configuration but 

imagine that for a large number of particles that is not really going to happen. So, if you are 

interested it is called Poincare recurrence time that is when you can revisit a state or in terms 

of our trajectory kind of logic it may be something like that. So, whenever we cross the same 

point. So, we are revisiting the same point in the trajectory and when that is happening when 

like intuitively you can see from diagram it is happening but in reality, since we are running 

only for a finite time that will seldom happen for very large number of particles.  

 

So, after so much time it may come back but essentially for all we care we will have unique 

states of the system corresponding to different value of p and q for most of the time. So, let us 

say we have a mechanism to evolve this and I will come to how to do that and let us say we are 



able to find how this γt is changing with time.  

 

Now you may imagine that if I am having some kind of an analytical expression then clearly, 

I can solve in this continuous domain along the trajectory, but any kind of numerical method 

will not be quite doing that. So, essentially what you will be doing is solving for small time 

points. And using those time point values we can then infer the trajectory that is nothing to do 

with molecular dynamics in general whenever we have doing things numerically, we always 

have to discretize the domain or the where the motion is taking place, I am moving in the phase 

space here. So, the motion is not like a trailing emotion, but nonetheless you will be typically 

solving for a finite intervals of time, let me call that some δt.  

 

So, then I can since at every phase point using the Hamiltonian, I can find the properties and 

let us say I am interested in some property M of t this can be anything. So, let us say at every 

time point I can evaluate that then if I take the average value of that this will give me the 

average value of to property of interest that I am working. So, essentially in our logic this is 

going to be something like- 

< 𝑀(𝑡) > =
1

𝜏
∑ 𝑀

𝜏
𝛿𝑡

𝑗=1

(𝑗 𝛿𝑡) 

 

What I am doing essentially here is let us say if I am running for so τ is my total run time of 

the simulation, so then I will be making τ by δt MD steps that will correspond to different lines 

that I am drawing here. And for each of them I will be computing the property value and the 

time value is j multiplied with delta t. And if I sum over all the property values and divide by 

the total time, I will get the basically arithmetic mean of that. And this is what I will represent 

as the average of the particular property that I am interested in this is I would say, the basis of 

the molecular dynamics. Now try to see how exactly I will find the Hamiltonian. 
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So, essentially scheme goes like this- 

𝐻(𝑝⃗, 𝑞⃗) 

 

So, I assume that the particles are classical and by classical means several things here. First of 

all, whenever I say the particles are classical that means they are moving like say a typical 

example of balls or the pieces on a carom board. So, when that is happening, so one of the 

things that is an outcome of classical mechanics is that the energy happens to be no longer 

quantized and quantum mechanics, the energy is quantized in classical mechanics, there is no 

such thing. The energy is like really continuous in fact, quantum mechanics is what is valid for 

a very small scale if I really go to within a molecule or a smaller scale then it is indeed true that 

the energy is quantized but if the total energy is very large in comparison to the quantum units 

then in that case that assumption is barely important. Let us say if quantum unit or one quantum 

corresponds to something like one in some unit of energy. And let us say we are dealing with 

billions of that energy units. Then in that case the fact that energy is changing in the units of 1 

is barely important because the energy unit is so small in comparison to the energy of the 

system.  

 

So, that quantum mechanical effect vanish in the regime of classical mechanics as long as we 

are dealing with much larger systems than compared to individual molecules what this also 

means is if the particles are classical then they have to follow the Newton's laws of motion. 

And what do I mean by the Newton's laws of motion, it is simply F = ma. So, first of all I can 



say energy is continuous and I will revisit this point in a minute and the second thing I am 

saying is in the particles follow the Newton's laws of motion. So, when the particles follow the 

Newton's law of motion, that is F = ma and that is true for every particle.  

 

So, let us say if I look at particle i we will compute the force acting on the particle i and this 

has to be equal to the mass of the particle multiplied with its acceleration and both acceleration 

and force are vectors. In terms of our generalized coordinates or any coordinate I can write this 

ai as the second derivative of my qi. So, we can find the positions the first derivative is my 

velocity and the second derivative is my acceleration.  

𝐹⃗𝑖 = 𝑚𝑖𝑎⃗𝑖 = 𝑚𝑖𝑞⃗𝑖 

𝑝⃗𝑖 = 𝑚𝑖. 𝑞⃗𝑖 

 

So, then if I know the forces, I can know how the positions are changing with time. And I also 

know the momenta are because momenta is simply mass multiplied with the acceleration that 

is mass multiplied by qi. So, let us say if I start with a given value of p and q that means I start 

with given coordinates and momenta of the system. I know how they will evolve with time if 

I know the forces acting between the particles or forces acting on that particular particle at this 

moment.  

 

Now we can discuss like what is the force acting on the particle i? So, Fi is the force acting on 

particle i. So, in terms of our space representation, I only note need to know my initial state γ0 

that will be corresponding to some initial value of p0 and q0. And that will be the initial 

condition for this second order differential equation because second this q0 is something like- 

𝐹0 = (𝑝⃗0, 𝑞⃗0) 

=
𝑑2𝑞

𝑑𝑡2
 

in the second order kind of a differential equation and we know the initial condition in terms 

of the momentum and the coordinates of all the particles.  

 

So, we can do it for every particle in the system and then we know how the system is evolving. 

Now this kind of makes it clear why I used a δt why I use a discrete domain because we have 

solved being a differential equation so in a sense to find q or to find the momenta, we need to 

do some kind of a differentiation and integration. The numerical way of doing that is by 

discretizing the domain and that is what we have already done in the time space.  



 

Now why do I say that we cannot solve it analytically- The reason being, that how we will I 

find these forces acting on the particle that is first point. And the second point is how many 

equations do I have to solve? So, let us say even if I know the forces by whatever means then 

this quantity essentially is meaning how many differential equations. So, you have this equation 

written for every each of the N particles in the system, so you have N second order differential 

equation for the acceleration and N first order differential equation for the momenta and clearly 

there are too many differential equations because we are dealing with N that is really large that 

is a thermodynamic system for 2 or 3 particles we can clearly do that this is how you do a multi 

particle system in classical mechanics. But as soon as the number of particles becomes large 

this becomes a very much interactable problem for analytical stuff and therefore, there is no 

way we can do that.  

 

It is more important point because these forces are also kind of complicated. So, in a classical 

system the way we are used to seeing the forces are often external to the system. Let us say 

when the apple is falling from the tree then it is experiencing a gravity force and that is given 

by the mass of the apple multiplied by the gravity is the force is external to the system.  

 

What we are dealing with are systems at equilibrium. So, that implicitly means that there is no 

external force acting on the system. In most cases where we will apply molecular dynamics in 

this case when we are interested in the equilibrium behaviour that is in the absence of any 

external force. The external force can also be accounted forward and there are whole set of 

methods to do that will briefly touch on that later. But for the time being let us assume that we 

are dealing we are interested in equilibrium, so the forces are not external. So, then the only 

way the forces appear in the system that I have drawn is because of forces between the particles 

of the system so every two particles will experience a force. So, try to look at that in a bit more 

detail. 

(Refer Slide Time: 19:03) 



 

So, let say this is the big other particles that I am looking at right, of course there are too many 

of them. But just for the sake of drawing I am drawing only few particles. So, let us say if I am 

interested in this particle number 1 and there are others near labeled 1, 2, 3, 4, 5, 6 keep in mind 

the labels do not have meaning because the particles are in distinguishable but that’s beside the 

point for every particle it is experiencing forces from every other particle in the system. 

 

So, if I have to find the net force on the particle number 1, it is going to be a sum of the forces 

because of every other particle in the system. So, let us say if I want to look at F of 1 that is 

going to be the force between 1 and 2 the force between 1 and 3 and the force between 1 and 

4, 1 and 5 and 1 and 6.  

𝐹⃗1 = 𝐹⃗12 + 𝐹⃗13 + 𝐹⃗14 + 𝐹⃗15 + 𝐹⃗16 

 

In general what we can therefore say is the force acting on any particle i in the system is sum 

over all the particles in the system. Let us label them j except that particle itself. So, one does 

not apply force on itself. If I sum over all the other particles apart from the particle i and find 



the forces between them we have essentially find the total force acting on this particular 

particle. So, F ij is the force acting on particle i because of particle j.  

𝐹⃗𝑖 = ∑ 𝐹⃗𝑖𝑗

𝑗≠𝑖

 

 

It turns out that instead of forces it is many a times more convenient to discuss in terms of the 

energy of these interactions and ultimately forces and energies are kind of related. The only 

difference is that the force is kind of acting on every particle. So, it is a well-defined thing to 

look at the force on every particle. Energy on the other hand is defined globally for the entire 

system.  

 

So, there is not much meaning to look at the energy of one of the particles in the system, of 

course there can be defined. But in general, the energy is typically defined for the entire system 

that we have. But nonetheless the force and the energy are defined in this particular way. So, I 

can write my F as the gradient of the energy between the particle. So, at any point in the space 

if I find the gradient of the energy, I will get the system. 

𝐹̅ − ∇𝑈 

So, u is defined globally for the system, of course that does not mean that u does not depend 

on the particle position you depends on that for a given configuration, you will have a given 

value of u, if I take the gradient of that that will give me the force acting at any point in the 

system. So, now it is defined in a continuous domain so as to speak. Because we are dealing 

with large number of particles, it is not really pretty important. 

∇⃗⃗⃗= ∑ 𝑒𝑘

𝜕

𝜕𝑞𝑘
𝑘

 

 

we are k are the components of the coordinate the three-dimensional space k will go from 1 to 

3 multiplied with the unit vector in the k direction. That is my gradient operator. So, instead of 

saying the forces acting on all, the particle I can then say that I can find the u of the system and 

what does the u of system come from?  

 

The u of system come from the interactions between every pair of particles that means I will 

sum over all particles and for that I will again sum over all the particles, except the particle i. 

And I compute the energy of interaction let me use small u to represent the energy of 

interaction between particles i and j 



𝑈 =
1

2
∑ ∑ 𝑢𝑖𝑗

𝑗≠𝑖𝑖

 

 

This is the interaction energy between particles i and j and clearly when we do that, we will be 

counting every interaction twice because let us say if I count the interaction between 1 and 2 

in this picture in the sum, you will have u 1 2, but then you will also have u 2 1. But both are 

representing the same energy in terms of forces they are acting on different particles but in 

terms of energy, it has to be counted only once not twice, because every interaction is only 

contributing once to the sum. So, therefore we need to divide this by 1 by 2.  

 

So, now what will this uij or Fij depend on- so, clearly you may imagine that as the particles 

come closer or farther.keep in mind that I have been trying to develop a generic representation 

from day one I did not say what are the interactions. So, let us say if the particles are coming 

farther or closer what is going to happen? The forces has to change it does not matter what 

forces are there. If it is columbic force, it is going to change the columbic force goes like inverse 

of the distance between them. If it is Van der Waal’s force then also it is going to change. It is 

very into to see that the particles further apart have lesser forces and therefore lesser energy of 

interaction. And particles closer will contribute more energy or will have more forces. So, 

therefore this is going to depend on the ri - rj, that is the separation between the two particles i 

and j. I can call this something like rij. So, therefore, this will also depend on rij.  

 

We will see later that we also may have to worry about the orientation of the particles. If we 

are not doing a spherical particle so something else may also come as an argument here let us 

say the angle between the two particles if they are not a spherical. But nonetheless that will 

also be changing as the states are changing. So, it is a function of the separation and it is a 

function of the relative orientation. So, you can say rij, relative orientation of the particles we 

can leave it for later because I am assuming that the balls are is spherical in the picture. So, in 

that case, the orientation is not so important.  

 

So, going further what we can also say is that in most cases that one can imagine there is no 

directionality to the interaction, right? So, let us say, for example, you have 1 and 2 and they 

are let say here or here this is 2 was here as long as the distance is the same, we may imagine 

the forces are also going to be the same. It is not that the vector distance is important in fact, it 



is the magnitude of that is more important. This is not completely true particularly when there 

is some directionality to that we can also worry about that later.  

 

So, assuming spherical particles and assuming no directionality that is true for most all the 

cases that we will discuss in this particular course. We can say that we will not worry about the 

vector distance will worry about the scalar distance. We can say we want to compute uij as a 

function of rij.  

 

And finally, if all the particles are identical in the system then we can now say that all the 

particles will have the interaction energy with other particles changing by the same function, 

right? So, let us say for example, all the particles have the same mass same charge everything 

the identical particles in that case, you will not have different mathematical forms of 

interactions between them, right?  

 

So, in general, we can write u(r) for one component system. If you have a multi component 

system in that case, you will define something like uαβ (r). But then the α β refers to my species. 

Let us say you have a species a and b then you will have uaa ubb and uab. So, you will have 

different mathematical forms for different pairs of species, not at the particle level but at the 

level of species for a one component system, you will have a single u of r. So, now the idea is 

how can, I represent this u (r).  

(Refer Slide Time: 30:35) 

 

So, then to conclude the discussion, our objective is to find this mathematical form u (r) 

between every pair of particles or the pairs of species, whatever. Once we have that then we 



can find the Hamiltonian. Why I am saying that? Because once I have this small u, I can find 

the capital U and the kinetic energy is a function of the momenta. And momenta anyway, I can 

find in terms of the generalized coordinates. So, the only thing that we have to find is the energy 

of the system and the energy of a system will be characterized with this u (r). clearly, if I look 

at different states with different p and q values in that case the r will also change between every 

pair of particles.  

 

And therefore, the energy will also change and therefore the Hamiltonian will also change but 

this is I would say the basic mechanism that we can think of right. And that is what is done in 

a molecular dynamic simulation. You give a feed or input value of u of r and I will discuss in 

the next class that what exactly it is called and so on that becomes the feed variable you find 

the Hamiltonian or energy and you solve the Newton's laws of motion and the particles evolve.  

 

And you essentially have the description of the trajectory in terms of γ of t and once we have 

that then we can find the evidence value of the property I am interested in as time average of 

M of t. The next lecture we will discuss how can we estimate u of r or what are the ways we 

can represent this u of r.  

 

 

So, with that I wish to conclude here, thank you. 

 

 

  

 

 


