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Hello all of you, so in the last couple of lectures we have been discussing the lattice model of 

solutions and we have been able to obtain the form of the Helmholtz free energy density for 

the lattice model of solution. So, today I will use that function ‘f’ to find the mixing and 

phase behaviour and more importantly the expression for the binodal, spinodal and critical 

point. We already have obtained the expressions but we will do it for this particular model. 

(Refer Slide Time: 00:59)  

 

So, where we have been so far is the Helmholtz free energy density of the lattice model of 

solution is given by- 

𝑓(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[𝜙 ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) − 𝜒𝜙2] 

 

So, the first two terms are basically coming from the entropy and the last term is coming from 

the energetic interactions. Now what I will do here is I am going to replace this quantity with 

χ Φ multiplied with 1 – Φ with a plus sign that will essentially mean χ Φ2 + χ Φ that means I 

am going to add an extra linear term in this expression. The reason why we do that is first of 



all the linear terms does not matter we already have discussed this in the context of computing 

the effective interactions. So we ignored all the terms with powers of Φ less than 2. So, first of 

all this will have no consequence in terms of the final results but what it does is that it makes 

this function ‘f’ look nicer and the reason why it happens is because in this new expression, if 

I replace Φ with 1 - Φ, we essentially get the same expression. So, we can try if I replace Φ 

with 1 - Φ, we get pretty much the same expression what this essentially translates to is that 

this function then become symmetric around phi equal to 1 by 2. 

𝑓(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[𝜙 ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) − 𝜒𝜙(1 − 𝜙)] 

 

So, let us say for example, if I look at either side of Φ equal to 1 by 2 let us say if I compare 

Φ equal to 1 by 4 or Φ equal to 3 by 4 that means, if I go 1 by 4 to the left of 1 by 2 and 1 by 4 

to the right of 1 by 2 we will have the same expression so we have a mirror symmetry so as to 

speak around Φ equal to 1 by 2 and later on we will see that this also give rise to a common 

tangent of slope ‘0’ that makes the expression simpler to look.  

  

So, with this particular idea let us now first see when do we have the mixing and phase 

separation behaviour in this particular system. So, for that the first thing I told you is that if f 

double prime is greater than 0 then we have mixing and if f double prime is less than zero then 

we have phase separation and that was discussed in the context of block graphs which were 

like having a single maxima or minima, for the case when you have multiple of them in that 

case we have discussed the idea of spinodal that was the point where f double prime is equal 

to 0 between the spinodal we have a regime that is unstable in which f double prime is less than 

0 in this regime f double prime is higher than 0 on this side and this side and between these 2 

points we have some sort of a meta stable regime then we already have discussed this.  

 

So, ultimately if I want to establish these things basically ultimately we have to find the 

derivatives of ‘f’ right and later on we have also discussed that if I look in for example, in terms 

of the temperature volume fraction phase diagram I can define binodal curve, spinodal curve 

and they will merge at the critical point and the critical point is given as f triple prime is equal 

to 0 and of course a spinodal is given as f double prime equal to 0 and binodal is given as- 

𝑓′(𝜙𝑎) = 𝑓′(𝜙𝑏) 



𝜙 =
𝑓(𝜙𝑏) − 𝑓(𝜙𝑎)

𝜙𝑏 − 𝜙𝑎
 

So, the advantage of using a mirror symmetric expression is that this quantity becomes equal 

to 0 because the common tangent that we will draw and we will see in the more details is going 

to be along the horizontal line and therefore the slope is going to be 0 and that will make the 

expression simpler. 
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So, let us go ahead and first try to find the derivatives of f of Φ. So, we are starting with f of Φ 

is equal to- 

𝑓(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[𝜙 ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)] 

𝑓′(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[1 + ln(𝜙) − 1 − ln(1 − 𝜙) + 𝜒(1 − 2𝜙)] 

𝑓′′(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[
1

𝜙
+

1

1 − 𝜙
− 2𝜒 

𝑓′′′(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[−

1

𝜙2
+

1

(1 − 𝜙)2
 

For critical point – 

−
1

𝜙2
+

1

(1 − 𝜙)2
= 0 

1

𝜙2
=

1

(1 − 𝜙)2
 

That is true when 𝜙𝑐 =
1

2
 

 



Now we of course also need to find the χ value so keep in mind here that χ is inversely 

proportional to the temperature so the effect of the temperature is contained in the variable chi 

right. Just like we had for temperature higher than critical point we said that we will be in a 

single phase regime the similar thing can also be applied for the χ variable because χ is a 

function of temperature. So, we have to find the χ value for the critical point and this we can 

find by first finding the spinodal expression. From spinodal what we find is that- 

𝑠𝑝𝑖𝑛𝑜𝑑𝑎𝑙 =
1

𝜙
+

1

1 − 𝜙
− 2𝜒 = 0 

𝜒𝑠 =
1

2
[
1

𝜙
+

1

1 − 𝜙
] 

 

Now since the binodal curve also passes through the critical point if I find the value of 

spinodal at Φ equal to 1 by 2 that is the critical point value we should find the χ value at the 

critical point. That is χc is equal to- 

𝜒𝑐 =
1

2
[
1

1
2

+
1

1
2

] = 2 

(Refer Slide Time: 10:47) 

 

So, if I now want to plot what my f of Φ, look like as a function of the Φ variable although 

we do not know the form yet, the few things we know there is a critical point around Φ equal 

to 1 by 2 and for χc value of 2. So, let us first look at what is the behaviour we expect for χ 

higher than the χc value and χ less than the χc value. So, we have already found the- 

𝑓′′(𝜙) =
𝑘𝐵𝑇

𝑣𝑐
[
1

𝜙
+

1

1 − 𝜙
− 2𝜒] 



 

And for χ equal to χc we know that the f double prime is equal to 0. So, I can basically write 

this expression as something like- 

𝑓′′ =
𝑘𝐵𝑇

𝑣𝑐
[𝑔 − 2𝜒] 

Where 

𝑔 =
1

𝜙
+

1

1 − 𝜙
 

And, 

𝑔′ = −
1

𝜙2
+

1

(1 − 𝜙)2
= 0 

 

and this happens for Φ value is equal to 1 by 2. 

 

 Now we can go ahead and find the second derivative to see whether it is going to be a maxima 

or a minima and what we find is it is equal to- 

𝑔′′ =
2

𝜙3
+

2

(1 − 𝜙)3
 

So, clearly, this is higher than 0 because Φ is between 0 to 1. So, this is a point of minima, so 

the minimum value of the function g is- 

𝑔𝑚𝑖𝑛𝑖𝑚𝑎 =
1

1
2

+
1

1
2

= 4 

For any other value of Φ this quantity is going to be more than 4 we can try plugging in a value 

let us say for example, we are doing it for Φ equal to 1 by 3 so we have 1 by 1 by 3 + 1 by 2 

by 3 and that gives me 3 + 3 by 2 that is clearly more than 4 
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So, what this means then is my- 

𝑓′′ =
𝑘𝐵𝑇

𝑣𝑐
[𝑔 − 2𝜒] 

 

so the minimum value is equal to 4. So, if χ happens to be less than 2 we can be certain that f 

double prime is always higher than higher than 0 and when that happens we can be certain that 

the system will form a homogeneous solution or mixing will happen. So, in other words since 

χc is equal to say, is equal to 2 we can say, if χ is less than χc then we always have the mixing 

behaviour. On the other hand, when χ is higher than 2 or when χ is higher than χc. Clearly, we 

can have situations where f double prime happens to be negative but that will not happen for 

all the values of Φ because for very small value of Φ the quantity g that is 1 by Φ + 1 by 1 – Φ 

has very high value. Let us say if I plug in Φ equal to 0, there we are going to have g equal to 

infinity.  

 

So, we will not have a situation where f double prime will be less than 0 for all values of Φ. 

So, we can never have a situation of complete de mixing so as to speak or complete phase 

separation but phase separation may occur for certain value of Φ.  

 

So, what this translates to is the following so in my f Φ versus Φ curve we know that this 

situation happens for χ higher than χc and for that situation as we had discussed the curve 

should look something like that because only then we have mixing for all values of Φ then as 

I start increasing the value of χ we are going to a regime where we can have phase separation. 

And I give you this discussion where when we have this kind of functional form then we can 



have phase separation. We will never have a situation where it is fully convex because 

completely mixing is not possible in this situation so for χ less than χc this can be the behaviour 

so therefore what we can say is that, for χ is equal to χc that is the spinodal point this f double 

prime becomes equal to 0 so that is where we can say we have an onset of the phase separation 

behaviour.  

 

 

 

So, what we have been trying to establish is the different phase regimes for this particular 

problem and we found that there is a variable χc that dictates that phase separation behaviour 

for χ value less than χc we have always mixing, for χ value higher than χc we can have a situation 

of phase separation.  

 

Now the advantage of the mirror symmetry around Φ equal to 1 by 2 is first of all I have drawn 

the curves all which were mirror symmetric already but the advantage comes in when I try to 

draw a common tangent in the case of χ higher than χc and that common tangent will then have 

a slope of 0. So, the binodal line is therefore given as f‘(Φ) = 0 and the expression of that we 

had already evaluated earlier. So, this is the expression of the binodal line. This is the 

expression of the spinodal and here is the value of critical point.  

 

So, in this particular discussion what I wanted to establish is that within certain assumptions 

we can make twine models which qualitatively describe the phase behaviour of solutions and 

the particular example that we were focusing on was on looking at the mixing and phase 

separation behaviour so we have been able to both derive the function f and to so its usefulness 

in characterizing the mixing and separation behaviour and it turns out and we have discussed 

in detail that if I know ‘f’ I can pretty much get the entire phase behaviour this is one way of 

doing it for the lattice model of course, when we are coming to the molecular simulation part 

we will be doing the same exercise more rigorously for a more elaborate phase space.  



 

So, before I conclude here, let me tell you that this lattice model of solutions even when it is 

quite simplistic finds its use in many applications than we can imagine. So, I have taken an 

example of a liquid solution where solute and the solvent molecules were of the same volume 

but it also finds use in the study of polymers where polymers are clearly much larger than the 

solvent molecules.  
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So, in that case what we assume for a polymer solution and I will not really completely derive 

the expressions for this particular case. So what I assume there is that the individual units of 

polymer which may be consisting of one monomeric unit or few monomeric unit they occupy 

the same volume as a solvent molecule. So, in every cell I will not place the entire polymer 

chain instead I will place them in multiple cells connected together so this entire thing that I 

am drawing right here represents a polymer chain and one of these is a segment of the polymer 

chain that may be a monomer or a set of monomers. 

 

Again this is a toy model but it happens to have too much applicability in polymer physics and 

the reason, being that you may imagine that the simulation of polymeric systems is even more 



complicated than the simulation of simple simpler systems where the solute and solvent 

molecules are of the same size because, the polymer chain itself can take many possible 

configuration. So, until so far, when we are doing the liquid solution, we did not worry about 

the configurations of the molecules themselves we worried about the configuration of all the 

molecules together so their relative positions with respect to each other.  

 

But in the polymer case the configuration of the polymer chain itself or the structure of the 

polymer chain itself adds a huge burden to the few to the phase space and therefore it is even 

more complicated to simulate and therefore in the polymer solution literature it is very common 

to use lattice models both theoretically and in simulations to simulate that.  

 

More importantly this idea of lattice simulation has also picked pace in the study of biological 

systems. For example, phenomena such as self-replication can be described within a lattice 

model kind of a framework if we think about it, we are looking at a biological problem that is, 

in some sense even more complicated and the twine model that we are building is therefore 

even more simpler but nonetheless those kind of lattice models happens to have great utility in 

extracting the physical behaviour the qualitative behaviour regarding those systems.  

 

So, with that I wanted to conclude the discussion today, thank you. 

 

 

 

 

 

 

 

 

 

 

 

 


