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Hello all of you so until so far in this course we have basically, pretty much recapped the 

thermodynamics you knew the laws of thermodynamics and the idea of thermodynamic 

functions and try to provide you a molecular description of all of this. So from now on we will 

get into some more rigorous mathematical derivations that comes in the regime of statistical 

mechanics and will going over the same concepts but in somewhat more detail and try to 

establish how can I get actually the thermodynamic variables using that kind of a statistical 

mechanics framework.  

 

So today I will talk about again the idea of probability and distributions because it will be 

required in the framework we do from the next lecture and also it is slightly more mathematical 

in comparison to the intuition based argument we used in the description of entropy earlier. So 

essentially we already have discussed the idea of probability when we did a coin toss example 

or the playing card example and so on but let us now just write the same expressions in 

somewhat more mathematical terms just to set the ground for what we will do in the in the next 

lecture.  
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So essentially when we talk about probability this can be defined for 2 different regimes- one 

is a discrete system and one is a continuous system, in all the examples that we have done so 

far it was pretty much discrete we said the number of outcomes can be large but then the 

outcomes are still finite. When we say it is continuous that means there is no discrete points on 

which the outcome should be it can be anywhere in the domain.  

 

So let us say for example if I say that my x can be either 0 or 0.1 or 0.2 or 0.3 this is what I 

mean by a discrete kind of a distribution. So if x can take only those particular values then we 

say it is a discrete distribution.  

 

On the other hand if x can take any value between the range we are interested in let us say 0 to 

0.5 in that case we say it is a continuous distribution it can be any number that we can imagine 

or anywhere we drop a point it is probable for x to be there. How much probability is there is 

a different thing altogether but x can be anywhere in the domain. So naturally if the number of 

points in the discrete distribution increases, we go towards a continuum or continuous 

distribution and that is what we have seen earlier.  

 

Let us say for example if I am doing 10000 tosses then the fraction of heads can become like 

0.0001, 0.000 2 and so on. If I am doing only 2 tosses then it can be only 0.5 and 1. So as the 

number of points on a discrete distribution increases we start to approach a continuous 

distribution. So therefore if for example for any thermodynamic system we know that the 

numbers of molecules are huge.  

 

So let us say for example if I talk about exchange of quanta and things of that sort we need to 

keep in mind that the number of quanta of energy available is also pretty large. So any energy 

distribution we are looking at it has too many points for us to start considering the distribution 

as a continuous distribution and in mathematical terms this gives me one huge advantage when 

we are doing a discrete distribution, we are basically summing our probabilities when we are 

doing a continuous distribution we can replace the sums with an integral. So therefore even 

when what quantum mechanics says that energy has to be quantized and only discrete energy 

values are possible if we are in the limit where the number of discrete points becomes so large 

that we can pretty much cover all possible values of energy in that case we can use the 



framework of continuous distribution and that will really make our math much, much easier. 

This is the example that we are trying to build on.  

 

So, just to go back to our earlier example of the coin toss what we can say is that we can have 

certain number of outcomes and the probability of certain outcome is the number of ways in 

which that outcome is possible divided by total possible number of ways. Now if I for example 

ask you what is the most probable number of outcomes most probable number of heads when 

I am doing 5 tosses then I am not talking about 1 particular experiment I am talking about a 

series of experiments being conducted and for each experiment you can have a head or a tail. 

So if I go back to our example of M coin tosses and number of heads that we get in those 

number of tosses it can be 1, 2 until M that is the all possibility that we have discussed.  

So now if I ask you what is the most probable number of heads then in that particular case what 

we are talking about is something that is called expectation in the language of probability and 

the way an expectation is defined is something like this- 

𝑢̅ = ∑ 𝑢𝑗𝑝(𝑢𝑗) 

the average value or the expected value is sum over all the possible outcomes with the 

probability of that particular outcome. 

 

So let us say for example I call I define head as something like 1 and tail as 0 and now I count 

the number of heads in the in the in the problem. So in that case what I can say is the expected 

value of the number of head is equal to the sum over the 2 outcomes which are basically 

probability of having a head multiplied with the head value plus probability of having a tail 

multiplied with the tail value and the tail value we have assigned as 0 head value we have 

assigned as 1. So we have- 

𝑢̅ = 𝑢𝐻𝑝𝐻 + 𝑢𝑇𝑝𝑇 = 1.
1

2
+ 0.

1

2
=

1

2
 

 

So in every toss the mean number of head that we will get is 1 by 2 and why we get this number 

because we have said tail as 0. So any non-zero number is because of the heads so now if I am 

doing for example M tosses then for every toss the expected number or the mean number of 

head is 1 by 2. So for M tosses we should have M by 2 heads that is simply found by multiplying 

the expected value for 1 toss with m because in every toss there is this mean 1 by 2 chance of 

getting a head this is what is called an expectation. 



 

Now the coin toss example was pretty trivial because there were only 2 possible outcomes head 

and tail. Now I will do a slightly more complicated example to demonstrate that this is like can 

be much more useful when the number of outcomes are much larger. So let us say for example 

now we are playing a game of dice.  
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So a dice can have numbers 1, 2, 3, 4, 5 and 6 so we can have a 6 sided dice and all these 

outcomes are probable again for an unbiased dice as 1 by 6. Now if I ask what is the mean 

number we will get again we will multiply this outcomes with their probabilities. So what we 

have is- 

𝑢̅ = ∑ 𝑈𝑗𝑝𝑗

𝑗

 

𝑢̅ = 1 𝑥
1

6
+ 2 𝑥

1

6
+ 3 𝑥

1

6
+ 4 𝑥

1

6
+ 5 𝑥

1

6
+ 6 𝑥

1

6
= (1 + 2 + 3 + 4 + 5 + 6) 𝑥

1

6
=

21

6
=

7

2
 

which is the expected number that we get. 

 

Now for 1 toss it does not have much meaning because you cannot have the expected number 

to be if I just factor it as 7 by 2 you will never get a 7 by 2 in any dice that is not a even a 

possible outcome but if I do many of the dice rolls and if I count the outcome or sum over all 

the outcomes what I will have is 7 by 2 multiplied with the number of dice rolls we did and 

then it will have a meaning.  

 

So let us say for example if I have done 10 dice rolls now my number will be- 



10 𝑢̅ = 10 𝑥
7

2
= 35 

So 35 is the most probable sum that we will get if I am doing 10 dice rolls. So clearly there is 

not much meaning if I am looking at 1 dice at all but it starts to have a meaning once we are 

looking at sum over these expectations over a large number of rolls. It tells me where the 

distribution will peak what is the most probable distribution for this particular problem.  

 

Now as we go from a discrete to a continuous distribution as we have noticed earlier in the coin 

toss example as well the distributions start to first of all look neater and second become 

narrower as the number of tosses increase or as the number of dice rolls increase or as a number 

of any stochastic experiments is increasing the distribution starts to become narrow and this 

expected value tells me the mean of that. 
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Now the second question is let us say if I find the mean then what characterizes the breadth of 

the distribution and the answer lies in the theory of probability as the following. So just like 

we had found the mean value as sum over all the possible outcomes multiplied with their 

probability we can also find what is known as the moments of this distribution- 

𝑢̅ = ∑ 𝑢𝑗𝑝(𝑢𝑗) 

J=number of outcomes. For example we can define a second moment as- 

𝑢2̅̅ ̅ = ∑ 𝑢𝑗
2𝑝(𝑢𝑗) 



and the second moment characterizes the spread of the distribution first moment characterizes 

the mean of the distribution.  

 

Now what is that equal to for the dice roll example. So you have so now I am summing over 

the square of the numbers. So it is- 

𝑢2̅̅ ̅ = 12𝑥
1

6
+ 22𝑥

1

6
+ 32𝑥

1

6
+ 42𝑥

1

6
+ 52𝑥

1

6
+ 62𝑥

1

6
 

keep in mind that probability remains 1 by 6 for the dice for example only the outcome I am 

squaring and adding this is what is called the second moment. 

 

Similarly we can define the third and higher moments in general we can define as- 

𝑢𝑚̅̅ ̅̅ = ∑ 𝑢𝑗
𝑚 𝑝(𝑢𝑗) 

 

So this second moment is actually related to what you know in statistics as the idea of a standard 

deviation. So the standard deviation is essentially defined as the square root of what is known 

as the variance and the variance is defined as not the second moment but the moment of u -.𝑢̅ 

So if I compute the moment of u - 𝑢2̅̅ ̅ what it tells me. It tells me about the deviation from the 

mean value in every possible outcome and if I add all the deviations then what should happen 

it should go to 0 because both a positive deviation and negative derivation would be equally 

likely. 

 

So let us say for example I am doing the dice roll example so we have got a mean value we can 

get a higher value as the same probability as a lower value provided that it is the same departure 

from the mean and this comes from the symmetry in the distribution. Why is that because if 

you remember our probability distribution looked something like this- 

 



So let us say if I am here if I find the probability of 𝑢̅+ some Δ and 𝑢̅– Δ both are going to be 

the same if the distribution is symmetric and most distributions we care about are symmetric.  

 

For a dice roll the deviation to the positive side is same as deviation to the negative side when 

we talk in terms of probability. So for example to the coin toss example of course for 10 tosses 

we should have 5 heads as the most probable number but having 4 heads should we have same 

probability as having 6 heads because 6 heads correspond to 4 tails. Since heads and tails are 

identical the probability of having 4 heads should be equal to probability of having 4 tails. So 

therefore the distribution is symmetrical so whenever we have a symmetrical distribution we 

have equal probability of having a positive deviation and negative deviation so if I simply add 

up all the deviations what we will get is 0 but on the other hand if I sum over the squares then 

it will not go to 0 because positive and negative both will square to a positive number. 

 

So in this case u - 𝑢2̅̅ ̅ would be defined as- 

𝑢 − 𝑢2̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑(𝑢𝑗 − 𝑢̅)
2

𝑝(𝑢𝑗) 

so whenever uj is higher than 𝑢̅ you will have a positive number whenever uj is less than 𝑢̅ you 

will have a positive number. It does not matter which side you are in the squares already always 

add up but the absolute value can be positive or negative. So this is what defines the idea of 

variance. 

 

So now if I have a continuous distribution I will simply replace all these sums with the 

integrals and what also changes is how we are normalizing the distribution. So in this case for 

a discrete distribution you may recall that the probability of all the outcome should sum to 1 

and this is going to change when we are doing the continuous distribution.  
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So for a continuous distribution the condition of normalization is that the probability integrated 

over all possible outcomes is equal to 1 and now we do not have probabilities anymore what 

we have is what we refer as the probability density that is- 

∫ 𝑝(𝑢) 𝑑𝑢 = 1 

The probability that u is in the range of u and u + du.  

 

So provided that the probability is normalized we can again define the mean and other 

movements of distribution. For example the mean or the expectation or you may call it an 

average this is given as now instead of summation we have integration- 

𝑢̅ = ∫ 𝑢 𝑝(𝑢)𝑑𝑢 

Keep in mind that we had uj earlier because we can enumerate the outcomes now we have a 

continuous variable u that goes over the range of possibilities. 

 

Similarly I can define the other movements here let us say if I am interested in the second 

moment this I can define as- 

𝑢2̅̅ ̅ = ∫ 𝑢2𝑝(𝑢)𝑑𝑢 

the mth moment can be defined as- 

𝑢𝑚̅̅ ̅̅ = ∫ 𝑢𝑚𝑝(𝑢)𝑑𝑢 

and my definition of variance which is the square of the standard deviation is going to be- 



𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎2 = (𝑢 − 𝑢̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫(𝑢 − 𝑢̅)2 𝑝(𝑢)𝑑𝑢 

and will use this concept over and over but keep in mind that we first have to ask ourselves 

whether it is a discrete distribution or a continuous distribution. Even if it is a discrete 

distribution are the numbers of outcomes very large or are the numbers of experiments very 

large in that case can we make an approximation of a continuous distribution and that will 

greatly simplify our analysis.  

(Refer Slide Time: 23:52) 

 

So, just to give an example of how this can be helpful, we are talking about the number of ways 

of distributing some N things into different number of bins when I was talking about the 

chocolates this is distributing N chocolates among certain students. If we are talking about 

distribution of quanta of energy we said that we are distributing so many quanta in so many 

people and the formula for that was the number of ways was given as- 

𝑊 =
𝑁!

𝑛0! 𝑛1! 𝑛2! … … … … . . 𝑛𝑀!
 

where you are either doing m chocolates in an students or m energy quanta in N molecules and 

N0 is the number of students having 0 chocolates or number of molecules having 0 quanta N1 

is the number of students having 1 chocolate or number of molecules having 1 quanta and so 

on. 

So now the ultimate objective is we want to find the most probable distribution or probably the 

spread of that distribution and we are talking about a very large number of N so the objective 

is to maximize this particular ways of distribution because when we maximize it we will 

automatically get the most probable distribution.  



 

Now the problem is the way we do the maximization at least that is what comes naturally to 

our mind is by taking derivatives. Now derivatives itself are defined for continuous functions 

not for discrete functions, when we have discrete functions then derivatives itself are not 

defined.  

 

So one way to do that that is only true where the N is very large is to assume as if this is a 

continuous distribution and if I assume that then we can use the machinery of calculus we can 

apply derivatives and find the most probable distribution in that particular way not only this it 

comes at a big advantage also in the evaluation of those factorials because if you try to plug in 

N very large in a calculator and compute its factorial you will start to see that the calculator 

blows up in no time after certain time there are so many integer, so, many so many numbers 

coming in the coming in the final expression that the calculator cannot handle it and therefore 

we need to find not only a way to find or estimate the factorial but also to maximize this W and 

the way to do that is to assume first that N is very large and then we can apply the following 

approximation.  

 

What we can say is instead of the N factorial we can look at the ln value or the log value of the 

N factorial and what is this equal to it is equal to- 

𝑙𝑛(𝑁!) = 𝑙𝑛(1,2,3 … … … … … . . 𝑁) 

= 𝑙𝑛1 + 𝑙𝑛2 + 𝑙𝑛3 … … … … . . ln 𝑁  

= ∑ ln 𝑖

𝑁

𝑖=1

 

So provided that N is very large we can replace this summation with an integration. So for large 

N we can approximate- 

ln 𝑁! ≈  ∫ ln 𝑖 𝑑𝑖 

where i is no longer a discrete variable that takes a value from 1 to N but I is now a continuous 

variable that can take any value in the range 1 to N that point is very important and we 

knowwhat the integration of ln of i is that is- 

ln 𝑁! ≈ ∫ ln 𝑖 𝑑𝑖

𝑁

𝑖

= [𝑖 ln 𝑖 − 𝑖]1
𝑁 



and the lower limit will be 1 ln 1 that is equal to 0 then we put 1 more 1 there but the point is 

that N is so large that this that 1 is not really important.  

 

So essentially we can approximate- 

ln 𝑁! = 𝑁 ln 𝑁 − 𝑁 

which we have been able to do if I am doing a continuous distribution provided that N is very 

large.  

 

So this particular idea is referred as the Stirling Approximation that is extremely important in 

thermodynamics and why is that because as I was telling you for an isolated system what 

exactly is the problem we are trying to solve we want to maximize the entropy and entropy 

essentially is given by this, even when we are doing a closed system ultimately we are 

maximizing some energy wherein entropy is already present. So this kind of an expression will 

always find place in whatever function we are trying to minimize and to do the minimization 

of that we can resort to the idea of calculus I just described and instead of maximizing w we 

can maximize ln of W because ln of W increases as w increases ln of w decreases as W 

decreases so the maxima of W is the maxima of ln W as well. So instead of like solving for W 

we can solve for ln W and when we are doing that we can use the Stirling approximation. So 

let us see how it works.  
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So now- 

ln 𝑊 = ln
𝑁!

𝑛0! 𝑛1! 𝑛2! 𝑛3! … … . 𝑛𝑀!
 



≈ ln 𝑁! − ∑ ln 𝑛𝑗!

𝑀

𝑗=0

 

this is not really an approximation. The approximation will come now. So now we can use the 

Stirling approximation and this will be- 

= 𝑁 ln 𝑁 − 𝑁 − ∑(𝑛𝑗

𝑀

𝑗=0

ln 𝑛𝑗 − 𝑛𝑗 

Now you can look at the second term on the inside the summation. The summation of the 

number of molecules having so much quanta of energy if I sum over all the possibilities that 

should be equal to the number of molecules N. So what essentially we have is- 

= 𝑁 ln 𝑁 − ∑ 𝑛𝑗

𝑀

𝑗=0

ln 𝑛𝑗 

and now N is anyway constant in this particular problem if I am doing a isolated system. What 

is changing however is Nj for different distribution. So we can then use the derivative of ln W 

with respect to Nj and compute its extremum by setting derivative equal to 0 and this can be 

done for all possible value of Nj and this will give me in this case something like this- 

ln 𝑛𝑗 + 𝑛𝑗 .
1

𝑛𝑗
= 0 

and this will give me a value of Nj.  

 

Now here is something that we have done wrong while doing that so although we have taken 

N as constant we have to be careful when we are taking a partial derivative with respect to Nj 

because when I take a partial derivative with respect to Nj what I mean to say is that for every 

other value of Nk where k is not equal to j. Let us say j is equal to 2 so I am looking at partial 

derivative with respect to N2 then I am assuming that N0, N1, N3 and N4 and everything else 

are constant. So in there, there is a small detail that comes into picture and that is we cannot 

really consider N as really constant because I have assumed all the variables except N2 as 

constant. So if that is true then N2 will also become constant if capital N is constant so I cannot 

take the derivative. So the shortcut of doing that is that I will replace N with sum over Nj in the 

first expression and that will give me a more meaningful answer that is what we will do later.  

 

Just to repeat this particular point whenever we take this partial derivative we cannot take the 

derivative keeping capital N is equal to constant because when we take the partial derivative 

with respect to Nj to be 0 what I mean is that all the values of Nk where k is not equal to j are 



constant that is N0, N1, N2 everything except Nj are constant. As soon as we assume that if we 

also assume capital N to be constant then the Nj also become constant. So our problem of taking 

a derivative with respect to Nj does not make any sense. So therefore for the purpose of the 

partial derivative we need to replace capital N with summation over and j and that will become 

a very important point in the arguments that we will follow.  

 

So basically to conclude the discussion of today I have discussed the idea of discrete and 

continuous distribution. I have said that for large number of outcomes for large number of 

experiments we can always assume a continuous distribution. We can define the moments of 

distribution and we did it for both discrete and continuous case and finally we discussed the 

idea of Stirling Approximation that I claimed will be very handy in our treatment of 

thermodynamics.  

 

So with that I conclude here, thank you. 

 

 

 

 

 

 

 

 

 

 

 


