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Hello, all of you. So in the last lecture, we have discussed the idea of thermodynamic ensembles 

and taken the example of micro canonical ensemble NVE. And I also discussed like what are 

the other types of ensemble. So today, I will do the discussion on the most common ensemble 

or most practical ensemble that is called the canonical ensemble or the NVT ensemble and I 

will show you that how can we compute thermodynamic properties using this idea of 

ensembles.  
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So as we discussed in the last class a canonical ensemble has the number of molecules the 

volume and the temperature as the control variables and therefore, we can imagine them, the 

ensemble as composed of systems which are having a constant number of molecules constant 

volume and constant temperature, right. So when I say I can control this that means, I can do 

the experiment at any possible value of number, volume and temperature. So all these systems 

in the ensemble are having the same number, volume and temperature in total there are some 

‘A’ systems, right.  

 



Now to visualize this one can imagine that you have this ‘A’ systems contained within some 

infinite heat bath this is simply a theoretical construct to imagine like how this can be realized 

this is not something that is practically done, right. You can imagine that you have infinite bath, 

so that the system is very small in comparison to the heat bath and temperature of the system 

is maintained by the surrounding, that is the heat bath and we also assume that there is no 

interaction among the systems. Systems are far separated from each other and the temperature 

of the system is maintained by using that heat path, right.  

 

In reality, in a practical scenario, what we will do is like, we will take this systems as different 

states at different locations of the system or it can be imagined as a particular state, but at 

different time instants, right. The key idea is that the number, volume and temperature has to 

be constant but the configuration of the molecules, their positions and momentum and the 

distribution of energy among the molecules can vary between different systems in the 

ensemble.  

 

So since in this case NVT is being controlled, the other variables may change. In this case, 

unlike the micro canonical system, the energy of a system in the ensemble is not same for 

different systems of the ensemble but now we are referring to energy of the system. When I 

was doing the micro canonical ensemble I referred the energy as ϵj. But that energy was the 

energy of molecule within a system of the ensemble. Now I am referring to the energy of system 

as a whole right, energy of a system in the ensemble. So in this case, the index j is going from 

1, 2 to A and in this case, the j went from the possible energy state within a system.  

 

So in the micro canonical ensemble the energy of all the systems were same, equal to E that is 

the total energy of system was same. In this case, the total energy or the internal energy is 

different between systems in the ensemble. So now just like we had different states of energy 

of a molecule in the micro canonical ensemble, we can have different possible energy of the 

system in the canonical ensemble. So just like we had energy levels for the molecules, now we 

can define energy levels for a system as a whole. The key point here is since the energy of a 

molecule is discretized so therefore the energy of the system is also a discretized although, as 

you increase the number of molecules, the discretization becomes very unimportant you can 

assume as a continuous energy spectra, but nonetheless, the energy is discretized that is the key 

point that I am borrowing here. So now we will talk about energy level spacing. So that refers 



to energy of the system containing molecules not the energy of molecules themselves that is 

true for that canonical example.  

 

So now I can say you can have many possible energies, let us say E1, E2 to some El these are 

the energy levels of system and if you start with some A systems in the ensemble, we assume 

that A is a very large number. So for those systems, some of the systems will have energy E1, 

some will have energy E2 and so on, right. So keep in mind that now we are talking about 

number of systems having that energy instead of the molecules. So then we can write as the 

occupation number of energy levels, the occupation number means, how many states has that 

energy so number of systems in ensemble having energy let us say Ej and that I can define as 

a1 for energy level E1, a2 to some al right. And as I enumerate the systems in the ensemble, then 

just like the energy levels, the distribution of energy levels can also change. So in total, we are 

talking about some particular distribution of energy level, let me call that {a}, so that a can 

change between systems in the ensemble. So I am not even coming to the most probable 

distribution yet. So we can pretty much have the ensemble comprised of all possible 

distribution the only criteria we are putting is the number of molecules, volume and temperature 

are the same. So in that case, there is a whole range of possibility of the occupation numbers 

or the number of system in a given energy level and that distribution I refer as {a}. 

 

 We can again think in terms of the example I was giving you of say three quanta among three 

particles the only difference here is that we are talking about three quanta among three systems, 

right. So it is a more microscopic view than compared to what we have used earlier. But then 

you will see some similarity in the math nonetheless. So just like we could distribute the energy 

levels in the molecule using certain number of ways, the same applies here, but for the systems. 
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So we can now say that for a particular distribution {a}, the number of ways of doing that is 

something like- 

𝑊({𝑎}) =
𝐴!

𝑎0! 𝑎1! … … … … . 𝑎𝑙!
=

(∑ 𝑎𝑗)!

∏ 𝑎𝑗!
 

Where now the summation and product is over systems. So j is over systems in the ensemble 

and we are hoping that A is really so large that we are able to enumerate all possible ways 

again, it is a theoretical construct. 

 

But it makes things easier to think of like if we enumerate all the possible state, then these are 

the number of ways this can possibly happen. So now if I am interested in asking the question, 

what is the average property of the system? So then the average property is the average over 

all these systems in the particular ensemble, right. So the way to think about it, let us say if I 

am interested in some property M and I want to find its average value that property can be for 

example pressure or energy. Whenever in thermodynamics, we talk about pressure or energy, 

it does not refer to a particular configuration, but an average over a large possible number of 

configurations and in this case, A is that large number of configuration. So basically, whenever 

we find an average property, here, it is average over all the possible states in the system, 

 

So one way to define that is that I can find the energy, find the value of M for any property M, 

we can find the property M, when the energy of system is Ej. So for any property we have- 

𝑀̅ = ∑ 𝑀𝑗(𝐸𝑗) 𝑃𝑗(𝐸𝑗) = ∑ 𝑀𝑗𝑃𝑗 



So Mj is property M, when the energy is Ej and multiplied with the probability of that 

happening. So Pj is the probability of having energy Ej. . But keep in mind that even if I do not 

put Ej in the brackets, Mj refers to the property value when the energy is Ej. I am making an 

assumption here that it only depends on the energy of the system, right.  

 

So for any given energy, just like what we had in the micro canonical ensemble, even for the 

same energy you can have many possible distributions of the energy within the molecule but 

in the canonical ensemble, I am not considering that. In a canonical ensemble I am assuming 

that the property value is the same for a given energy Ej of the system irrespective of how the 

energy is being distributed that will be valid for microscopic properties that are typically used 

in thermodynamics. 

 

So the properties I am trying to do this for are the properties which I compute on an average, 

not the properties of individual molecules. So with this kind of an idea, the question is how can 

we find the probability of having the energy Pj right? And that is clearly given as- 

𝑃𝑗 =
𝑎𝑗

𝐴
 

Here, aj divided by the total number of states in the ensemble. 

 

 So this number is going to change for every possible distribution, right. So aj is not going to 

be constant, because you can imagine different possible distributions and different possible 

distributions will have different number of systems having energy Ej. So therefore, I am 

interested actually in the average value of the occupation of the energy level, Ej, right and how 

can I find that is I can basically list all the distributions. And for all the possible distributions, 

I can compute what is the aj value for that distribution and divide by the all the possible 

distributions. 

{𝑎} =
1

𝐴

𝑊({𝑎})𝑎𝑗({𝑎})

∑ 𝑊({𝑎}){𝑎𝑗}
 

So what I am doing now is I am not even referring to only the most probable distribution. W 

{a} is the number of ways of having a particular distribution. If I sum this over all the possible 

distributions that will give me the total number of ways energies can be distributed. Now out 

of this for W of a particular a distribution, you have aj ways in which we are getting energy 

level of Ej. So if I multiply W of a particular distribution with aj, it gives me the number of 



ways in which aj is happening. Now if I sum this over all possible distribution, I am going to 

get the total number of ways for all possible distribution. So if basically the probability is the 

number of ways in which an outcome is possible, divided by the total number of ways. If this 

confuses you, you can imagine that the number of ways is proportional to the probability. 

𝑊 ∝ 𝑝 

So whatever is appearing here, we can think of as the normalization of probability. So if I 

divide the Wa by sum over Wa, essentially what we are getting is the probability of getting a 

particular distribution {a} and I am multiplying that with the value of aj for that particular 

distribution this is what we are doing.  

𝑃𝑗 =
1

𝐴
∑ 𝑃({𝑎})𝑎𝑗({𝑎})

{𝑎}

 

So now clearly, if I start listing all the possible distribution, this becomes a very untraceable 

problem, right. It is very difficult to even think of all the possible ways of distributing 

something for a smaller number of quanta we can, but if we are thinking of a system as a whole, 

then the number of quanta are huge. And therefore, it is not quite easy or even practicable to 

think of all the possible distribution. 

 

So we can simplify this problem by assuming that we are already in the most probable 

distribution and this is a great simplification that we can do, because in any case, we know that 

at equilibrium, the distribution should be close to the most probable distribution. we made that 

argument somewhat logically earlier, but we also demonstrated it for coin toss examples and 

so on. So even though other distributions are possible of the energy levels, the most probable 

distribution is the one that is only happening in most of the cases and therefore, instead of 

summing over all the possible distribution, we can sum over only the most probable distribution 

and that greatly simplifies the way we are doing it. 
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So the assumption that we will make is we have the most probable distribution that is, I am 

looking at now a particular distribution, let me call that a*, which corresponds to some values 

a1, a2 to al of the occupation number. 

{𝑎∗} = (𝑎1
∗ , 𝑎2

∗ … … … … … … … . . 𝑎𝑙
∗) 

 

So now I am assuming that all the systems in the ensemble they can have different energies, 

but the distribution of the occupation numbers will follow the most probable distribution. So if 

I do that, then I can write- 

𝑃𝑗 =
𝑎𝑗̅

𝐴
=

1

𝐴

𝑊({𝑎∗})𝑎𝑗({𝑎𝑗
∗})

𝑊({𝑎∗})
=

𝑎𝑗({𝑎∗})

𝐴
 

Now we are only doing it for the most probable distribution. So we can compute the number 

of ways for the most probable distribution and compute the aj value for the most probable 

distribution. 

 

So now if I do that, then the problem comes down to how do I find the a* for the most probable 

distribution and this we can do in the same way we did for the micro canonical ensemble with 

slight difference in the equations, because now I am talking about energy of systems instead of 

energy of the molecules.  
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So the problem now is we need to maximize W and that is equal to- 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑊 =
𝐴!

∏ 𝑎𝑗!
 

Keep in mind that both the summation and the product is over different systems in the 

ensemble, which are assumed to be in the most probable distribution, that will come later after 

we do the minimization. So this we have to maximize for the aj values for the most probable 

distribution. . So instead of maximizing this we can maximize ln of W and that is- 

ln 𝑊 = ln (
(∑ 𝑎𝑗)!

∏ 𝑎𝑗!
 ) = ln((∑ 𝑎𝑗) !) − ln(∏ 𝑎𝑗!) 

≈ (∑ 𝑎𝑗) ln(∑ 𝑎𝑗) − ∑ 𝑎𝑗 − ∑ 𝑎𝑗 ln 𝑎𝑗 + ∑ 𝑎𝑗 

Again we have the cancellations and we have this particular value of ln W i.e.- 

ln 𝑊 = (∑ 𝑎𝑗) ln(∑ 𝑎𝑗) −  ∑ 𝑎𝑗 ln 𝑎𝑗 

 

And now just like what we had in the micro canonical ensemble, in this case also we have two 

constraints. The first constraint is- 

𝑔1 = ∑ 𝑎𝑗 − 𝐴 = 0 

It is the total number of states in the ensemble, right. The meaning of the terms are different, 

but the equation looks identical to what we had for the micro canonical ensemble. Now we are 

talking about distribution within the systems as opposed to distribution within the molecules. 

So this is equal to zero.  

 



And then again we have for the energy- 

𝑔2 = ∑ 𝑎𝑗𝐸𝑗 − 𝜖 = 0 

 

and the key point here is that, this ϵ is the total energy of a system, total energy of the ensemble 

to be precise. And the way to think about it is like although we have assumed that the systems 

have different energies that is placed in an infinite bath. So if I take the system along with the 

bath that becomes a system that is isolated so for the entire ensemble we may assume a total 

energy because there is nothing outside the ensemble right, because that systems plus the bath 

included must have some total energy and that we can assume to be constant. Other way to 

think about it is if I simply add over energy of all the systems in the ensemble that should be 

equal to constant and that I call as capital epsilon, not the same as small epsilon what I had 

earlier. 
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So now the problem is we can write the maximization as- 

𝜕 ln 𝑊

𝜕𝑎𝑗
− 𝜆1  

𝜕𝑔1

𝜕𝑎𝑗
−  𝜆2  

𝜕𝑔2

𝜕𝑎𝑗
= 0 

And ln W we already have found is- 

ln 𝑊 = (∑ 𝑎𝑗) ln(∑ 𝑎𝑗) −  ∑ 𝑎𝑗 ln 𝑎𝑗 

 

So if I do this derivative with respect to aj, what I will have is using the same kind of math what 

we had for the canonical ensemble what we get is this,- 



𝜕 ln 𝑊

𝜕𝑎𝑗
=

∑ 𝑎𝑗

∑ 𝑎𝑗
+ ln(∑ 𝑎𝑗) −

𝑎𝑗

𝑎𝑗
− ln 𝑎𝑗 =  − ln(

𝑎𝑗

∑ 𝑎𝑗
) 

And I can find the- 

𝑔1 = ∑ 𝑎𝑗 − 𝐴 = 0 

𝑔2 = ∑ 𝑎𝑗𝐸𝑗 − 𝜖 = 0 

𝜕𝑔1

𝜕𝑎𝑗
= 1 

𝜕𝑔2

𝜕𝑎𝑗
= 𝐸𝑗  

And therefore, 

− ln (
𝑎𝑗

∑ 𝑎𝑗
) − 𝜆1 − 𝜆2𝐸𝑗 = 0 

And thus, 

(
𝑎𝑗

∑ 𝑎𝑗
) = exp(−𝜆1 − 𝜆2𝐸𝑗) 
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If I again use the first constraint that is summation of aj is equal to a. I will get pretty much the 

same result that we had earlier. And that gives me- 

∑ 𝑎𝑗 = 𝐴 

exp(−𝜆1) =  
1

∑ exp(−𝜆2𝐸𝑗)
 

And therefore, what I have going back in the expression right here is- 



𝑎𝑗

𝐴
=

𝑎𝑗

∑ 𝑎𝑗
=

exp(−𝜆2𝐸𝑗)

∑ exp(−𝜆2(𝐸𝑗)
 

 

And now since we have found the most probable distribution, we can call it aj* and this 

becomes the probability of the state j for the most probable distribution, right. So this again 

looks like the results of the Boltzmann distribution, but now it applies to system as a whole. So 

therefore, if I am now interested in any property M bar, I can write as- 

𝑀̅ = ∑ 𝑀𝑗𝑃𝑗 =
∑ 𝑀𝑗 exp(−𝜆2𝐸𝑗)

∑ exp(−𝜆2𝐸𝑗)
 

 

We will show it later that the λ2 has the same meaning as earlier that is equal to β which is 1 

over kBT. We will establish that more clearly for the canonical ensemble. And actually, we will 

pretty much derive the zeroth law of thermodynamics in the coming classes. For the time being 

just take for granted that λ2 is equal to β. So we have- 

𝜆2 = 𝛽 =
1

𝑘𝐵𝑇
 

And therefore, 

𝑀̅ =
∑ 𝑀𝑗 exp(−𝛽𝐸𝑗)

∑ exp(−𝛽𝐸𝑗)
 

 

Now there is something interesting about what you have in the denominator here. Let me give 

it a name and see what are the properties of this denominator that makes it very interesting. So 

let me call this thing Q, which is referred as the partition function.  
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So the partition function, it comes out to be a very useful concept is defined as- 

𝑄 = ∑ 𝑒−𝛽𝐸𝑗 

 

This we can think of as some sort of a Boltzmann factor because this tells me the probability 

of having a state Ej with some pre-factors. So essentially, if I sum over the Boltzmann factor 

for all the possible states of the system, what we get is a partition function. Since we are doing 

it for the canonical ensemble, we can call this the canonical partition function.  

 

Now there is something very interesting about this partition function. First thing you may notice 

is that since it appears in the denominator right here, what essentially it is doing is somewhat 

normalizing the probabilities we know the probabilities are proportional to exponential of - βEj. 

 

So if I take a summation over that gives me a normalization of the probabilities. So basically, 

if I look at e-βEj by Q, if the probability is defined as this, then the summation of the Pj for all 

the possible systems must be equal to 1, which has to be the case because essentially it is- 

∑ 𝑃𝑗 = 1 =
∑ 𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
 

And also because the probabilities must add to 1 so one use of the partition function is that 

partition function is a normalization function of probability. 
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The other even more interesting use is that the partition function also happens to be a generating 

function and what I mean by the generating function is if I know the partition function of the 

system, I can compute a whole host of properties. The other way of saying that is that if I know 

the partition function, we can find all the properties of the all thermodynamic property of the 

system and you can see by couple of examples.  

 

So let us say if I start with Q as summation of e-βEj now what happens is- 

𝑄 = ∑ 𝑒−𝛽𝐸𝑗 

𝜕𝑄

𝜕𝛽
= ∑ 𝑒−𝛽𝐸𝑗  (−𝐸𝑗) 

1

𝑄
 
𝜕𝑄

𝜕𝛽
=

− ∑ 𝐸𝑗𝑒−𝛽𝐸𝑗

∑ 𝑒−𝛽𝐸𝑗
 

 

If you go back the way we have defined our average properties, you may notice that if I simply 

replace M with E, what we are actually getting right there is the average value of the internal 

energy, right. So the E bar can therefore be defined as- 

𝐸̅ = −
1

𝑄
 
𝜕𝑄

𝜕𝛽
= −

𝜕 ln 𝑄

𝜕𝛽
 

 

You can see I do not need to know anything else apart from Q, because if I know the function 

form of Q, I can find doh ln Q by doh β and I can basically recover the average energy of the 

system and therefore I call partition function as the generating function.  
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Let us think of something else. So we know that for a particular state with energy Ej, we can 

use the thermodynamic expression for that particular state. And what we have is- 

𝑑𝐸𝑗 = 𝑇𝑑𝑆 − 𝑝𝑗𝑑𝑉 + ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

So if I am interested in the pressure of the state having energy Ej, the pressure can be defined 

as the partial derivative of Ej with respect to the volume of course, for constant S and constant 

number of molecules of all the species. 

𝑝𝑗 = (
𝜕𝐸𝑗

𝜕𝑉
)

𝑆,{𝑁𝑗}

 

And if I want to find the average of that, it is going to be- 

𝑝̅ =
∑ 𝑝𝑗 exp(−𝛽𝐸𝑗)

∑ exp(−𝛽𝐸𝑗)
=

∑
𝜕𝐸𝑗

𝜕𝑉
exp(−𝛽𝐸𝑗)

∑ exp(−𝛽𝐸𝑗)
 

And the same expression I can get if I simply do a derivative of the ln Q with respect to V- 

𝜕 ln 𝑄

𝜕𝑉
=

∑ 𝑒−𝛽𝐸𝑗(−𝛽
𝜕𝐸𝑗

𝜕𝑉
) 

∑ exp(−𝛽𝐸𝑗)
= 𝛽 [

− ∑
𝜕𝐸𝑗

𝜕𝑉
exp(−𝛽𝐸𝑗)

∑ exp(−𝛽𝐸𝑗)
] 

Therefore, 

𝜕 ln 𝑄

𝜕𝑉
= 𝛽𝑝̅ 

 

So therefore, if I know Q, not only I can find the e bar the average energy, I can also find the 

average pressure. So therefore, we say that the partition function is a generating function. You 



can extend the idea and take derivative with respect to nj and find that even the chemical 

potential can be obtained using the partition function and what we obtain is the average 

chemical potential. So once we know the partition function of a system in the ensemble, then 

we can pretty much get the properties that we are interested in, in this case energy, pressure 

and the chemical potential. So this is the idea that I wanted to present for the canonical 

ensemble today.  

 

In the next lecture, what you will see is, first of all, how can we also define fluctuations apart 

from the average using the idea of partition function. And then we also will have a closer 

connection with the part where we said that Lagrange multiplier should be equal to β. Actually, 

we will re-derive the third law of thermodynamics.  

 

So with that I conclude here, thank you. 

 

 

 

 

 

 

 

 

 

 

 


