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Hello, all of you. So in the last lecture we have been discussing the canonical ensemble and 

basically the meaning of the temperature or the variable β that we defined in the last class.  

 

So in today’s lecture, we will take the canonical ensemble a bit further and talk about how can 

we write Helmholtz free energy for the canonical ensemble as a function of the partition 

function and then I will discuss briefly how to compute the averages and fluctuations using the 

canonical ensemble. 
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So essentially, where we were so far is that we have defined a partition function for the 

ensemble and now I am talking about the systems that are same in the ensemble, not really the 

close contact that we assumed earlier in the last class. In this case, let us say again, going back 

to our earlier treatment, we have some ‘A’ systems each having some number some volume 

and temperature and they are forming an ensemble. So of course, they are not in any close 

contact except with the bath and the bath is infinite and that maintains the temperature of the 



system but the energy of the systems can be different, which are characterized by Ej that refers 

to different energy levels that are possible in the system.  

𝑄 = ∑ 𝑒−𝛽𝐸𝑗

𝑗

 

So now I can define a variable- 

𝑓 = ln 𝑄 = ln(∑ 𝑒−𝛽𝐸𝑗

𝑗

 

 

 

So now I can define a variable ln of Q or ln of summation over j e-βEj and it turns out this 

particular function has very interesting significance, and it relates to the idea of Helmholtz 

free energy. So if I start with this function, what we can notice is this function is a function of 

the β variables and the Ej variables and therefore, I can represent the total change in this 

function df as the change in the β variable represented by a partial derivative which change 

because of a change in β variable. So it is- 

𝑑𝑓 =  
𝜕𝑓

𝜕𝛽
]

{𝐸𝑗}

+ ∑
𝜕𝑓

𝜕𝐸𝑗
𝑗

]

𝛽,𝐸𝑘≠𝑗

𝑑𝐸𝑗 

So now if I find- 

𝜕𝑓

𝜕𝛽
=

1

𝑄
 
𝜕𝑄

𝜕𝛽
=

∑ 𝑒−𝛽𝐸𝑗(−𝐸𝑗)

∑ 𝑒−𝛽𝐸𝑗
= −�̅� 

So just like we can do that, we can also find- 

𝜕𝑓

𝜕𝐸𝑗
=

1

𝑄

𝜕𝑄

𝜕𝐸𝑗
=

∑ 𝑒−𝛽𝐸𝑗(−𝛽)

∑ 𝑒−𝛽𝐸𝑗
 

Let us say if we are doing for e0 e1, e2 and so on, if I do with respect to e0 only the term 

containing e0 will give me a derivative, everything else will give me zero. So this thing is then 

equal to- 

𝜕𝑓

𝜕𝛽
= −𝛽 (

𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
) = −𝛽𝑃𝑗 



And this quantity we already have obtained and that is the probability of the states of energy 

Ej. 

(Refer Slide Time: 06:11) 

 

So therefore, if I now put whatever we have got here and earlier in the previous expression 

what we find is- 

𝑑𝑓 = −�̅�𝑑𝛽 − 𝛽 ∑ 𝑃𝑗𝑑𝐸𝑗 

𝑑(𝑓 + 𝛽�̅�) = 𝑑𝑓 + 𝛽𝑑�̅� + �̅�𝑑𝛽 

= 𝛽𝑑�̅� − 𝛽 ∑ 𝑃𝑗𝑑𝐸𝑗 

= 𝛽(𝑑�̅� − ∑ 𝑃𝑗𝑑𝐸𝑗 

 

Now let us look at the second term in the expression and think that we are doing a reversible 

process in this canonical system. We start with some NVT and now we are changing the volume 

by a small amount and due to the change in volume the energy changes by dEj right. So then 

for a reversible change you may recall that when we discussed like what the heat and work is 

doing to the system, I told you that when I am adding heat, you get an extra quanta of energy 

and that quanta can be distributed in all the states but when I do work, I am essentially changing 

the energy level spacing. 

 

So what will happen then is if you had some systems aj, which had energy Ej, after doing this 

kind of a work, the energy of those particular states will change from Ej to Ej + dEj. The key 

point is that the occupation level of states are not changing, only the energy level of a particular 



state is changing when I am doing the work. When I am adding heat, then of course you will 

have more distribution of quanta of energy because we thought that it will addition of an extra 

quanta of energy. In some sense work is also an addition of quanta, but what the work is doing 

it is changing the energy levels to different values. So then let us say if you have certain number 

of states here, certain number of states are still going to be there but those states are going to 

have higher energy than the previous configuration before the work was done.  

 

So if we go with this particular idea, then the average work done can be thought of as a j 

multiplied with dEj. So all the aj systems we are doing aj multiplied with dEj work. And this 

has to be averaged over all the systems in the ensemble and of course, this has to be summed 

over all the possible energy levels. So this essentially gives me- 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 =
∑ 𝑎𝑗𝑑𝐸𝑗

𝐴
= ∑

𝑎𝑗

𝐴
 𝑑𝐸𝑗 = ∑ 𝑃𝑗𝑑𝐸𝑗  

So now if I invoke the first law of thermodynamics, then you have- 

𝑑�̅� = 𝑑𝑞 + 𝑑𝑤 

The energy the change in internal energy is equal to the heat added plus the work done. So for 

a reversible process, what we have here is this is equal to β and change in the heat, because we 

are doing energy minus work and that must be equal to the heat added and we already have 

assumed that the process is reversible. So that is- 

𝑑(𝑓 + 𝛽�̅�) = 𝛽𝛿𝑞𝑟𝑒𝑣 

And I put a δ here just to indicate that this is a path dependent thing unlike energy that is a state 

function in fact, Q is also path dependent.  

 

So now if I use that argument of Clausius, what Clausius has said is that my change in the 

entropy dS is equal to my heat added for a reversible process divided by temperature i.e.- 

𝑑𝑆 =
𝛿𝑞𝑟𝑒𝑣

𝑇
 

So using the definition of β I found in the last class, we have β is equal to 1 by kBT and I can 

replace δQ reversible by TdS.  
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So- 

𝑑(𝑓 + 𝛽�̅�) =
1

𝑘𝐵𝑇
. 𝑇𝑑𝑆 =

𝑑𝑆

𝑘𝐵
 

Or in other words, I can write S as- 

𝑆 = 𝑘𝐵(𝑓 + 𝛽�̅�) = 𝑘𝐵 ln 𝑄 +
�̅�

𝑇
 

So this we can also rearrange and we can see we can write as- 

�̅� − 𝑇𝑆 = −𝑘𝐵𝑇 ln 𝑄 

And �̅� − 𝑇𝑆 is the definition of my Helmholtz free energy. And therefore, you have Helmholtz 

free energy as a function of the partition function in the canonical ensemble i.e.- 

𝐹 = −𝑘𝐵𝑇 ln 𝑄 

That should not be unusual, because we have earlier established that whenever the control 

variables are the number of molecules, the volume and temperature, we should be using the 

Helmholtz free energy. If in this case the control variables were the number of molecules, 

pressure and temperature we would have gotten the Gibbs free energy. But the fact that it is 

coming as a simple function of the partition function tells me that if I know Q that is equivalent 

to of knowing the Helmholtz free energy and if I know the Helmholtz free energy, I can do 

thermodynamics and get all the properties and that is indeed true that as I said in the last class 

as well, that Q works as both a normalizing function and a generating function. So knowledge 



of partition function is like giving you the knowledge of the entire thermodynamic behavior 

for the particular system. 
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So we already have seen how it works. But just to recap- 

𝜕 ln 𝑄

𝜕𝛽
= −�̅� 

𝜕 ln 𝑄

𝜕𝑉
= 𝛽�̅� 

And, 

𝐹 = −𝑘𝐵𝑇 ln 𝑄 

What is interesting is that not only this idea of partition function is useful to get the average 

value of quantities, in this case the energy and the pressure but it is also important to get the 

fluctuations of those quantities from the average. And what do I mean by fluctuations is the 

following. So when I said that the energy has an average value of E bar, all I mean is that my 

energy of different states will average to this particular value, but I do not mean that every state 

has the same energy. So if you have for example so many states in the ensemble, they may 

happen to have energies higher than or lower than this particular E bar value only if I do an 

average over that we should get the E bar value. But the point on the central limit theorem that 

tells me is that as I increase the number of systems, what we will notice is that this fluctuations 

in this E value will start to decrease. 

 



Now let us see how exactly it works out and how the idea of partition function can give me the 

value of the fluctuations. So let us say for example, you have some standard deviation of 

whatever distribution of energy you have the other way to think about it is we can plot the 

probability of having an energy Ej versus Ej and this is going to peak around some E bar value. 

So we are interested in what is the width of this distribution or the standard deviation of this 

particular distribution.  
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So the standard deviation can be defined in the following way the variance or the square of 

standard deviation for the energy is essentially- 

𝜎𝐸
2 = (𝐸 − �̅�)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

so bar I am using to represent the average. So I compute deviation for all the energy values 

with respect to the mean value square it and then averaged it. So clearly if I do not square, then 

you can have both positive deviations and negative deviations and they will, they may as well 

cancel out and it does not represent the fluctuations from the average value. When we square 

it, both positive and negative deviations add up. So it is a better measure of fluctuations in this 

particular quantity. 

 

So I can write this thing by taking a expanding this square term you have- 

𝜎𝐸
2 = (𝐸2 + �̅�2 − 2𝐸�̅�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

= 𝐸2̅̅̅̅ + �̅�2̅̅̅̅ − 2𝐸�̅�̅̅ ̅̅ ̅̅  



Now clearly, for the first term, we have to compute E squares and average it and they will be 

different for every state but in the second term, it has already been averaged. So you have E 

bar square. So if I take average of this again I should get the same quantity again. So this will 

be- 

𝜎𝐸
2 = 𝐸2̅̅̅̅ + 𝐸2̅̅̅̅ − 2�̅��̅� = 𝐸2̅̅̅̅ − 𝐸2̅̅̅̅  

 

So now using the definition of the averages, we can write this as- 

𝜎𝐸
2 = ∑ 𝐸𝑗

2𝑃𝑗 − (∑ 𝐸𝑗𝑃𝑗)
2

 

=
∑ 𝐸𝑗

2𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
− (

∑ 𝐸𝑗𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
)

2

 

And now let us see how we can get the same quantity, if I simply take the second derivative of 

my Q.  
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So let us say I start with my Q as- 

𝑄 = ∑ 𝑒−𝛽𝐸𝑗 

And, 

𝜕𝑄

𝜕𝛽
= ∑ 𝑒−𝛽𝐸𝑗(−𝐸𝑗) = 𝑄.

∑ −𝐸𝑗𝑒−𝛽𝐸𝑗

(∑ 𝑒^(−𝛽𝐸𝑗)
 

𝜕 ln 𝑄

𝜕𝛽
= −�̅� 

Now let us take a derivative of this quantity one more time, and let us see what do we get. So 

if I find- 



𝜕2𝑄

𝜕𝛽2
=

𝜕

𝜕𝛽
[∑ 𝑒−𝛽𝐸𝑗  (−𝐸𝑗)] = ∑ 𝑒−𝛽𝐸𝑗(−𝐸𝑗)(−𝐸𝑗) = ∑ 𝐸𝑗

2𝑒−𝛽𝐸𝑗  

 

So if I start with this, if I put that in the expression right here, what we notice is that I can write 

my σE
2 as- 

𝜎𝐸
2 =

∑ 𝐸𝑗
2𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
− (

∑ 𝐸𝑗𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
)

2
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So the first term now becomes the second derivative of Q with respect to β. So it is- 

𝜎𝐸
2 =

1

𝑄

𝜕2𝑄

𝜕𝛽2
− (

1

𝑄

𝜕𝑄

𝜕𝛽
)

2

 

𝜕�̅�

𝜕𝛽
=

𝜕

𝜕𝛽
(−

𝜕 ln 𝑄

𝜕𝛽
) =

𝜕

𝜕𝛽
(−

1

𝑄

𝜕𝑄

𝜕𝛽
) = −

1

𝑄

𝜕2𝑄

𝜕𝛽2
+

1

𝑄2
(

𝜕𝑄

𝜕𝛽
)

2

= −𝜎𝐸
2 

 

So therefore, what we have been able to establish is that I can not only write E bar as a function 

of Q, we can also represent the fluctuation in the energy σE also as a function of Q. In other 

words, once I know E bar I can also find σE
2. But E bar I have found using Q. So I can find 

both the mean and the fluctuation using the idea of E bar. So now I can write this particular 

quantity as- 

𝛽 =
1

𝑘𝐵𝑇
 



𝜕�̅�

𝜕𝛽
=

𝜕�̅�
𝜕𝑇
𝜕𝛽
𝜕𝑇

=
𝜕�̅�

𝜕𝑇
/(

𝜕

𝜕𝑇
(

1

𝑘𝐵𝑇
) = −𝑘𝐵𝑇2 (

𝜕�̅�

𝜕𝑇
) 

(Refer Slide Time: 25:22) 

 

Now what we can notice here is that the derivative of energy with respect to temperature has a 

physical meaning it is the definition of my specific heat. In this case, we are working in 

canonical ensemble so the volume is constant. So this essentially is the specific heat at constant 

volume. So not only the fluctuations are always present, but fluctuations also have a physical 

meaning in this case fluctuation refers to the specific heat. 

 

So essentially my- 

−
𝜕�̅�

𝜕𝛽
= 𝜎𝐸

2 = 𝑘𝐵𝑇2𝐶𝑣 

 

Now let us take an example of an ideal gas. So for an ideal gas the CV is of the order of N 

multiplied with kB. And the energy is of the order of N multiplied with kBT. When I say order 

of, there can be some multiple there that is not very important here. So if I find my σE by E 

bar, that is if I take the ratio of the standard deviation to the mean value, this will be going like- 

𝐶𝑣~𝑂(𝑁𝑘𝐵) 

𝐸~𝑂(𝑁𝑘𝐵𝑇) 

𝜎𝐸

�̅�
≈  

√𝑘𝐵𝑇2𝐶𝑉

�̅�
≈

√𝑘𝐵𝑇2𝑁𝑘𝐵

𝑁𝑘𝐵𝑇
≈

1

√𝑁
 

 



So what this means is as N increases, as the number of molecule increases your ratio of the 

standard deviation to the mean that characterizes the magnitude of fluctuation is actually 

decreasing. And actually, if the N is very large, we may pretty much assume that the 

distribution is extremely narrow around the point E bar for large N pretty much going to infinity 

and therefore, for N going to infinity what we refer as thermodynamic limit we can pretty much 

say that the energy of system is roughly equal to E bar.  

 

So keep in mind although we are saying that the energy of a system is always equal to E bar or 

roughly equal to E bar because the fluctuations are less that does not mean that I am discarding 

the effect of fluctuations because fluctuations are really having a physical meaning here the 

specific heat refers to the magnitude of fluctuations. So if I say fluctuations are zero that will 

mean that the specific heat is zero. That is not true here all I mean to say when I say that my 

energy is close to E bar is that the deviation from the E bar of energy is very small as the N 

increases, right. So the error that we make by this assumption of energy being equal to the 

average energy that error will be small that is not to say that the fluctuation itself are negligible, 

fluctuations are always present and they have a strong physical significance. In fact, for systems 

for which N is not so large, then the fluctuations have magnified effect simply as a result of the 

central limit theorem. 
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Now going further just like what we did for the coin toss example We can also write the 

distribution of energy as something like proportional to exponential of- 



𝑃(𝐸) ∝ exp (−
(𝐸 − �̅�)2

2𝜎𝐸
2 ) 

And, 

𝜎𝐸
2 = 𝑘𝐵𝑇2𝐶𝑣 

 

And that itself means that the specific heat does affect the distribution, but the magnitude of 

that in comparison to the average energy decreases as the number of molecules increases in the 

particular system. So this was all about the canonical ensemble.  

 

In the next lecture, we will take one step further and talk about what is known as a grand 

canonical ensemble. So in the grand canonical ensemble, unlike the canonical ensemble, the 

number of molecules can also change that would correspond to a case when the systems can 

exchange both mass and energy and as you may expect, when I do the grand canonical 

ensemble, I will still have a partition function, but that partition function will not be the same 

as the canonical partition function. Nonetheless, using the idea of a partition function, we can 

still evaluate properties in the grand canonical ensemble. 

 

So I hope to have convinced you that as we determine like what is the appropriate ensemble 

for the system to work in the next step is always to determine the partition function and once 

we have the partition function, we can go ahead and find all the properties. So before I close in 

here, let us take one simple example and see how exactly it works out. 

 

So it turns out for the case of an ideal gas and I am not going to derive the expression, but the 

partition function is something like a function of temperature multiplied with volume to the 

power N when you have N molecules in the system. 

𝐼𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 (𝑄) = 𝑓(𝑇)𝑉𝑁 

 

Now it is not so difficult to see why it is true, because in the ideal gas case, we are assigning 

no volume to each of the molecules. So they can pretty much be anywhere in the entire volume 

and they can also sit on top of each other. So there is no exclusion, because we are assuming 

that particles are of 0 size. So roughly speaking, the number of ways in which I can place one 

particle is going like volume V. So number of ways we can place two particle is like V 

multiplied by V, V2. So the number of ways we can place N particles must be VN that is the 

simplest equation of state that one can imagine.  



 

So for this particular case, let us see how it works in right here. So let us say if I am interested 

in the pressure, so I know that- 

𝜕 ln 𝑄

𝜕𝑉
= 𝛽�̅� =

�̅�

𝑘𝐵𝑇
 

If I compute ln Q in this case, it is ln of f by the way, this f has nothing to do with the previous 

f I discussed, some function arbitrary function plus N ln V. But this function is of temperature. 

So if I do- 

ln 𝑄 = ln 𝑓(𝑡) + 𝑁 ln 𝑉 

𝜕 ln 𝑄

𝜕𝑉
=

𝑁

𝑉
=

�̅�

𝑘𝐵𝑇
= �̅�𝑉 = 𝑁𝑘𝐵𝑇 = 𝑛𝑅𝑇 

 

If I work in terms of the moles of molecule, this is small n moles multiplied with Avogadro 

number k B T. And Avogadro number multiplied with the Boltzmann constant is my gas 

constant R. So that gives me p bar V is equal to nRT. That is the form we are quite used to, 

right. So once we know the partition function we can find all the properties. 

 

The question however is how do we get the partition function and that is something that is not 

very trivial thing to do. And clearly we have not discussed how to get the partition function so 

far. We know once we have partition function, what to do with it. 

 

But how exactly we know for a substance what should be the partition function that really 

becomes slightly different topic and we will do few examples in the later part of this course. 

So with this I stop here. Thank you. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 


