
Advanced Thermodynamics and Molecular Simulations 

Prof. Prateek Kumar Jha 

Department of Chemical Engineering 

Indian Institute of Technology-Roorkee 

 

Lecture - 13 

Energy Distribution in Molecular System Revisited; 

Introduction to Thermodynamic Ensembles 

 

 

Hello, all of you. So in the last lecture, we have been discussing the Lagrange multipliers that 

is for maximization with constraints, and we discussed the drunkard walk example. So in 

today’s lecture, we will take the idea to distribution of quanta in molecular systems and later 

on we will discuss the idea of thermodynamic ensembles.  
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So to begin with, let us just go back to the example that we have done couple of times in this 

course already. So if you have some quanta of energy to be distributed amongst some particles, 

let us say you have M quanta among N particles. And again I will emphasize that the particles 

can be atoms or molecules whatever is appropriate for the context and the quanta need not be 

equally spaced that means we can in general say that we have energy levels ϵ0, ϵ1, ϵ2 to some 

ϵM. If they were uniformly spaced then it was like in multiples of epsilon, but this need not be 

generally true. So then for this particular problem, we have already established that the number 

of ways for a particular distribution in which n0 particles have energy ϵ0, n1 has energy ϵ1, n2 

has energy ϵ2 and so on. Let us say nM has energy ϵM then the number of ways for this particular 

distribution is given as- 



𝑊 =
𝑁!

𝑛0! 𝑛1! … … … … … … 𝑛𝑀!
 

 

Now we have two constraints in this problem. The first constraint is- 

𝑛0 + 𝑛1 … … … … 𝑛𝑀 = 𝑁 

And then if I assume the system to be isolated that means the energy of the system is constant, 

there is no exchange of energy with the surrounding. And there is no exchange of mass as well, 

which in this case is the number of molecules. So in that particular case, there is also a condition 

for energy and that is- 

𝑛0𝜖0 + 𝑛1𝜖1 + ⋯ … … … … … … . = 𝐸 

Energy E that is the total energy of the system. 

Now in fact, this corresponds to the internal energy, but we will use the word E instead of U 

that we used earlier. So E is same as U in our earlier description. And I am doing that because 

most textbooks on statistical mechanics use E as the representation for the internal energy.  

 

So then, we can write this in the shortcut notation and also keeping in mind that these two 

constraints have to be met in a shortcut way and since we do not want to include the constraint 

in the expression itself of W, we will represent this N as the sum over of n0, n1 and so on, right. 

So the fact that the sum is equal to n is taken care of by the constraint. So in the equation or the 

expression for W, we will simply write as sum over the n0, n1 and so on. So we can write this 

in the shortcut notation then as- 

𝑊 =
(∑ 𝑛𝑗)! 𝑀

𝑗=0

𝛱𝑗=0
𝑀 𝑛𝑗!

 

Keep in mind that this Π symbol is for products over the nj values. In this case n0 factorial 

multiplied with n1 factorial and so on. And both these things are going from j equal to 0 to M.  

 

And then I can also write this constraint in the shortcut notation as let us say g1 is the name of 

the constraint. Then g1 is- 

𝑔1 = ∑ 𝑛𝑗 − 𝑁 = 0 

𝑔2 = ∑ 𝑛𝑗𝜖𝑗 − 𝐸 = 0 

Although I am not putting in any index in the summation keep in mind that whenever I put a 

summation symbol sigma, it means that we are doing a summation over all possible values of 

j that is j equal to 0 to M in this case. Just for simplicity, I will simply use summation symbol, 



but we always mean summation over all possible values of j or whatever index we have in the 

problem. 
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So essentially in this shortcut notation the formula is W is- 

𝑊{𝑛𝑗} =
(∑ 𝑛𝑗)!

∏ 𝑛𝑗!𝑗
 

And we have to maximize this. So we have to find the values of nj for which this function is 

maximized whenever I put a curly bracket, this is a shortcut for n0, n1 to nM, okay. And this 

subject to two constraints – 

𝑔1 = ∑ 𝑛𝑗 − 𝑁 = 0 

𝑔2 = ∑ 𝑛𝑗𝜖𝑗 − 𝐸 = 0 

Now as we have noted earlier, we will use the Stirling formula for large N that says- 

ln 𝑥! ≈ 𝑥 ln 𝑥 − 𝑥 

and since the maxima of W is going to be the same as maxima of ln of W, because, ln of W 

increases in the same way as W. So therefore, wherever we have maxima of W we also have 

maxima of ln W. So therefore, I can write the problem instead of this as- 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 {𝑛𝑗} ln 𝑊 = ln(
(∑ 𝑛𝑗)!

∏ 𝑛𝑗!
) 

≅ ln[( ∑ 𝑛𝑗)!] − ∑ ln(𝑛𝑗!) 

≈ (∑ 𝑛𝑗) ln(∑ 𝑛𝑗) − ∑ 𝑛𝑗 − ∑ 𝑛𝑗 ln 𝑛𝑗 +  ∑ 𝑛𝑗

𝑗

 



≈ (∑ 𝑛𝑗) ln(∑ 𝑛𝑗) −  ∑ 𝑛𝑗 ln 𝑛𝑗 

 

and since the maxima of W is going to be the same as maxima of ln of W, because, ln of W 

increases in the same way as W. So therefore, wherever we have maxima of W we also have 

maxima of ln W. So therefore, I can write the problem instead of this as- 

𝜕𝑙𝑛𝑊

𝜕𝑛𝑗
− 𝜆1

𝜕𝑔1

𝜕𝑛𝑗
− 𝜆2

𝜕𝑔2

𝜕𝑛𝑗
= 0 

And this has to be true for all j. 
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So let us write this expression and since we know- 

𝑙𝑛𝑊 = (∑ 𝑛𝑗) ln(∑ 𝑛𝑗) −  ∑ 𝑛𝑗 ln 𝑛𝑗  

We have then- 

𝜕𝑙𝑛𝑊

𝜕𝑛𝑗
=  

∑ 𝑛𝑗

∑ 𝑛𝑗  
 . 1 + ln(∑ 𝑛𝑗) .1 −

𝑛𝑗

𝑛𝑗
− ln 𝑛𝑗  

 

So for all the values of j not equal to the j with which I am finding derivative, the derivative is 

going to be zero only for that particular value of j at which I am finding derivative, it will be 

equal to 1, right. So this is the derivative of summation with respect to n j. Just for example 

sake, let us say if you have the summation written like this, and if I want to find derivative with 

respect to n2 that is I am doing for j equal to 2. So in that case the derivative of n0 with respect 

to n2 is 0, derivative of n1 with respect to n2 is 0 only the derivative of n2 with respect to n2 = 1 



and therefore, we have a 1 there. So I hope that is clear. So then these two cancels out and what 

we have is essentially- 

𝜕𝑙𝑛𝑊

𝜕𝑛𝑗
= − ln(

𝑛𝑗

∑ 𝑛𝑗
) 

Now there are two other derivatives here that is- 

𝜕𝑔1

𝜕𝑛𝑗
= 1 

As since we know- 

𝑔1 = ∑ 𝑛𝑗 − 𝑁 = 0 

Similarly, 

𝜕𝑔2

𝜕𝑛𝑗
= 𝜖𝑗 

And as we know  

𝑔2 = ∑ 𝑛𝑗𝜖𝑗 − 𝐸 = 0 

So therefore, the minimization expression that we have- 

𝜕𝑙𝑛𝑊

𝜕𝑛𝑗
− 𝜆1

𝜕𝑔1

𝜕𝑛𝑗
− 𝜆2

𝜕𝑔2

𝜕𝑛𝑗
= 0 

− ln (
𝑛𝑗

∑ 𝑛𝑗
) − 𝜆1 − 𝜆2𝜖𝑗 = 0 
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Now this expression I can write as an exponential because I can move ln to the other side. And 

therefore, what we get is- 



𝑛𝑗

∑ 𝑛𝑗
= exp(−𝜆1 − 𝜆2𝜖𝑗) 

That is the most probable distribution in this case for which the ln W is maximized. Now we 

can use the constraints again to find the Lagrange multiplier λ1 and that is since we know that 

summation of nj = to n what we can do I can apply summation on the both left hand side and 

to the right hand side. So what we then have is- 

𝑛𝑗

∑ 𝑛𝑗
= exp(−𝜆1) ∑ exp(−𝜆2𝜖𝑗) 

exp(−𝜆1) =
1

∑ exp(−𝜆2𝜖𝑗)
 

. And therefore, what we have is- 

𝑛𝑗

∑ 𝑛𝑗
=

exp(−𝜆2𝜖𝑗)

∑ exp(−𝜆2𝜖𝑗)
 

So the result that we have got is actually similar to the Boltzmann distribution that we have 

obtained earlier. So what we have found earlier or what we have used earlier is that, I said that 

the number of the molecules in a state j or having energy ϵj is- 

𝑛𝑗 ∝ exp (−
𝜖𝑗

𝑘𝐵𝑇
) 

 

So if I compare this expression with that expression, so the denominator is a summation. So 

whatever we have here should apply to the numerator. And what we should find then is- 

𝜆2 =
1

𝑘𝐵𝑇
= 𝛽 

in statistical mechanics. 
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So it turns out that the example that I have taken where the system is isolated and it has some 

number of molecules and since I was not doing any work as well although I did not state that 

the volume is also constant and in fact, at most probable distribution the entropy is also constant 

right but the other way to say that is that the energy is constant. So I can write energy as a 

function of entropy or I can write entropy as a function of energy. So what we can say then 

here is that, for this particular case, entropy can be thought of as a thermodynamic function and 

N that is the number of molecules, V that is the volume and E that is the internal energy of the 

entire system are the control variables.  

 

Now if I think of a system that has a constant number of molecules, constant volume and 

constant energy, then there is not only one system that is possible for this particular scenario. 

So you can have various distribution of quanta of energy that will still give you the same total 

energy. So whenever we are talking about a system in thermodynamics, actually we are not 

talking about one particular configuration or one particular distribution of energy, we are 

talking about a whole ensemble of distribution, right. So essentially, we can imagine that we 

have many systems that are present which are having same N, V and E. So all of them can have 

same N, V, E, but they can have different energy distribution or even the position of molecules 

among there and all of them will refer to the same system at N, V, E.  

 

The other way to think about it is let us say if I specify that this room is an equilibrium, and we 

have certain properties. Now the molecules in the room are not frozen, the molecules keep on 

moving. So therefore, when I specify the thermodynamics of this room, I am not interested in 



a particular configuration that is like a snapshot taken at a particular instant but an average over 

many conformations that is going to be realized over a period of time. The other way to look 

at it is that if the room is in equilibrium, I can think of like small volumes of the room, which 

are having same property at every other volume because the property of the room, property of 

the air in the room should not change if I go from here to there. If it does, then the room is not 

in equilibrium. When we are in equilibrium, then the properties of every particular small 

volume remains the same.  

 

So when we think of an ensemble, we can think of it as a collection of states either at different 

time instance or at different spatial locations and whenever we talk about any property in the 

in thermodynamics, it is always an average over many possible states of the system having the 

same value of control variables, in this case N, V and E, but different possible configuration 

and different possible distribution of energies, right that is a very important point that we will 

build on and in this particular case, where I am keeping the N, V, and E constant is referred as 

a micro canonical (NVE) ensemble and the ensemble will comprise of some A states and any 

property A states or A systems to be more precise. So now I am not talking about the state of 

a molecule, I am talking about the state of the entire system. So you can have multiple 

configurations of the system, which are present at this NVE we can think in terms of different 

time instants or we can think in terms of different spatial locations but nonetheless, whenever 

we are doing thermodynamics, we are essentially interested in the average over all those 

possible states and systems. 

 

Now you can clearly imagine that the number of possible states are going to be huge. So it may 

go for large molecules something like infinity, right. So this may be more like a theoretical 

construct than being like a complete enumeration of all possible states. So A in theoretically 

speaking should represent all possible states of system, but we need to make certain 

approximations if I want to represent the system with fewer number of states, right so because 

we cannot do like infinite possible states and compute the average, that is not quite possible 

and therefore, we will enumerate some of these states. So we can approximate the ensemble 

for some possible state or systems but in reality, the number of systems or number of states can 

be huge. So A can be really a very huge number.  

 

And then what we are also assuming is that all these systems are isolated. So although they are 

present in a box that I am showing, there is no interaction between systems there is no exchange 



of mass or exchange of energy between different systems in this case, because we are doing a 

NVE ensemble, which refers to an isolated system as we discussed. 

 

So this is it turns out that this is not a very useful ensemble for many applications. And the 

reasons we have stated earlier that it is not always possible to control entropy or the volume. 

Sometimes it is more appropriate, actually experimentally it is always more appropriate to 

control temperature as opposed to entropy but sometimes it can be also appropriate to control 

pressure instead of volume. And therefore, we can have a variety of ensembles and the 

ensembles are defined on the basis of what is the control variable in the particular case. 

(Refer Slide Time: 24:39) 

 

So we will discuss in this course four different ensembles, which are most commonly used 

which will have different set of control variables and therefore, different thermodynamic 

functions representing them and these are the one that we already have discussed, the micro 

canonical ensemble and in this case the control variables are number of molecules, volume and 

the energy. 

 

So we will discuss in this course four different ensembles, which are most commonly used 

which will have different set of control variables and therefore, different thermodynamic 

functions representing them and these are the one that we already have discussed, the micro 

canonical ensemble and in this case the control variables are number of molecules, volume and 

the energy and thermodynamic function is S (N, V, E). We can write in differential form as- 



𝑑𝑆 =
𝑑𝐸

𝑇
+

𝑝𝑑𝑉

𝑇
− ∑

𝜇𝑗𝑑𝑁𝑗

𝑇
 

 

We can also have something called a canonical ensemble. In that case the control variables are 

N, V and T, number of molecules, volume and temperature and in this case the thermodynamic 

function is called the Helmholtz free energy, that is a function of N, V and T and the differential 

form is- 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 +  ∑ 𝜇𝑗𝑑𝑁𝑗

𝑗

 

By the way we are doing for multi component systems in this case. If it is a one component 

system the last term with chemical potentials will not appear. 

 

And then we can have something called an isothermal isobaric ensemble and in this case NPT 

is constant; the number of molecules, pressure and temperature. And in that case the 

thermodynamic function we are interested in is the Gibbs free energy N, P, T. In differential 

form it is- 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + ∑ 𝜇𝑗𝑑𝑁𝑗 

And the last one is the grand canonical ensemble and in that case, the control variables are mu 

V T that is the chemical potential volume and temperature and we can define a grand canonical 

potential that is a function of μ, V, T that is- 

𝑑𝛺 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 − ∑ 𝑁𝑗𝑑𝜇𝑗 

 

One thing to note here is that in all these cases I have kept at least one extensive variable, right. 

In this case, both N and V and E all of them are extensive. There is nothing called a μP T 

ensemble because then all the variables become intensive and we have earlier said using the 

Gibbs-Duhem theorem that, that does not give me a meaningful differential form, it becomes 

zero you must have at least one extensive variable because something in the system something 

about the system should specify the size of the system.  

 

So with that I conclude the discussion of thermodynamic ensembles. In the next few lectures, 

we will show that how can we find thermodynamic properties for all these ensembles by first 

defining the ensembles, then defining the function that we have to maximize and then or 

minimize and then finally, using the method of Lagrange multipliers, we can determine the 



average properties for the ensemble and whenever we talk about an average it is average over 

all the systems present in the ensemble.  

 

So with this I conclude the discussion here. Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 


