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Hello, all of you. So in the last lecture, we have been discussing the canonical ensemble that is 

the NVT ensemble and we determined how we can find properties such as average energy, 

average pressure using the canonical ensemble.  

 

So in today’s lecture, I will discuss like how the temperature is defined using the zeroth law of 

thermodynamics, what is the origin of that if we think in terms of the canonical ensemble. So 

essentially what we have been talking about is that in the canonical ensemble you have systems 

which are having same number of molecules, volume and temperature and there are ‘A’ such 

systems in the ensemble.  
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So in order to define temperature, what we do is, we first assume that there is not one system, 

but two systems which are in a state of thermodynamic equilibrium that is to say that, inside 

the ensemble, you have systems ‘A’ and ‘B’ which are in close contact by close contact, I mean 

they can exchange energy, but they cannot exchange the molecules between them. So they are 

in a state of thermal equilibrium so as to speak, they can exchange energies, they can have same 



temperatures eventually, once they reach equilibrium but the number of molecules in A number 

of molecules in B are constant for the ensemble. So if I assume that in that case, now again I 

have ‘A’ systems in the ensemble, but in each of these ‘A’ systems, you have system ‘A’ and 

system ‘B’ in close contact.  

 

So essentially now we can talk about the energies of the system ‘A’ and the energies of the 

system ‘B’ and just like we had different possible energy levels of system in the last example 

we have done, in this case again you will have different energy levels, but different for system 

‘A’ and system ‘B’, right. So essentially you will have energy level of system ‘A’ that are EjA 

where j refers to different possible energy levels. And similarly, energy level of system B are 

EkB, k = 1, 2 and so on.  
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So if I am now interested in writing the number of ways of distribution for this particular 

ensemble, the number of ways are equal to the number of ways in which I can distribute the 

energies in the ‘A’ systems multiplied by the number of ways in which I can distribute energy 

in the ‘B’ systems and since ‘A’ and ‘B’ are always in close contact, the total number of ‘A’ 

systems is equal to total number of ‘B’ systems. So we can write this as- 

𝑊 = 𝑊𝐴𝑊𝐵 

=
𝐴!

𝑎0! 𝑎1! … . .
 

𝐴!

𝑏0! 𝑏1! … …
 

 



So a0 refers to the number of systems ‘A’ with energy E0A, a1 is the number of systems with 

energy E1A. Similarly, b0 is the number of system ‘B’ with energy E0B. And we can have b1 

as the number of systems ‘B’ systems with the energy E1B and so on.  

 

So now just like I wrote for the last example, in here as well, we can write this A as- 

𝑊 =
𝐴!

∏ 𝑎𝑗!𝑗
 𝑥

𝐴!

∏ 𝑏𝑘!𝑘
=

(∑ 𝑎𝑗)!

∏ 𝑎𝑗!𝑗
 𝑥 

(∑ 𝑏𝑘)!

∏ 𝑏𝑘!𝑘
 

 

Keep in mind that both the numerators are the same, but since I am taking care of constraints 

separately, therefore I have replaced the numerator with the summation, right. So even if we 

do not do that, we get the same result but just to be rigorous, it is always a good idea to think 

of it in this particular way.  

 

So now there are certain constraints here. And the constraints are- 

∑ 𝑎𝑗 = 𝐴

𝑗

 

And, 

∑ 𝑏𝑘 = 𝐴

𝑘

 

 

But now when I look at the energies, now we have to add the energy of ‘A’ and ‘B’ because 

they can exchange energies although they cannot exchange molecules, they can still exchange 

energy. So if I talk about energy of ‘A’ and ‘B’ in close contact, that we can write something 

like this- 

∑ 𝑎𝑗𝐸𝑗𝐴 + ∑ 𝑏𝑘𝐸𝑘𝐵 = 𝜖

𝑘𝑗

 

As the entire ensemble can be again thought as an isolated system. So total energy for the entire 

ensemble can still be assumed to be constant that I am representing as capital ϵ. 
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So now I want to maximize W that essentially is equivalent of maximizing ln W. But now the 

variables that we have are both the aj values and the bk values, actually the distribution of them 

in the ensemble. So now since W is equal to- 

𝑊 =
(∑ 𝑎𝑗)!

∏ 𝑎𝑗𝑗
 𝑥 

(∑ 𝑏𝑘)!

∏ 𝑏𝑘𝑘
 

We can again use the Stirling approximation and then the ln W will be summation over aj. Keep 

in mind that whenever I write summation over aj, the index is j whenever I write summation 

over bk, the index happens to be k. So it is- 

ln 𝑊 = (∑ 𝑎𝑗) ln (∑ 𝑎𝑗)

−  ∑ 𝑎𝑗

−  ∑ 𝑎𝑗 ln 𝑎𝑗 + ∑ 𝑎𝑗

𝑗

+ (∑ 𝑏𝑘) ln (∑ 𝑏𝑘) − ∑ 𝑏𝑘 − ∑ 𝑏𝑘 ln 𝑏𝑘 + ∑ 𝑏𝑘

𝑘

 

Again, we will have the cancellation and therefore, we can write ln W as- 

ln 𝑊 = (∑ 𝑎𝑗) ln(∑ 𝑎𝑗) − ∑ 𝑎𝑗 ln 𝑎𝑗 + (∑ 𝑏𝑘) ln (∑ 𝑏𝑘) − ∑ 𝑏𝑘 ln 𝑏𝑘 
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And then we have certain constraints here that we have written i.e.- 

𝑔1 ≡ ∑ 𝑎𝑗 − 𝐴 = 0 

𝑔2 ≡  ∑ 𝑏𝑘 − 𝐴 = 0 

𝑔3 ≡ ∑ 𝑎𝑗𝐸𝑗𝐴 + ∑ 𝑏𝑘𝐸𝐾𝐵 − 𝐸 = 0 

So now if I do the minimization, the minimization has to be done with both aj and bk variable. 

However, keep in mind that the constraints that are there are defined for both the variables 

together, right. So we did not think of them as two separate types of variable and therefore, we 

should think of two different constraints, because in the constraints, since the variables come 

together, we should think of both aj and bj as forming a list of variable. So whatever 

minimization that we are doing, in that the constraints will have the same Lagrange multiplier 

right.  

 

So if it is not very clear, you can think of this as equivalent of variables a0, a1 and so on. And 

b0, b1 and so on. Mathematically speaking a0, a1 and b0, b1 are still the variables of the same 

equation although they refer to different systems in the particular example, but mathematically 

speaking, there is no difference between the ‘a’ variables and the ‘b’ variables. So therefore, 

the corresponding Lagrange multipliers for the constraints are going to be the same. So that 

means, that I can write the maximization problem as- 



𝜕 ln 𝑊

𝜕𝑎𝑗
− 𝜆1

𝜕𝑔1

𝜕𝑎𝑗
− 𝜆2

𝜕𝑔2

𝜕𝑎𝑗
− 𝜆3

𝜕𝑔3

𝜕𝑎𝑗
= 0 

for all values of aj. 

 

And similarly, we can write for bk. And the point remember is the Lagrange multiplier has to 

be the same because as I said, we can combine the two variables together and they become the 

variable for the entire equation, right. So there is no difference between the variables as such. 

So we should not have different Lagrange multipliers for the same constraints that is 

particularly important for the last one because in here both aj and bk come together. So this 

then becomes the same thing but with respect to bk for all values of bk. 

𝜕 𝑙𝑛 𝑊

𝜕𝑏𝑘
− 𝜆1

𝜕𝑔1

𝜕𝑏𝑘
− 𝜆2

𝜕𝑔2

𝜕𝑏𝑘
− 𝜆3

𝜕𝑔3

𝜕𝑏𝑘
= 0 
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So now I can write the equation as- 

𝜕 ln 𝑊

𝜕𝑎𝑗
=

∑ 𝑎𝑗

∑ 𝑎𝑗
+ ln (∑ 𝑎𝑗) −

𝑎𝑗

𝑎𝑗
− ln(𝑎𝑗) 

And then we have terms containing bk in the equation which will not have any derivative with 

respect to aj. And therefore, those terms will not appear. So therefore, we will have 

cancellations here. This is equal to- 

𝜕 ln 𝑊

𝜕𝑎𝑗
= − ln

𝑎𝑗

∑ 𝑎𝑗
= − ln

𝑎𝑗

𝐴
 

So now, 



𝜕𝑔1

𝜕𝑎𝑗
= 1,

𝜕𝑔2

𝜕𝑎𝑗
= 0 𝑎𝑛𝑑 

𝜕𝑔3

𝜕𝑎𝑗
= 𝐸𝑗𝐴 

So therefore, I can write the maximization problem as- 

𝜕 ln 𝑊

𝜕𝑎𝑗
− 𝜆1

𝜕𝑔1

𝜕𝑎𝑗
− 𝜆2

𝜕𝑔2

𝜕𝑎𝑗
− 𝜆3

𝜕𝑔3

𝜕𝑎𝑗
= 0 

 

Therefore, 

− ln
𝑎𝑗

𝐴
− 𝜆1 − 𝜆3 − 𝐸𝑗𝐴 

And it gives me- 

𝑎𝑗 = 𝐴 exp(−𝜆1 − 𝜆3𝐸𝑗𝐴) 

 

If I do the same stuff for the variables bk the equation we will have is- 

𝑏𝑘 = 𝐴 exp(−𝜆2 − 𝜆3𝐸𝑘𝐵 
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Now let us look at these two equations. So we have found- 

𝑎𝑗 = 𝐴 exp(−𝜆1 − 𝜆3𝐸𝑗𝐴) 

𝑏𝑘 = 𝐴 exp(−𝜆2 − 𝜆3𝐸𝑘𝐵 

Let us first use the constraints. So summation over aj is equal to A this gives me the value- 

∑ 𝑎𝑗 = 𝐴  

This gives me- 



exp(−𝜆1) =
1

(∑ exp(−𝜆3𝐸𝑗𝐴)
 

And, 

∑ 𝑏𝑘 = 𝐴 

And this gives me- 

exp(−𝜆2) =
1

(∑ exp(−𝜆3𝐸𝐾𝐵)
 

 

So if I look at this particular expression here, we notice something that this Lagrange multiplier 

is the same in both these equations, right. And the denominator is similar to the partition 

function we defined earlier. But now the partition function is different for systems ‘A’ and for 

systems ‘B’. The other way to think about it is we can define the probability for a system ‘A’ 

to have energy EjA something like- 

𝑃𝑗𝐴 =
𝑎𝑗

𝐴
=

exp(−𝜆3𝐸𝑗𝐴)

𝑄𝐴
 

And, 

𝑃𝐾𝐵 =
𝑏𝑘

𝐴
=

exp(−𝜆3𝐸𝑘𝐵)

𝑄𝐵
 

 

So although the probability of having the state Ej and for systems ‘A’ and probability of having 

state EkB for systems ‘B’, they are themselves different, but both of them are essentially 

proportional to something like the Boltzmann factor we had that is exponential of minus of 

something and that something contains the same factor λ3. So therefore, whenever the systems 

are in a close contact, there is something that is common between the system and that something 

in this case is the Lagrange multiplier λ3, which is same in both these cases. It turns out that 

we can identify this λ3 as β that is equal to 1 over kB T. And this exactly is the statement of the 

zeroth law of thermodynamics. 

 

So whenever two systems are in close contact, there has to be something that is common 

between the two systems and that something relates to the temperature. This is the definition 

of temperature, whenever there are two systems in close contact, there has to be a quantity 

called temperature that will be same when the systems come in a state of thermal equilibrium 

and that is the definition of the β variable in thermodynamics. 
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So therefore, we can now write finally,- 

𝑃𝑗𝐴 =
exp(−𝛽𝐸𝑗𝐴)

𝑄𝐴
 

𝑃𝑘𝐵 =
exp(−𝛽𝐸𝑘𝐵)

𝑄𝐵
 

And naturally whenever we talk about this probabilities, we are talking about two systems in 

close contact. So the probability should be of the system ‘A’ having some energy and system 

‘B’ having some energy. So what is more relevant here is a probability of the form Pjk that 

means, that the system A has energy EjA and system ‘B’ has energy EkB and that is equal to- 

𝑃𝑗𝑘 = 𝑃𝑗𝐴𝑥𝑃𝑘𝐵 

=
exp[−𝛽(𝐸𝑗𝐴 + 𝐸𝑘𝐵)]

𝑄𝐴𝑄𝐵
 

 

So this completes the derivation of temperature. There is another way to look at the same 

problem that we will discuss in the next lecture. 

 

 

 

 

 

 

 

 



 

 


