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Lecture - 18 

Computing Properties in Grand Canonical Ensemble 

 

 

Hello, all of you. So in the last lecture, we started doing the grand canonical ensemble that is 

when the chemical potential volume and temperature are the control variables that refer to an 

open system and we derived the expression for the most probable distribution. So we will take 

that discussion further this day and find how can we find the average properties for the grand 

canonical ensemble. 
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So essentially what we have discussed so far is the most probable distribution that is given as 

the number of systems with energy ENj and number N is given as- 

𝑎𝑁𝑗
∗ =

𝐴 exp(−𝛽𝐸𝑁𝑗 − 𝛾𝑁)

∑ ∑ exp(−𝛽𝐸𝑁𝑗 − 𝛾𝑁)𝑗𝑁
 

 

β is argued to be same as- 

𝛽 =
1

𝑘𝐵𝑇
 



because the constraint for the energy is the same as the canonical ensemble. γ we have not 

discussed so far that it is a Lagrange multiplier, but we do not know what exactly it signifies 

until so far in the discussion.  

 

So even though the function is defined a bit differently in the canonical ensemble, the properties 

of the function remains the same as in the canonical ensemble case, that is Z is still a 

normalizing function and that we can see because the probability of a state or a system having 

ENj energy and N molecules or N particles is given as- 

𝑃𝑁𝑗 =
𝑎𝑁𝑗

∗

𝐴
=

exp(−𝛽𝐸𝑁𝑗 − 𝛾𝑁)

𝑍
 

It ensures that the probabilities add to 1. That is if I do summation of N summation over j, P 

Nj, then the numerator will have the same summation as denominator, they will cancel and this 

will be equal to 1. 

∑ ∑ 𝑃𝑁𝑗 = 1

𝑗𝑁

 

So by using this partition function, we can still normalize the probabilities. And it is still also 

a generating function and we will see how it works out in this case. So let us say if I start with 

Z as- 

𝑍 = ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁

𝑗𝑁
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In the earlier case we said that doh ln Q by doh β is minus of the average energy, right. In the 

grand canonical case it will be simply Q replaced with Z. So doh ln Z by doh β happens to be 

minus of average energy. Let us see how it is true. So if I take the- 

𝜕 𝑙𝑛 𝑍

𝜕𝛽
=

1

𝑍
 ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁 [−𝐸𝑁𝑗]

𝑗𝑁

 

= − ∑ ∑ 𝐸𝑁𝑗𝑃𝑁𝑗 = −�̅�

𝑗𝑁

 

So although the ensemble has changed, the control variables has changed, but the relation 

between the average energy and the partition function is the same. The partition function itself 

is different for the grand canonical ensemble, but the relation relating the average energy with 

the partition function is the same. We can still use partition function to generate the properties 

of interest, in this case the average energy.  

 

We can also do it for other properties. So let us say if I do- 

𝜕 ln 𝑍

𝜕𝑉
=

1

𝑍
 ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁  [−𝛽 (

𝜕𝐸𝑁𝑗

𝜕𝑉
)]

𝑗𝑁

 

This E is still the internal energy and we know that- 

𝑑𝐸𝑁𝑗 = 𝑇𝑑𝑆 − 𝑝𝑁𝑗𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

So if I take- 

𝜕𝐸𝑁𝑗

𝜕𝑉
= 𝛽 ∑ ∑ 𝑝𝑁𝑗𝑃𝑁𝑗 = 𝛽�̅�

𝑗𝑁

 

 

So it is the same relation that we have got with Q replaced by Z in this particular case. Now 

since there is a γ appearing here, we can also compute a derivative with respect to γ that we 

could not do in the earlier case because there is a new variable coming in the grand canonical 

case. So let us see what that gives us. 
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So if I start with the same Z – 

𝑍 = ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁

𝑗𝑁

 

and if I compute- 

𝜕 ln 𝑍

𝜕𝛾
=

1

𝑍
∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁(−𝑁)

𝑗𝑁

 

= − ∑ ∑ 𝑁 𝑃𝑁𝑗 = −�̅�

𝑗𝑁

 

So in this case we can also find the average number of molecule in the systems or average 

number of particles in the system as the derivative of ln Z with respect to γ. In this case this N 

is also a variable. So you will have fluctuations in N and you will have some average value of 

N that also can be computed using the partition function. 

 

So essentially until so far I have demonstrated that even for the grand canonical ensemble Z 

works like the both the normalizing function and the generating function. And the same idea is 

true for also other ensembles that we discuss later. So always keep in mind that if I know Z, 

then I can find all the properties of interest, but the properties themselves that we can evaluate 

from there depend on the choice of ensembles. Let us say average number of particles does not 

have any meaning in the canonical ensemble case, because the number of particles was the 

control variable in this case number of particles can fluctuate or vary between state and 

therefore, average number of particle is a meaningful variable in this case, and that we can 

evaluate using the partition function. 

 



Now if I go a bit further from there, we can also notice that this Z is actually a function of my 

ENj β and γ. And again, it is like for all possible values of ENj that is like a multiple energy 

values and β and γ are single values. So now I can define a quantity ln of Z. Let me call that 

quantity g. So I can define the total derivative d (g) as- 

𝑔 = ln 𝑍 

𝑑𝑔 = (
𝜕𝑔

𝜕𝛽
)

𝛾,{𝐸𝑁𝑗}

𝑑𝛽 + (
𝜕𝑔

𝜕𝛾
)

𝛽,{𝐸𝑁𝑗}

𝑑𝛾 + ∑ ∑ (
𝜕𝑔

𝜕𝐸𝑁𝑗
)

𝛽,𝛾

𝑑𝐸𝑁𝑗

𝑗𝑁

 

And we can evaluate this partial derivatives. Let us see how we can do that. So- 

𝜕𝑔

𝜕𝛽
=

1

𝑍
 ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁(−𝐸𝑁𝑗) = −�̅�

𝑗𝑁

 

(Refer Slide Time: 12:36) 

 

Similarly, 

𝜕𝑔

𝜕𝛾
= −�̅� 

The last one doh g by doh ENj that will be equal to so now this will apply only to one of the 

terms right here and that term is when energy is equal to ENj for all the other value in summation 

this will not contribute to the derivative. So this will be- 

𝜕𝑔

𝜕𝐸𝑁𝑗
=

1

𝑍
 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁(−𝛽) = −𝛽𝑃𝑁𝑗 

That is the probability of that particular state. So therefore, I can write my dg as- 

𝑑𝑔 = −�̅�𝑑𝛽 − �̅�𝑑𝛾 − 𝛽 ∑ ∑ 𝑃𝑁𝑗𝑑𝐸𝑁𝑗

𝑗𝑁

 

 



Now the last term is something that relates to the work done in the in this particular case and 

why is that because every state will gain energy with dEj. And therefore, the net change due to 

the work is given by PNj dEj just like what we had for the canonical ensemble and microscopic 

term, this is equal to - p bar dV. That is the work done, right. The same thing that we have done 

for the canonical ensemble as well in this case, the only difference is that we have an extra 

summation over N just because we have varying number of molecules, but the argument 

remains the same as earlier. 
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So therefore, what we have is dg is- 

𝑑𝑔 = −�̅�𝑑𝛽 − �̅�𝑑𝛾 + 𝛽�̅�𝑑𝑉 

 

Now let us define a quantity- 

𝑑(𝑔 + 𝛽�̅� + 𝛾�̅�) = −�̅�𝑑𝛽 − �̅�𝑑𝛾 + 𝛽�̅�𝑑𝑉 + 𝛽𝑑�̅� + �̅�𝑑𝛽 + 𝛾𝑑�̅� + �̅�𝑑𝛾 

= 𝛽𝑑�̅� + 𝛽�̅�𝑑𝑉 + 𝛾𝑑�̅� 

1

𝛽
𝑑(𝑔 + 𝛽�̅� + 𝛾�̅�) = 𝑑�̅� + �̅�𝑑𝑉 +

𝛾

𝛽
𝑑�̅� 

Now let us compare with the definition of dS that we have used earlier. So basically we can 

write dE as- 

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + 𝜇𝑑𝑁 

Keep in mind that we had a summation earlier, but now we are looking at only one component, 

so I only have μdN. If we are doing a multi component case, we simply have to also put a 

summation in this term over the number of species. So this will give me- 

𝑑𝑆 = 𝑑𝐸 + 𝑝𝑑𝑉 − 𝜇𝑑𝑁 



 

So if I compare the above two expression, we can say that- 

𝛾

𝛽
= −𝜇 

And therefore, 

𝛾 = −𝛽𝜇 

γ which was not well defined so far, it was Lagrange multiplier, but there was no physical 

significance actually is related to the chemical potential. It is minus β multiplied with the 

chemical potential and if I compare the left hand side, what we have is- 

𝑇𝑑𝑆 =
1

𝛽
𝑑(𝑔 + 𝛽�̅� + 𝛾�̅�) 

which is essentially I can write my dS as- 

𝑑𝑆 =
1

𝛽𝑇
𝑑(𝑔 + 𝛽�̅� + 𝛾�̅�) 
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And as we know- 

𝛽 =
1

𝑘𝐵𝑇
 

So this will give me- 

𝑑𝑆 = 𝑘𝐵𝑑(𝑔 +
�̅�

𝑘𝐵𝑇
−

𝜇

𝑘𝐵𝑇
�̅� 

So if I compare this what we have is- 



𝑆 = 𝑘𝐵 ln 𝑍 +
�̅�

𝑇
−

𝜇𝑁

𝑇
 

If I now compare with the absolute value of internal energy that we have found earlier, we have 

found that- 

𝑆 = 𝑘𝐵 ln 𝑍 +
�̅�

𝑇
−

𝜇𝑁

𝑇
= 𝑘𝐵 ln 𝑍 +

𝐸 − 𝜇𝑁

𝑇
= 𝑘𝐵 ln 𝑍 +

𝑇𝑆 − 𝑝𝑉

𝑇
 

𝐸 = 𝑇𝑆 − 𝑝𝑉 + 𝜇𝑁 

−𝑝𝑉 = 𝑘𝐵𝑇 ln 𝑍 

 

If I compare with the earlier case what we had was 

𝐹 = −𝑘𝐵𝑇 ln 𝑄 

for the canonical with what I am getting in the grand canonical ensemble, you may say that just 

like my Helmholtz energy was the thermodynamic function that we had to minimize for the 

canonical ensemble, pV becomes the thermodynamic function in the case of a grand canonical 

ensemble. So that is simply- 

−𝑝𝑉 = 𝑘𝐵𝑇 ln 𝑍 

 

(Refer Slide Time: 22:36) 

 

So we can also get it by using Legendre transformation. Let us see how it works. So basically, 

we have to go from the Helmholtz free energy that is a function of T, V, N to some potential 

Ω let us call it Ω as a function of T, V, μ. So essentially N has to be replaced with μ here and 

that thing is coming from the Legendre transformation. So first of all we know that- 

𝐹 = 𝑈 − 𝑇𝑆 



Ω = 𝐹 − 𝜇𝑁 

= 𝑈 − 𝑇𝑆 − 𝜇𝑁 

 

We have been using the notation E for the U in our case and E is equal to- 

𝐸 = 𝑇𝑆 + 𝜇𝑁 − 𝑝𝑉 

So this pretty much gives me in this particular case- 

Ω = −𝑝𝑉 

 

So therefore, what we have been able to establish is that, for the grand canonical ensemble the 

thermodynamic function that we can also get by Legendre transformation gives me a value that 

is equal to - kBT ln of Z. So the thermodynamic function essentially relates to the partition 

function in pretty much the same way, in every ensemble. In the canonical ensemble the 

thermodynamic function was F. In the grand canonical ensemble the thermodynamic function 

is Ω that is equal to - pV, which is still - kBT ln of the partition function, just like what we had 

for the canonical ensemble F = -kB T ln Q. 

 

The definition of partition function has changed but the relation between the thermodynamic 

functions and the partition function has not changed. The relation between the averages of 

properties with the partition function has not changed and therefore, once we do this kind of a 

toolkit for a particular ensemble the same toolkit can be more or less employed for every 

different ensemble just keeping in mind that the partition function in there have changed. In 

fact, the partition function Z relates to the canonical partition function we can see how it 

happens. So Z is- 

𝑍 = ∑ ∑ 𝑒−𝛽𝐸𝑁𝑗−𝛾𝑁

𝑗𝑁

 

This I can as well write as- 

𝑍 = ∑ (∑ 𝑒−𝛽𝐸𝑁𝑗

𝑗

) 𝑒−𝛾𝑁

𝑁

 

 

And this quantity ∑ 𝑒−𝛽𝐸𝑁𝑗
𝑗  in the above equation actually is my canonical partition function 

Q. 
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So therefore, my grand canonical partition function is simply a summation of N of the 

corresponding canonical partition function when n was held constant multiplied with 

exponential of minus γN.  

𝑍 = ∑ 𝑄(𝑁, 𝑉, 𝑇)𝑒−𝛾𝑁

𝑁

 

And γ we have already discussed, it relates to the chemical potential. In fact, this can be related 

to something that is known as the activity of the system. So we can represent this as something 

like- 

𝑒−𝛾𝑁 = 𝜆𝑁 

And, 

𝜆 = 𝑒−𝛾 = 𝑒−𝛽𝜇 

 

This is what is referred as the activity of the system, right. So we can also go back to 

thermodynamics and find the different ways in which chemical potential is represented and all 

of this essentially come from the definition of the partition function.  

 

So to conclude the discussion, what we have done in this particular case is that we have derived 

the partition function of grant canonical ensemble. We showed that the properties you could 

evaluate for the canonical ensemble, we can still evaluate in the grand canonical ensemble 

using more or less the same definition. In addition to that, you also have the average number 

of molecule that is meaningful in the case of grand canonical ensemble that also we can get 

from the partition function. And finally, grand canonical partition function is related to the 

canonical partition function. 



 

In the last bit, what we can also show that the fluctuation in the number of molecules is also 

related to the partition function in pretty much the same way the fluctuation in energy was 

related to the partition function in there. All that will change is that now I am looking at N in 

place of E. So you will have- 

𝜎𝑁
2 = 𝑁2̅̅ ̅̅ − �̅�2 

 

And we can pretty much do the same math as we did for the σE2 in the canonical ensemble and 

find that my σN2 is given as simply- 

𝜎𝑁
2 = −

𝜕�̅�

𝜕𝛾
 

In fact, σE2 is also related to the average energy with pretty much the same formula that we 

had for the canonical ensemble. 

𝜎𝐸
2 = −

𝜕�̅�

𝜕𝛽
 

 

So in the similar way, we can find the fluctuation of quantities, also using the partition function 

and why I am saying that because this N bar and E bar can be evaluated again as the derivative 

of the partition function. So essentially, the fluctuations or the variance is characterized by the 

second derivative of the partition function in the non-canonical ensemble and the same was 

true for the canonical ensemble. 

 

In the next class, what we will do is we will discuss what is known as an isothermal isobaric 

ensemble, in which case the control variables are the number of molecules, pressure and 

temperature. And in that case, until so far what we have done is the volume was constant, but 

in that case, the pressure will be constant or the pressure will be the control variable in that 

particular case and as you know we expect to get the Gibbs free energy as the thermodynamic 

function and we will have a partition function for that particular ensemble that will be clearly 

different from the partition function for ensembles we have done so far. But it will still be a 

generating function and where we are evaluating the average properties are still going to be the 

same in the isothermal, isobaric ensemble.  

 

So with that I conclude here, thank you. 

 



 

 

 


