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Hello, all of you. In this lecture, we will summarize the discussion we were having on the 

thermodynamic ensembles and basically go over the formula for all the ensembles once again. 

And then I will talk about how to get the partition function in terms of what is known as a 

molecular partition function and we give an example of an ideal gas for which we can exactly 

evaluate the partition function. 

(Refer Slide Time: 01:05) 

 

So essentially what we have done so far we have been doing different ensembles. The simplest 

is ensemble is the micro canonical ensemble in which the number of particles, the volume and 

the total energy that is the internal energy of the system are the control variables. And for this 

case, the entropy becomes the thermodynamic function which is written as a function of the 

number of ways of distribution essentially speaking W becomes the partition function although 

we did not explicitly state that for the case of a micro canonical ensemble. 

𝑆 = 𝑘𝐵 ln 𝑊 

 

So if I know W I can find S and once I know S I can find all the other variables using the 

differential form. So keep in mind that while I was doing it, I was keeping it for just one 



component and therefore we only had a μdN appearing there. If I want to generalize it for 

multiple component the idea remains the same. We will have a sum over all the species and 

then we will have chemical potential of the jth species and Nj is the number of particles of jth 

species.  

 

So now the first thing, what we can do is define a quantity called β that is 1 over kB T. We 

argued that we can justify the β as the definition of temperature by saying that, let us say if you 

have two systems in close contact, and then you have ensemble of such systems, then there 

must be something common between the systems, which was the Lagrangian multiplier and 

the Lagrangian multiplier, we defined as- 

 

𝛽 =
1

𝑘𝐵𝑇
 

 

We also looked at the link between the equation that we have discussed earlier that simply 

come from the first law of thermodynamics with the equation we derived on the basis of the 

partition function. And using that as well, we said that the Lagrange multiplier β must be equal 

to 1 over kBT and then, the remaining process is quite straightforward there is different ways 

to look at it.  

 

Let us say for example, I could start with this particular expression and say that the temperature 

for example, can be defined as doh S by doh E is equal to 1 over temperature. And since we 

have said that S is equal to k B ln W, so I can replace this with k B ln W. And therefore, I can 

say that 1 over k B T is doh ln W by doh E. So I am taking the first derivative of dS with respect 

to dE that is the first result we have. Now we have two more terms appearing here that is dV 

and dN j. So I can also take derivative of the ln of W, that is the partition function in this case 

with respect to volume and the number of molecule- 

𝜕𝑆

𝜕𝐸
=

1

𝑇
 

1

𝑘𝐵𝑇
=

𝜕𝑙𝑛𝑊

𝜕𝐸
  

𝑑𝑆 =
𝑑𝐸

𝑇
+

𝑝

𝑇
𝑑𝑉 − ∑

𝜇𝑗

𝑇
𝑑𝑁𝑗

𝑗

 



And naturally what we get is the pressure and chemical potential. So we wrote this as- 

𝛽𝑝 =
𝑝

𝑘𝐵𝑇
= (

𝜕 ln 𝑊

𝜕𝑉
)

{𝑁𝑗},𝐸
 

 

If I take a derivative with respect to volume, it is a partial derivative. So meaning that the 

number of molecules of all the species or number of particles are held constant. The energy is 

held constant. In that case, we get the pressure. I can also take derivative with respect to the 

number of particles of one of the species keeping the volume fixed, energy fixed and number 

of particles of all the other species fixed that I represent by Nk not equal to j and that will give 

me the chemical potential. 

𝜇𝑗

𝑘𝐵𝑇
= (

𝜕 ln 𝑊

𝜕𝑁𝑗
)

𝑉,𝐸,𝑁𝑘≠𝑗

 

 

So this is another way of looking at the result comparing the differential form that we already 

had from the first law of thermodynamics, with just one change that I replaced the 

thermodynamic function as the function of the partition function and therefore, the idea is that 

we can evaluate the properties as a function of the partition function. 
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Now if I go to the canonical ensemble, then all that is changed is the expression of the partition 

function Q is no longer the number of ways to be precise Q is- 

𝑄 = ∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖

 

And now using this Q, I can define the thermodynamic functions. In earlier case S was- 



𝑆 = 𝑘𝐵 ln 𝑊 

where W was the partition function.  

 

In this case, the thermodynamic function is my Helmholtz free energy which is still a function 

of the partition function, but now we have the canonical partition function i.e.- 

𝐹 = −𝑘𝐵𝑇 ln 𝑄 

Again, we have done this differential form. This we have done before even the particle function 

thing i.e.- 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

This comes from again the first law of thermodynamics, where we apply Legendre 

transformation to go from energy to f. So essentially F is E - TS. So we did a Legendre 

transformation and we got f that is a function of N, V and T.  

 

And then just like what we did in the earlier case, we can take the derivative or the partial 

derivative of (f) with respect to temperature or volume or the number of molecule. If I do the 

first one, I get the entropy and again I can write entropy as a function of the partition function, 

because I can write (f) as a function of the partition function.  

𝑆 = − (
𝜕𝐹

𝜕𝑇
) = 𝑘𝐵 ln 𝑄 + 𝑘𝐵𝑇 (

𝜕 ln 𝑄

𝜕𝑇
)

{𝑁𝑗},𝑉
 

Similarly, if I take derivative with respect to the volume, I get my pressure. Again I can write 

it as a function of the canonical partition function.  

𝑝 = − (
𝜕𝐹

𝜕𝑉
)

({𝑁𝑗},𝑇}
= 𝑘𝐵𝑇 (

𝜕 ln 𝑄

𝜕𝑉
)

{𝑁𝑗},𝑇
 

And finally, I can also get the chemical potential if I take a derivative with respect to Nj. 

𝜇𝑗 = − (
𝜕𝐹

𝜕𝑁𝑗
)

(𝑉,𝑇,𝑁𝑘≠𝑗}

= 𝑘𝐵𝑇 (
𝜕 ln 𝑄

𝜕𝑁𝑗
)

𝑉,𝑇,𝑁𝑘≠𝑗

 

And if I take a derivative with respect to the temperature of the ln Q and multiply with kB T 

square we have derived this that is at constant number of molecules and the volume what we 

have is the average energy of the system- 

𝜕 ln 𝑄

𝜕𝛽
= −�̅� 

So if I put beta is equal to 1 by kB T I can write essentially as- 



𝜕 ln 𝑄

𝜕𝛽
=

𝜕 ln 𝑄
𝜕𝑇
𝜕𝛽
𝜕𝑇

=
𝜕

𝜕𝑇
(

1

𝑘𝐵𝑇
) = −

1

𝑘𝐵𝑇2
 

 

And this quantity, this entire quantity is equal to my average energy E with a minus sign. So 

therefore, we get- 

𝐸 = 𝑘𝐵𝑇2 (
𝜕 ln 𝑄

𝜕𝑇
)

{𝑁𝑗},𝑉
 

So all the derivation that we have done, if I am doing in terms of βI can always convert in terms 

of derivative with respect to the temperature in the same way we simply divide with doh beta 

by dou T and we can write the expression in terms of temperature. This is how they are typically 

represented or typically useful because we are interested in the temperature. 
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Now if I go to the grand canonical ensemble, now the number of molecules are also not the 

control variables. In this case, we are dealing with an open system where the number of 

particles can change. So in that case, instead of the number, the chemical potential becomes 

the control variable. And the thermodynamic function as we derived in this case is- 

𝑝𝑉 = 𝑘𝐵𝑇 ln 𝑍 

and Z is the grand canonical partition function that I can also write as a function of the canonical 

partition function. So Z essentially was- 

𝑍 = ∑ ∑ exp(−𝛽𝐸𝑁𝑗 − 𝛾𝑁)

𝑗𝑁

 



And we said that γ is related to the chemical potential. We can generalize this again for 

multicomponent by doing the summation over j. And then we can also get the differential form 

in the same way that we have gotten earlier. Keep in mind in the last term, we have Nj d μj. 

𝑑(𝑝𝑉) = 𝑆𝑑𝑇 + 𝑝𝑑𝑉 + ∑ 𝑁𝑗𝑑𝜇𝑗

𝑗

 

Now again I can define the entropy as a function of the partition function for the grand 

canonical ensemble. 

𝑆 = 𝑘𝐵 ln 𝑍 + 𝑘𝐵𝑇 (
𝜕 ln 𝑍

𝜕𝑇
)

𝜇𝑗,𝑉
 

And I can find the properties by taking a derivative of the partition function in the same way 

that we have been doing- 

𝑝 = 𝑘𝐵𝑇 (
𝜕 ln 𝑍

𝜕𝑉
)

{𝜇𝑗},𝑇
= 𝑘𝐵𝑇

ln 𝑍

𝑉
 

In this case, we can also find the average number of molecules of every species as a derivative 

of ln Q with respect to the mu j or the chemical potential keeping the temperature, volume and 

chemical potential of all the other species being held constant. 

𝑁𝑗 = 𝑘𝐵𝑇 (
𝜕 ln 𝑄

𝜕𝜇𝑗
)

𝑇,𝑉,𝜇𝑘≠𝑗
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So finally, we have also discussed the isothermal isobaric ensemble. Now we have a partition 

function that is again new i.e.- 

𝐺 = −𝑘𝐵𝑇 ln Δ 



And that now depends on the pressure and we found that Δ was- 

Δ = ∑ ∑ exp[−𝛽(𝐸𝑣𝑗 + 𝑝𝑉)]

𝑗𝑉

 

And now again, we have a differential form. The thermodynamic function in this case is the 

Gibbs free energy- 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

I can again write entropy as a function of the partition function. 

𝑆 = 𝑘𝐵 ln Δ + 𝑘𝐵𝑇 (
𝜕 ln Δ

𝜕𝑇
)

{𝑁𝑗},𝑉
 

I can again write the volume and the chemical potential as a function of partition function as- 

𝑉 = 𝑘𝐵𝑇 (
𝜕 ln Δ

𝜕𝑝
)

{𝑁𝑗},𝑇

 

𝜇𝑗 = 𝑘𝐵𝑇 (
𝜕 ln Δ

𝜕𝑁𝑗
)

𝑇,𝑃,𝑁𝑘≠𝑗

 

 

So the basic math remains the same. It may seem involved, but the procedure that we have 

done is pretty much the same no matter what we are doing but the partition function changes 

as we change the ensemble. So now let us come to the point on of how exactly we get the 

partition function, right. If I know the partition function, and we have shown also for the ideal 

gas, and for the Van der Walls gas, that if I know the partition function, I can find the properties 

but knowing the partition function itself is something that we have not discussed so far. 

(Refer Slide Time: 13:25) 

 



So we started with- 

𝑄 =
1

𝑁!
(

2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3𝑁
2

𝑉𝑁 

And we said that I can write this as some function- 

𝑄 = 𝑓(𝑇)𝑉𝑁 

And using that we established that we can get the ideal gas law- 

𝑝𝑉 = 𝑛𝑅𝑇 

 

And the question is, how do we get this Q? How do we derive this expression of Q? So the 

answer to this lies in the idea of a molecular partition function. So in this lecture, I will try to 

get to how can we represent the partition function in terms of the molecular partition function.  

 

Now as soon as we talk about a molecular partition function, the concept itself is a bit 

confusing, because as we started the discussion of thermodynamics, I said that we are talking 

about a large number of molecules. So whenever we are talking about any thermodynamic 

behavior, that does not apply to one molecule, it applies to a collection of molecules only then 

the thermodynamics start making sense. For example, I cannot define entropy of an isolated 

molecule in bulk only when you have the bulk comprised of a large number of molecule we 

can define the entropy. The disorder will come into existence only when we have a large 

number of molecules.  

 

Similarly, all the notion of the laws of thermodynamics implicitly assume that we have a large 

number of molecules. Nonetheless, theoretically there is a linkage that can be exploited 

between the quantum mechanics, how we define energy of the quantum systems and how can 

we extend that to the thermodynamics and we have already used this idea earlier as well. For 

example, when I first defined the entropy, I said let us look at how can we distribute certain 

quanta of energy into so many particles and in there we are implicitly using the idea of discrete 

energy levels that come from quantum mechanics.  

 

So let us go back to that kind of a discussion and try to justify the meaning of a molecular 

partition function and then from there, we can see how exactly we can derive the partition 

function of a monatomic ideal gas. 

(Refer Slide Time: 15:54) 



 

So the idea begins from here that until so far, I have been talking about the energy of a system 

that is already comprised of a large number of molecules and the partition function is essentially 

written in terms of these energies, right. If I look at the canonical partition function or the grand 

canonical partition function, for the micro canonical ensemble this energy is held constant but 

for all the other ensembles that we have discussed, this energy is a variable and therefore the 

partition function was in terms of this energy.  

 

But now if I look at any of these particular systems, there is another energy that we have 

discussed earlier that is the energy of the molecules. So when we say that the system has an 

energy Ej what essentially we are saying is that this energy Ej is distributed into the molecules 

or particles comprising the system. 

 

So therefore, we have earlier used the notation some ϵk for those energies of the molecules in 

the system. So let us say for example, if I talk about Ej of a particular state right here that is 

written as- 

𝐸𝑗 = ∑ 𝑛𝑘 Ε𝑘

𝑘

 

So therefore, we have pretty much gone from like a molecular level distribution of quanta that 

we have discussed earlier to a system level description of the total energy of the system that 

already comprises of the molecular level distribution, right. But nonetheless, the idea was very 

similar the way it was transmitted from here to there. We still had a constraint of energy 

conservation that can pretty much be written also for this particular case. This is the equation 



that must be satisfied for the system. We can define total energy of a system and therefore, we 

can talk in terms of energy of the molecules.  

 

So let us say for example, I look at my canonical partition function now but now in terms of 

not the energy of a system, but energy of the molecules comprising of the system. In statistical 

mechanics book, we talk about the idea of micro state and macro state. I am not getting into 

that semantics in this particular course. But keep in my mind that if you read about those things, 

it basically refers to this particular picture when we are looking at the distribution of energy in 

the molecules of a system versus distribution of energy of a systems in the ensemble. 

(Refer Slide Time: 19:43) 

 

So let us start writing the canonical partition function in terms of these molecular level energy. 

So this is how we defined it earlier- 

𝑄 = ∑ 𝑒−𝛽𝐸𝑗

𝑗

 

But now I want to write this Ej in terms of the molecular energies, right. So what we can write 

this as is let me for the sake of argument, let us say if you have some N particles, and I will I 

want to label these particles, so that I can write a partition function of all of them. So let us say 

I want to label these particles. So let us say they have labeled as something like a, b, c and so 

on. Now each of these particles a, b and c and so on can have different energy levels, right. So 

let us say for example, ϵi
a represent the energy of particle ‘a’ and that is for a particular system. 

So i indicate the energy level the particle is in. And ‘a’ is the subscript for the particle. 

 



So let us say for example, if as per the quantum mechanics let us say if there are certain number 

of discrete energy levels available out there for the molecules or particles then every particle 

can be in any of these energy levels. So let us say particle a that we have labeled is at a particular 

energy level, let us say i equal to 3 then the other particle can be at some other energy level, let 

us say i equal to 1 and so on. So ϵi
a indicate the energy of particle a, where i indicate the energy 

level the particle is in. So then, I can now write Ej as- 

𝐸𝐽 = 𝜖𝑖
𝑎 + 𝜖𝑗

𝑏 + 𝜖𝑘
𝑐 + ⋯ … … … … … …. 

So right now we are not even counting the number of particles that have the same energy level. 

In the earlier case I was telling you Nk particle have this energy level right now I am labeling 

them separately. So every particle is assumed to be different. We will soon come to the point 

when they are considered indistinguishable. But let us first label them and say that they have 

different energy levels.  

 

So clearly, the particle b may not be in the energy level same as a. Let us say it is in some ϵj 

energy level and let us say the particle c in some energy level k and so on right. Just to keep 

the indexing right, let me write the energy of the system as the capital subscript. So J refers to 

the energy levels for the entire system, but capital J refers to energy levels of entire system and 

small i small j small k refers to the energy level of the molecules under consideration. So 

therefore, I can then write my Q as- 

𝑄 = ∑ 𝑒−𝛽𝐸𝑗

𝑗

 

= ∑ exp[−𝛽(𝜖𝑖
𝑎 + 𝜖𝑗

𝑏 + ⋯ … … … … . . )]

𝑗

 

So now what I notice here is that I can break this apart into individual terms, because I can 

write this as well as summation of j exponential of minus β ϵi
a exponential of minus β, ϵj

b, and 

so on.  

 

But now there is a problem in the way we have written it and that problem is that now as soon 

as I have given an index i j and k and so on there, we are looking at only one particular energy 

level that is possible for that particular molecule. If I want to count over all the possibilities, 

then this has to be summed over all the indices i, j and k because partition function refers to 

sum over the Boltzmann function of all the states but then, within each state I have to sum over 

the Boltzmann factors of all possible what I refer to as microstates of that particular system. 



(Refer Slide Time: 25:56) 

 

So what it means is that this has to be also summed over i, j, k and so on right. Now it turns out 

that this need not even be canonical ensemble even if we have micro canonical ensemble where 

energy of the system is held fixed, even in that case, if I look at the distribution of energy within 

molecules, they still have a partition function and that partition function comes from the 

distribution within the system, right. So this quantity is present even if we assume that the 

energy of the system overall is held constant, right. So therefore, I can define some quantity, 

let me call it Ω for the time being as- 

Ω𝑁,𝑉,𝐸𝑗 = ∑ exp(−𝜖𝑖
𝑎) exp(−𝜖𝑗

𝑏) … … … … .

𝑖,𝑗,𝑘

 

So even if it is micro canonical ensemble or a grand canonical ensemble or something else, the 

key idea is that we are no longer looking at the distribution of energy between systems, but 

distribution of energy within the system, right. So this is defined for one particular system 

under consideration. This I can also write as- 

Ω𝑁,𝑉,𝐸𝑗 = ∑ exp(−𝜖𝑖
𝑎) ∑ exp −𝜖𝑗

𝑏 … … … … … .

𝑗𝑖

 

So the other way to say that is we are kind of assuming that the energy level of every particle 

is kind of independent of the energy level of other. It is like saying that we have so many energy 

levels available and every particle is free to explore any of the energy level that is an 

assumption to be precise, but it is good enough for the ideal gas example that we are doing. So 

then we will have this and so on. 

 



So this tells me, since we have labeled the particle we have one sum each for every particle 

that we have labelled. Let me call that as the partition function qa of that particular particle that 

we have labeled. So it is qa for a qb for b and so on. Keep in mind that there is a βin all 

exponentials here. So therefore, for any given state I can write the partition function as the 

partition function of the individual molecules. 

Ω(𝑁, 𝑉, 𝐸𝑗) = 𝑞𝑎𝑞𝑏𝑞𝑐 … … … … … … .. 

 

Now let us say if I look at a system for which every particle is of the same species. In that case, 

what do we expect that this molecular partition function are going to be since every particle is 

of the same species, they are free to explore the same energy levels as every other particle, 

right. So because discrete energy states depend on the particle under consideration. Let us say 

if it is a hydrogen atom, then it corresponds to electron being in say, 1 s orbital or 2 s orbital or 

3 s orbital and so on those energy levels it can explore is same for every hydrogen atom in the 

system. If you have a system of hydrogen and oxygen, it is no longer true, but if it is the same 

atom or same particle or same molecule, in that case, the partition functions are going to be the 

same. 

 

So therefore, what we can say is qa = qb = qc and so on when all particles have same energy 

levels. And this I can therefore write as something like qN. Let us say if I call this quantity q, 

then qN when N is the number of particles will give me the partition function of a particular 

state. If I am interested in the canonical partition function, I still have to sum over all the states 

but this is corresponding to one particular state of the system. Or in other words, this is the 

partition function to be precise for a micro canonical ensemble, because for a given system, the 

number of molecules, the volume and the energy are constant.  

 

Now there is a problem here. The problem is that even though we have labeled the particles as 

a, b and c, that labeling is something that is not possible in an actual system. In actual system, 

it is very difficult to find the trajectory of any particular particle because every particular 

particle is the same. It is not that the particles are colored in the system. The other way to say 

that is that the particles are indistinguishable and therefore, we need to account for that 

indistinguishability and the way to do that is we divide this by N factorial, which refers to the 

number of ways of arrangement of N particles.  

Ω(𝑁, 𝑉, 𝐸𝑗) =
𝑞𝑁

𝑁!
 



 

That is to say, if the particles were indeed colored, then there are certain number of ways of 

arranging them. But, since the particles are not colored, every particle is the same, we need to 

discount the effect of the arrangement of the particles. And therefore, we are dividing it by N 

factorial.  

(Refer Slide Time: 31:39) 

 

So now this q is my molecular partition function which is defined as- 

𝑞 = ∑ exp −𝛽𝜖𝑖

𝑖

 

where ϵi are the energy levels that are available to the system.  

 

Now let us look at how do we find this ϵi. So that will depend on the particles under 

consideration. These correspond to the energies of the molecules. So that energy maybe 

because of as we know it can be because of the kinetic energies or the potential energy. So let 

us say for example, if you have a monoatomic ideal gas, in that case there is no potential energy 

because we assume that there are no interactions between particles in the ideal gas. So in that 

case, the particles may have some motion, and that because of that, it may have some kinetic 

energy. In fact, this is not the complete answer. There can also be some electronic energies but 

the effect of that is neglected here assuming that the effect is small in the classical sense.  

 

So in that case, this ϵ will be the translational kinetic energy of the molecules. And that can be 

determined by solution of the Schrodinger equation or whatever we have and I am not going 



in details there. But, the key idea is that we can find the translational energy of the molecule 

and it turns out that this ϵtrans come out to be equal to this quantity to the power 3 by 2 here.  

(Refer Slide Time: 33:48) 

 

So the energy because of the partition function, because of that ϵtrans come out to be- 

𝑞 = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2
 

So therefore, what we have is- 

𝑄 =
𝑞𝑁

𝑁!
 

 

And therefore, we indeed have a relation between the partition function of the system that is 

written in terms of the energy states of the systems with a molecular partition function that 

depends on the energy levels that are being explored by the particular system under 

consideration. 

 

So with this particular idea, I want to stop the discussion here, we will come back to this 

argument of how to find the partition function, wherein we will use a simplified model called 

the lattice model to find the approximate expression of the partition function for a certain case. 

But for the time being, keep in mind that we have found how to get the thermodynamic variable 

if I know the partition function. 

 



And we know that the partition function indeed is coming from the partition function or the 

energies of the molecules of the systems. And for simplified cases, it is possible to evaluate 

that precisely, and we have given an example for an ideal gas.  

 

So with that I want to stop here. Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


