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Hello all of you. So, in the last lecture we have been discussing that if we want to look at the 

mixing and phase separation behaviour of liquid solutions, we can define something called a 

Helmholtz free energy density that will characterize the system and using that I can find the 

mixing and phase behaviour of the system.  

 

So, today I will show you how exactly we will do that looking at the mathematical form f of Φ 

or how can we find what should be the mathematical form if I want to see a mixing behaviour 

or phase separation, essentially what we have been looking at the Gibbs free energy that for 

the incompressible system of liquid can be written something like this,  

G = V[ P + f(Φ,T) ] 

where this quantity is what I defined as the Helmholtz free energy density.  
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I would like to emphasize here before we proceed that we started with assuming that we are 

working at constant pressure and temperature condition however, if the liquid is incompressible 

the constant pressure also translates to a constant volume condition as the volume of liquid is 

not changing, and therefore we are using the Helmholtz free energy. So, in principle when I 



am using the constant pressure system, I should use the Gibbs free energy, but in this particular 

case Helmholtz free energy also makes sense because the volume is not really changing. And 

that’s how, although we write the conditions in terms of Gibbs energy, it is still quite valid to 

define Helmholtz free energy because the volume is also constant.  

 

So, then if I finally want to go back to the same mixing problem that I have been discussing. 

So, let us say for example, if I start with a solution containing a solute volume fraction Φ1 and 

volume V1 and I mix with another liquid that has a solute volume fraction Φ2 and volume V2 

both of them are binary system with the same solvent and same solute and if I mix them 

together, then there are 2 possibilities. When it is mixing then in that case, you will have a 

homogeneous solution of a fixed volume fraction Φ and volume V or we can have a scenario 

of phase separation where at equilibrium we can have two phases having volume fraction Φa 

and Φb keep in mind that the Φa and Φb need not be the same as Φ1 and Φ2, because an 

equilibrium is established it will be a new equilibrium so as to speak when I mix them together. 

So, whatever the Φa and Φb will be that will correspond to the equilibrium for this new system. 

 

  

 

So, now we can apply the metrical balance, so if I apply the material balance over the 

solute, what we can find is for the mixing case the volume of solute is Φ multiplied by V and 

that is equal to the solute volume in the initial two solution, that is- 



ΦV = Φ1 V1 + Φ2 V2 

Φa Va + Φb Vb = Φ1 V1 +Φ2 V2 

So, if I start with this kind of an idea then I have already said that we will look at the Gibbs 

free energy of the final state and whichever is giving me a lower Gibbs energy is the one that 

will go for. 

 

So let us look at the first case of mixing so we are starting with. A system that has a Gibbs 

free energy equal to  

𝐺𝐼 = 𝑉1[𝑃 + 𝑓(Φ1, 𝑇)] 

And the other system that has a Gibbs energy  

𝐺𝐼𝐼 = 𝑉2[𝑃 + 𝑓(Φ2, 𝑇)] 

Keep in mind now since we have defined the Helmholtz free energy density the f that the 

function that appears is going to be the same in both these cases because the system is the same, 

only the value of the arguments are different, the volume fractions are different in the two 

problems. Now since we are working at constant temperature and pressure we can pretty much 

write  

𝑓(Φ1, 𝑇) = 𝑓(Φ1) 

for a given value of temperature. Of course, it is going to be a function of temperature, we will 

come back to that point. But at a given temperature the function f is a function of the volume 

fraction alone. Now in the final state if they mix together, then the G of the mixture is going to 

be the volume  

𝐺𝑚𝑖𝑥 = 𝑉[𝑃 + 𝑓(Φ, T)] 

And 

𝑉 = 𝑉1 + 𝑉2 

because we are assuming that the solution is incompressible, so there is no volume change on 

mixing. 

 

On the other hand, if they are phase  separated we are going to have something like  

𝐺𝑠𝑒𝑝 = 𝑉𝑎𝑓(Φ𝑎, 𝑇) + 𝑉𝑏𝑓(Φ𝑏, 𝑇) 



And now you can notice that since I am ultimately interested in the difference in the Gibbs free 

energy, because that difference will drive the process if I compute the differences, this pressure 

term is going to be inconsequential when I compute the differences in the Gibbs free energy. 

 

And therefore, I can only look at the Helmholtz energy term that is going to be different in the 

all the cases because the volume fraction are changing. 
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So, now, for mixing to occur, we want that  

𝐺𝑚𝑖𝑥 < 𝐺𝐼 + 𝐺𝐼𝐼 

that is the Gibbs free energy of the initial solutions that we started with and that gives me  

(𝑉1 + 𝑉2)[𝑃 + 𝑓(Φ)] < 𝑉1[𝑃 + 𝑓(Φ1)] + 𝑉2[𝑃 + 𝑓(Φ2)] 

where I will just write as 𝑓(Φ)because I am working at a constant temperature. And as I was 

saying the pressure term is going to cancel out. 

 

And now I can divide this by 𝑉1 + 𝑉2, so what we should have  

𝑓(Φ) <
𝑉1

𝑉1 + 𝑉2
𝑓(Φ1) +

𝑉2
𝑉1 + 𝑉2

𝑓(Φ2) 

So, now I can define this quantity  

𝑥 =
𝑉1

𝑉1 + 𝑉2
 

that is the volume ratio of the mixtures. So, then this is going to be 

𝑓(Φ) < 𝑥𝑓(Φ1) + (1 − 𝑥)𝑓(Φ2) 

because I can write  



𝑉2
𝑉1 + 𝑉2

= 1 −
𝑉1

𝑉1 + 𝑉2
 

 So, whenever this is true, then the system has a tendency to mix.  
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On the other hand, for phase separation to occur, what we should have is the 

𝐺𝑠𝑒𝑝 < 𝐺𝐼 + 𝐺𝐼𝐼 

So, I can write this as something like 

𝑉𝑎𝑓(Φ𝑎) + 𝑉𝑏𝑓(Φ𝑏) ≤ 𝑉1𝑓(Φ1) + 𝑉2𝑓(Φ2) 

I am not putting a pressure term there is going to cancel anyway. This was the picture that I 

have been alluding to in previous figure, except that I have cancelled the pressure terms. So, if 

you look very closely, then we can actually write the equality also in the last because it can 

very well be that  

𝑉𝑎 = 𝑉1, 𝑉𝑏 = 𝑉2 

Φ𝑎 = Φ1, Φ𝑏 = Φ2 

where, after mixing the volume fractions in the 2 phases remain the same as the initial solution 

that is of course mathematically possible, will seldom happen, but just for the sake of 

completion we can think in this particular way. 

 

So, now one may ask that, what if both of them are true? That is both the condition of mixing 

and phase separation is met? So, the answer to this question is both will not really be true, but 

nonetheless the way to think about it if that is true, then we will go for comparison of those 

two things. So, if 𝐺𝑚𝑖𝑥 < 𝐺𝑠𝑒𝑝 then mixing will occur and if 𝐺𝑚𝑖𝑥 > 𝐺𝑠𝑒𝑝 then phase separation 

will occur. So, in principle we do not even have to go to this condition. If the previous condition 



is not valid, then clearly the system does not have this tendency to mix. So, if it does not have 

tendency to mix, then it will separate, so we can also say that mixing will occur when  

𝑓(Φ) < 𝑥𝑓(Φ1) + (1 − 𝑥)𝑓(Φ2) 

 And phase separation will occur otherwise.  

 

Otherwise so we simply have to see whether the system has a tendency to mix and if that is not 

happening when the separation is going to occur. We will come back to the point where we 

will try to evaluate the free energy in the phase separated state, we will come back to that point. 

For the time being it is enough to say that we will simply look at these particular conditions 

and identify whether we will have mixing or not. 
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Now so basically, we want to look at this particular condition for mixing to occur,  

𝑓(Φ) < 𝑥𝑓(Φ1) + (1 − 𝑥)𝑓(Φ2) 

as we have derived in the previous slide. Now we have not really said what is the functional 

form 𝑓(Φ). So, let us assume some form and see like what does this condition translate to and 

then going further we can say what should be the form of 𝑓(Φ). Later on we will see how can 

we derive that but right now I am just looking at the mathematical form of this function. So, 

let us say for example this function looks like this. 



 

So, I am assuming an upper concave function. And let us say that my initial volume fractions 

are Φ1 and Φ2. So, now, we can draw a line connecting them. And clearly the value of Φ after 

mixing has to be intermediate between Φ1 and Φ2.  

 

 



So, let say, for example, if I mix 10% of sugar in 20% of sugar, what we know for sure is that 

the amount of sugar in the final solution has to be between 10% and 20%. We do not know 

what value is that you can get from material balance, but clearly know that it must be 

intermediate between 10% and 20% so whatever Φ it is going to be it is going to be intermediate 

between Φ1 and Φ2 values.  

 

So, now, we can say the following. 

 

And  

𝐴𝐵

𝐵𝐶
=

𝑥

1 − 𝑥
 

And let us see why it is true it comes as a consequence of the material balance equation. 

 

So, let us say if I apply the formula of similar triangle here, then what we can see is  

Φ2 −Φ

Φ2 −Φ1
=
𝑥

1
 

By the way, I am looking at the ratio and that is why we get x by 1 the length of AC can be 

anything but the ratio BC/AC is always going to be x. So, this then becomes  

Φ2 −Φ = 𝑥(Φ2 −Φ1) 

And this gives me  

Φ = Φ1𝑥 +Φ2(1 − 𝑥) 

and we have earlier defined  



𝑥 =
𝑉1

𝑉1 + 𝑉2
 

So, if I put that thing in earlier equation 

Φ =
Φ1𝑉1
𝑉1 + 𝑉2

+
Φ2𝑉2
𝑉1 + 𝑉2

 

and that essentially is  

Φ𝑉 = Φ1𝑉1 +Φ2𝑉2 

because  

𝑉 = 𝑉1 + 𝑉2 

Which is the material balance for solute that we had obtained earlier.  

 

So, therefore, AB line segment should be (1 − 𝑥) fraction of this AC line segment. And BC 

line segment should be x fraction of the AC line segment.  

 

So, if we agree with that, then the next thing that we can do is we can find what should be the 

function value at point B and it turns out that it is going to be an interpolation between the 

function value at A that is 𝑓(Φ1) and the function value of C, that is 𝑓(Φ2) and this quantity 

is going to be  

𝑓(Φ1) + (1 − 𝑥)[𝑓(Φ2) − 𝑓(Φ1)] = 𝑥𝑓(Φ1) + (1 − 𝑥)𝑓(Φ2) 

So, the function value at B is equal to the right hand side of the expression obtained earlier for 

mixing case 

𝑓(Φ) < 𝑥𝑓(Φ1) + (1 − 𝑥)𝑓(Φ2) 

And the function value at Φ is the value on the curve. So, clearly, if the curve looks like this if 

f of phi looks like this, the above expression is always true as long as the curve is upper concave 

that is like what I have drawn here. If it has a minima, and if it has only 1 minima, if it is an 

upper concave curve, it is going to always mix together. No matter what Φ1 and Φ2 I start with. 

Just for the sake of convenience, I have taken Φ1 and Φ2 on different sides of minima, even if 

my Φ1 and Φ2were on same side of minima, then also this argument holds true that (see 

highlighted section in figure below when Φ1 and Φ2 are on same side of minima.  

 



 

 

Like the curve is upper concave what so happens that we should have 𝑓′′ > 0 and that simply 

comes from, if you recall the condition of a minima. So, for the minima 𝑓′ = 0  and 𝑓′′ > 0. 

So, a curve will have a minima or a curve will be concave if my 𝑓′′ > 0. So, what we can say 

with certainty is that if f double prime is greater than 0, then we are going to have a tendency 

of system to mix. Now, let us see if this is not true what really happens. 
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So, let us say for example, now we have a curve that is upper convex. That is my curve, looks 

like that- 

 

Now in this case again, I can use the same argument. And let us say if I start with some 

initial volume fraction of solutions. Again, I am going to connect these two points. So, that 

logic really comes from the material balance and again, I can find the Φ of the final solution 

and this is going to be 1 - x, this is going to be x. If you recall while doing that, I have not really 

considered the shape of the curve. I only look at the last, the point at phi 1 and point at phi 2. 

So, this argument is still is valid. So, this point is till going to be something like- 

𝑥𝑓(𝜙1) + (1 − 𝑥)𝑓(𝜙2) 

 

But now my function value is right here, this is my f of Φ. So, if a curve is convex or upper 

convex, what we are going to have is f (Φ) be higher than x f (Φ1) + 1 - x f (Φ2), and in that 

case, we are going to have a phase separation. So, if you do not have mixing you must have a 

condition of phase separation. And just like f double prime higher than 0 gave me a concave 

function f double prime less than 0 that is the condition of maxima gives me a convex function.  

 

So, essentially, even if I do not know f, one thing is clear from here is that the second derivative 

of ‘f’ will dictate whether the system will have a tendency to mix or to phase separate. If the 

second derivative is higher than 0, then we have mixing behaviour. If second derivative is less 

than 0, then we are going to have a phase separation behaviour.  



Now in general the curve may not be throughout convex or throughout concave it can be 

somewhere in between. 
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For example, the curve may look something like this. So, now if you see the function has 

minima’s and maxima’s, so you have 3 points here two of them are minima and one of them is 

a maxima. If you look in somewhere around here, then my f double prime should be less than 

0, that is the function is convex. On the other hand, if I look in here, then my f double prime is 

higher than 0 that is the function is concave and if I have looked somewhere here again, my f 

double prime is higher than 0 that is the function is concave.  

 

So, now it becomes important which solutions are we trying to mix- So, let us say for example, 

if I want to mix 2 solutions with volume fractions Φα and Φβ which happen to come near the 

concave reason of the plot. In that case, what is going to happen it will have a tendency to mix 

because Φ anyway is in between these two so, it does not really matter. What the function form 

is in the other parts of the phase of this diagram, that is what is the function value for other 

values of Φ because we are looking at only within this range of value. On the other hand, if for 

example, I am looking at the volume fraction say if some Φγ and Φδ, it happens to be in the 

convex regime in that case it is going to phase separate. 

 



So, now this, the situation becomes more complicated, because now we have to see what is the 

function value in the range of Φ between the initial solutions that we started with and if in the 

range of Φ the function form is concave that is f double prime is higher than 0, we will have a 

mixing behaviour. If in that range, if the function form is convex. In that case, we will have a 

phase separation. 

 

Now finally look at a case when if for example, look at two things which are in different parts 

of the phase diagram. So, let us say this is my Φ ζ and this is my Φ χ and let us say if I want to 

mix these 2, now the answer is not so trivial. Now we have to see which regime of this function 

curve will the final Φ value lies and it is that will dictate whether we are going to have a mixing 

behaviour or a phase separation we gave here.  

 

So, for many cases in thermodynamics, you can have situations where it is not completely or 

fully convex or a fully concave curve it may look like something like this for example, and in 

that case we need to see what is the function value in the range of the volume fractions that we 

are considering and it is then the problem become somewhat more involved and this is what 

we will discuss in the coming classes.  

 

So, with that I want to conclude here, thank you. 

 

 

 

 

 

 


