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Lecture — 24
Multiple Reaction System - 111

Welcome to the third segment of multiple reaction system under the head of polymer reaction
engineering. Now, let us have a look at about that what we studied previously.
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What we learn in this PPT?
%+ Previously studied
n Qualitative traatment for two reactants in parallel reactions
o Quantitative treatment of product distribution and reactor size in parallel reaction
system
o Qualitative analysis of series reaction system
% To be study in this lecture
o Quantitative analysis of series reactions in series in PFR
and Batch reactors
o Quantitative treatment of mixed flow reactor
¥ First order followed by zero-order reaction
v Zerg-order followed by first order reaction

We had a discussion about the qualitative treatment of 2 reactants in parallel reaction system.
Now, here we discuss about the 2 reactants, both are reacting in parallel reactions profile. Then
we perform the quantitative treatment of product distribution and a reactive size in parallel

reaction system. We discussed about the qualitative analysis of a series reaction system.

In this particular lecture, we are going to discuss the quantitative analysis of a series reaction
in series and PFR and batch reactors both. We will perform the quantitative treatment
methodology of a mixed flow reactor. We will discuss about the first order followed by zero
order reaction. We will have a discussion about the zero-order followed by the first order
reaction.
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» Quantitative analysis of series reactions in PFR or batch reactor
= Series Reactions system
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Hera reactant ¥ decomposed into desired product ¥ and further, is dacomposed into the
undesired groduct 2. The most impertant factor here is contact time and space-time far batch
and flow reactor, respectively,

If the desired product produced with lower kinetic order for the undesired reaction, then it is
difficult to praduce the desired product Y. so, the first reaction's order should be higher than the
second ane for a higher yield of ¥,

Another factor is contact time in a batch reactor, and space-time in the flow reactor should not
be langer as that desired product to decomposed further into the undesired product. Here we
have to maximize the intermediate product ¥,

So, let us have a look about the quantitative analysis of a series reaction in PFR or batch
reaction. Now, as you recall that we had a discussion about the series reaction system, where
we were having X is converted into Y is converted into Z with the independent rate constants
as we are representing over here. Now, this if we go for the elaborative manner, then we can

say that the X is decomposed into the desired product Y.

And further it is decomposed into the undesired product set. The most important factor here is
the contact time and the space time for batch and flow reactor respectively. Now, if the desired
product produced with a lower kinetic order for the undesired reaction, then it is difficult to
produce the desired product Y. So, the first reactions order should be higher than the second

one for a higher yield of Y.

Now, another factor is the contact time in a batch reactor, the space time in the flow reactor,
this should not be longer as the desired product to decompose further into the undesired
product. So, you should not give more time to grab this particular aspect. Now, this particular
thing should keep into mind while we design the reaction protocol, while we design the size of

the reactor.

Now, here we have to maximise the intermediate product Y because this is the desired one. We
should not promote the formation of undesired one. So, that is why you need to adjust the space
time and a contact time booth accordingly.

(Refer Slide Time: 03:38)
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The rate equations for the decomposition of reactant, )
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Now, when we talk about this the rate equation for the decomposition of a reactant which we
discussed in this slide. Now, here the rate equation for the decomposition of a reactant X can
be termed as rx is equal to dCx dt is equal to — kyCx. Now, this may be termed as equation
number 1. Then you can say that this is r x. Similarly, if | write the rate equation for
intermediate that is Y. Then it can be represented as ry is equal to dCy upon dt that is the

concentration of y.

Now, since, it is constantly being formed as well as constantly being consumed, then we can
write that that ky Cx - ky Cy that is equation number 2 and we can write this case Z. Now, since
here we experienced the formation of undesired product Z, then the rate equation for the
undesired product can be written as rz is equal to C dCz upon dt. This is equal to kz Cy and you
can say that this equation is equation number 3.

Rate equation for the decomposition of reactant

dCy
ry = T = _kyCX

Rate equation of intermediate:

dCy

Ty = dc = kyCx — kyzCy
The rate equation for the undesired product:
dc,
Tz = dc = kzCy

(Refer Slide Time: 05:08)
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Tofind €y at any time t:
If we use space-time in the place of time in batch reactor performance equation, then these
equations can be used for plug flow reactors.

If, at the initial cendition the concentration of reactant X' is Cy attimet=0and Cy attimet.
On rearranging and integrating equatian (1) we have:
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Now, sometimes we need to find out the concentration of X at any time. So, if we use the space
time in place of time in the batch reactor performance equation, then these equations can be
used for plug flow reactor too. So, if at the initial concentration or initial condition of the
concentration of the reactants X is Cx at time Cxo at time t is equal to 0 and Cx at time t is equal
tot.

So, if we rearrange and integrate the equation, which we discussed in this slide, then we may
have Cxo Cx dCx upon Cx. This is 0 to t - kv dt or it is represented as Cx /Cxo is equal to e to
the power — ky t or Cx upon Cxo is equal to e to the power — kv t. Let us say that this is equation
number 4.

If at the initial condition the concentration of reactant X Cy_ attimet=0and Cx attimet.

t
dCy
o

Cx
Xo
On solving the above equation we get:
X = eyt or Cx = Cx e kvt 4)

Cx,

(Refer Slide Time: 06:28)
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Now, if we talk about the balance of Cv that is remember this is the intermediate. So, we can
rearrange this equation number 2 which we represented over here. If we rearrange this equation,
then we may have dCv dt + kz Cy and that is kz Cxo e to the power — ky t. This can be
represented as equation number 5. Now, if we compare the equation 5 with a linear differential

equation and solved it with the integration factor method.
acy
dt

Then the linear differential equation can be represented as dy over dx + P(X)Y is equal to phi

+ kz CY == chXoe_kyt (5)

X that is equation number 6. Now, integration factor you can write IF can be written as e to the
power P(X) dx. So, integration factor for equation number 5 if we try to write that may become
integration factor e to the power kz t.

On comparing equation (5) with a linear differential equation and solved it with the
integration factor method.

The linear differential equation is:
dy
S+ PX)Y = Q(X) (6)

Integration factor is:

LF = e/PXamm

So, the integration factor for equation (5) is:

I.LF = ekzt

(Refer Slide Time: 07:51)
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Qn multiplying the integration factor an both sides of the equation [5) we have:
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Integrating the above equation with initially moles of C,=0 at t=0 10 C,at time 't and fing the
value of the concentration of ¥, we have: L @l=0

Now, if we multiply this integration factor on both sides of the equation 5, then we may have
dC by dt e to the power kz t + kz Cv e to the power kz t is equal to kz Cxo e to the power — ky t
e to the power kzt. Now, that is d Cy e kzt upon dt, this is equal to kz Cxo e to the power — ky t
e to the power kzt. You can write this as equation number 7. Now, upon integrating this
equation with the initial moles of Y with respect to that at time t is equal to 0; Cy will be Oat

time t is equal to 0 and Cy is equal to Cy at time t is equal to t.

And then we need to find the value of concentration of y. So, we may have thisOto Cy d Cy e
to the power kz t is equal to O to t, kz Cxo e to the power — kvt e to the power kz t dt. You may
say that this is equation number 8.

On multiplying the integration factor on both sides of the equation (5)

dC
d—ty.e"zt + kg Cy.e*zt = k;Cy e~Frt ekzt
i.e.
d(Cy ekzt) _ —kyt kgt
T = kZCXOe . e (7)

Integrating the above equation with initially moles of Y are not formed and dividing with
integration factor to find the value of the concentration of Y so,



Y d(Cy ekzt) = [TkyCy ekt ekt dt (8)
0 0 o
(Refer Slide Time: 09:46)

This can be rearranged and can be written as Cv is equal to ky Cxo upon kz — ky into e to the

power — kvt — e to the power kzt. Now, you can write it as equation number 9.

kyC _ _
Cy = ko (ke — ~kat) (©)

(Refer Slide Time: 10:15)
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For optimum value:
The concentration of intermediate reaches at maximum at certain peint within the reactor Soto
find out the optimum perimeaters, we have to differentiate the above equation [9) wrl tima 't
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Now, if sometimes, we are always looking for the optimum value; now, the optimum value
when we talk about the optimum value, the concentration of intermediate reaches at maximum
in a certain point within the reactor. So, to find out the optimum parameters or perimeter, we

have to differentiate the equation number 9 which we discussed with respect to time and put

equal to the 0.



So, in that case, we can write this as dCy upon dt is equal to 0 and this is ky Cxo upon kz — ky
— kv e to the power — kvt + kz e to the power — this kz, this is not — t. Now, this may be termed
as equation number 10. Now, if we solve for t for tau optimum value, in that case that tau

optimum that is 1 upon ky — kz Inky upon kz that may become the equation number 11.

dCy _ o= krCxo 4 —kyt —kzt
" =0= (kz—ky)( kye ™" + kye™"z") (20)

Now solve for t or T optimum values:

_ 1k
topt. = Gy M e (11)

(Refer Slide Time: 11:48)
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On putting the value af t,, in the equation (10) we have the maximum valug of C, The amaunt
of C, formation is higher in case if the ratio of specific rate constant k, and k, is greater than 1
and lower when this ratio is less than 1, L
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Now, if we put the value of this tau optimum to the equation in the previous equation 10, we
have the maximum value of Cy. So, the amount of Cvy formation is higher in case of the ratio
of a specific rate constant ky and kz is greater than 1 and the lower when the ratio is less than
1. So, when we try to write the conversion of X at the maximum Cy. So, we can write the
mathematical equation X optimum that is equal to Cxo — Cx upon Cxo that is equal to 1 —e to

the power — kvt optimal.

And this you can represent as equation number 12. Now, if we substitute the value of tau
optimum in this particular equation, we may have this X optimum that is equal to 1 — ky upon
kz to the power ky upon kv — kz that is the equation number 13.

The conversion of X at the maximum Cv is

Cx,—Cx -
= 20 =1—¢e kytopt. (12)
Cx,

Xopt.



On substituting the value of topt. in the above equation we have
ky

Xopt. = 1- (E) ky—kz (13)
(Refer Slide Time: 13:09)
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For C; value:

The walue of C; could be obtained from the averall balance of moles consumed and remaining
during the reaction of time. Put the value of all terms in RHS, we obtained C, at any instant.
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Now, sometimes you may be interested to find out the value of Z with respect to the
concentration and that is sometimes referred to as Cz. So, the value of Cz, this can be obtained
from the overall balance of moles consumed and remaining during the reaction of time. Now,
you can put the value of all in terms of right-hand side, we obtain the value of Cz at any

instance.

So, let us put in the mathematical form that is Cz is equal to Cxo — Cx — Cy. This is quite
obvious that is the concentration of X that is start then concentration after time t and then
concentration of Y that is the intermediate after time t. So, we can put this as equation number
14,

C, = Cy

,» — CGx—Cy (14)
(Refer Slide Time: 14:01)
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Figure: showing the concentration and conversion graph for plug flow reactor with ditferent
values of k,/k, in series reaction system,

Saurce: Levenspiel, © {2006
ot

Now, if we try to plot this thing and we represent with respect to the ky tau and X. You can see
the behaviour of your flow or reactor etcetera, then you will find different things that is related
to C upon Cxo and you see that at start, the concentration and conversion graph of PFR with a
different value of kz and Ky in series reaction systems. So, you can see that here you can have
the values of this one like kz upon ky is equal to 0 and kz upon kv is equal to 1.

(Refer Slide Time: 14:47)
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» Quantitative treatment for mixed flow reactor:
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In the following equation concentration of X decomposed into intermediate ¥ and further ¥
decomposed in to undesired product Z, which is need to be mirimized.

Now, let us have a look about the quantitative treatment for mixed flow reactor. Now, here we
have discussed about this the mixed flow reactor. Now, here you are having then reactant which
is coming into this reactor system having the concentration C, this reactor is having the volume
V and it is the s-type of reactor or mixing type of reactor. Now, again we are coming back to
our original equation for this one that is the equation concentration of X decomposes into the

intermediate Y.



And further Y is decomposed in the undesired product Z, which is, which as per the

requirement, it needs to be minimised in due course of time.

k Kz
X Y .y - 7

(Refer Slide Time: 15:37)
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If the series ahove rezction takes place in the mixed flow reactor, initially the concentration of ¥
and 2 are not present in the reactor.

Steady state matanial balance for companent X:

Inputef ¥ = Outputefx 4 Disappearance of X by reaction
[Note]: Y ”
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Ag, U= C = C and =1y = ky Oy on putting these values in equition (15) we have
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So, in that case, if the series of above reaction takes place in a mixed flow reactor, initially the
concentration of Y and Z are not present in the reactor. So, initially only X is present. The
concentration of X is present. So, in other words, we can say, if we perform the steady state
material balance for component X, that is the input of X is equal to output of X plus

disappearance of X by reaction.

So, we can write the steady state material balance equation for X and that is Fxo is equal to Fx
plus since it is being consumed in due course of time or disappearing due course of time that
is that is why we are putting — sign over here and that is this is the equation number 15. Now,
if we put this value into the previous equation, then we may have like nu Cxo is equal to nu Cx

+ ky Cx V. Now, this is equation number 16.

So, here nu is equal to Fxo upon Cxo is equal to Fx upon Cx and — rx is equal to ky Cx and if
you put this all values in the previous equation and rearrange this then we may have this V

upon nu is equal to t this is equal to tau m. This is my next equation. Now, here as | evident



that volume is V volume of the reacting fluid, it is represented as a metre cube, then nu is the
volumetric flow rate of reacting fluid.

Steady state material balance for component X:

Input of X = Output of X + Disappearance of X by reaction

(Fx,) = (Fy) + ((=m)V)

As v = Eﬁ = z—x and —ry = ky Cx on putting these values in equation (16) we have
Xo X

UCXO = UCX + ky CXV (16)

=t=1, a7

(Refer Slide Time: 17:36)
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Where,
V- valume of the reacting fluid (m?) o

v - volumetric flow of reacting fluid (+

Ty = space time of the mixed flow reactor (second (s})

t- contact time of reacting fluid (second (s))

C, - concentration of reactant after time t {moles/ m?)

Cy - initial reactant concentration (moles/ m’|

k, - specific rate constant (mole/m?)1" time' n is the order of reaction

This is the units are always represented as the second inverse. Then tau is the space time of the
mixed flow reactor; then t is the contact time of the reacting fluids; Cx is the concentration of
the reactant after time t and Cxo is the initial reactant concentration and Ky is the specific rate
constant and n is the order of the reaction.

(Refer Slide Time: 18:01)



Multiple reactions
on arranging equation 17 and 18, we have,
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Now, if we rearrange the things of equations 17 and 18 in the previous slides which we
discussed, then we may have this equation the Cx upon Cxo is equal to 1 upon 1 + k tau m and
material balance equation, if we try to write the material balance for component Y, we may
have nu Cvo is equal to nu Cy + r because r, the sign of this ry is putting positive because it is

being consumed in due course of time.

Now, at initially the concentration of intermediate Y is O because at time t is equal to 0 and
when reaction proceeds, then it acquires some values. So, in that case, we can put like this 0 is
equal to nu Cy plus — ky Cx + kz Cy V. Now, if we rearrange this equation that is referred to
as equation number 20. Now, if we rearrange this equation, we may have Cy upon Cxo is equal
to ky tau m upon 1 + ky tau minto 1 + kz tau m that you can write as equation number 21.

on arranging equation 16 and 17 we have

C_X _ 1
CXO - 1+Kky Ty (18)
For component Y, the material balance equation gives
UCYO - UCY + (ry)V (19)

As initially, the concentration of intermediate Y is 0. So,

0 = UCY + (_ kY CX + kzcy)v (20)

On arranging equation (20) we have

Cy — Ky Tm (21)

Cx, (1+ky tTim)(1+kz Tin)

(Refer Slide Time: 19:49)
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For optimum values of space time and for maximum intermediate concentration can
be calculated an differentiate the above equatian (21) with respect ta 7, and put
o n, —_

equalto. “TAG =
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So, by this way we can put all these equations in things. Now, if we try to calculate the value
of Cz. Now, we can write this thing like Cz is equal to Cxo — Cx — Cy. Now, it is quite obvious
because we have already initiated this thing that this is the initial concentration of X, then over
the period of time the concentration of see, X became Cx. And then during this course of time
the Cy is formed and it is further decomposing that is why we are putting negating sign over

here.

Now, in putting the values in this, let us say, this is equation number 22. Now, if we put the
value of values in equation 22 and we solve, we can have the following relations like Cz upon
Cxo is equal to ky kz tau m squared upon 1 + ky tau m into 1 + kz tau m. Now, this you can

termed as equation number 23.

Now, for optimum value of space time and for the maximum intermediate concentration, this
can be calculated by the differentiating this equation 21, the previous equation with respect to
tau and you can put it to the 0. Then in that case, this maximum intermediate equation may
become like dCv upon d tau m that is equal to 0. So, you can say that this is equation number
24.

Now Cz, can be calculated as:
Cz = CXO —Cx—Cy (22)

Simply, on putting the values in the above equation (23) and solving we have following
relation for concentration of Z,;

Cz — ky kz t%m (23)
CXO (A+ky tim)(A+kz Tm)




For optimum values of space time and for maximum intermediate concentration can be
calculated on differentiate the above equation (22) with respect to t,,, and put equal to 0.
e

4 — 9 (24)

dtm

(Refer Slide Time: 21:30)
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The carrespanding valuz of C, - calculated by putting the equation (25 in equation |21} and

arranging, we have; —— | ™
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Now, if we simplify all these equations, we can find tau m optimum. Now, this tau m optimum
that can be represented as 1 upon square root of ky kz that you can say that question number
25. Now, if put the corresponding values of Cy maximum, this can be calculated by putting the
equation 25, this equation in equation the previous equation where we will be finding out our

maximum optimum tau optimum.

And if we rearrange all those things, then we may get this Cy maximum upon Cxo that is equal
to 1 upon 1 + kz ky to the power half. Now, this you can termed as equation number 26.

On simplification, we have found 7, 4.

1

T = —
m opt. m

The corresponding value of Cy max. calculated by putting the equation (25) in equation (22)
and arranging, we have

(25)



CY, max — 1 (26)
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Figure: showing the concentration and conversion graph for mised flow reactor with different

walues of k,/k, in series reaction system,
Source: Levenspiel, C 12006]

Now, you can easily plot these concentration and conversion graph for mixed flow reactant
with the different values of k Z over k' Y in series reaction system and you may see that these
are the standard graphs, graphs which we have requested from Levenspiel.

(Refer Slide Time: 22:57)
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Note;

¥ The above figures for series reaction system showed general time-cancentration
hehavior and actual progress of reaction.

¥ On caomparing both the above figures for plug flaw reactor and mixed flow reactor
when ky = k.

v The plug flow reactor requires a smaller time than the mixed flow reactor to

achieve the maximum concentration of ¥. for any reaction maximum C, obtained in
the PFR is always higher than the maximum C, abtained in MFR,

¥ Such types of plots are most important for kinetic study because they allow for
determination of ky/k, by matching the experimental points with in the one of two
curves given for each types of reactors (MFR/PFR).

Now, if we take about these figures for series reaction system, then shows the general time
concentration behaviour and actual progress of reaction. Now, if we compare these figures for

plug flow reactor and the mixed flow reactor when kv is equal to kz. The plug flow reactor



requires a smaller time than the mixed flow reactor to achieve the maximum concentration of
Y.

For any reaction maximum, concentration of Y can be opt in the PFR which is always higher
than the maximum Cy opt in mixed flow reactor. So, these types of plots are most important
for the kinetic study because they allow for the determination of kz over ky by matching the
experimental point or validating those points within the one, 2 curves given in each type of
reactor like the either MFR or PFR in this thing.

Now, if we talk about the first order followed by the zero-order reaction that is quite evident in
different type, because people may say that we are discussing these 2 reactions.
(Refer Slide Time: 24:20)
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¥ First-order followed by zero-order reaction
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There are 2 reactions indeed. One is that X is converting into Y. And the second one is that Y
is converting into Z in respect to that whether anyone is the desired and second one is the
undesired one. So, these are 2 reactions and sometimes you may experience that the order of
both the reactions are different, like here we are going to discuss this thing that first order

followed by the zeroth order.

Here, you are having this first order reaction and here you are having this zeroth order reaction.
Then we try to find out (()) (24:53), we try to write the rate equation for the decomposition of
reactant. Now, if plug or batch reactor used for the completion of the reaction, in that case, rx

is equal to dCx upon dt — ky Cx that you may say that equation number 1.



And if we write the rate equation for the intermediate, then it may be r Y is equal to dCv upon
dt that is ky Cx — kz that is equation, this was my question number 1 and this is if you take into
the sequence, then it may become the equation number 27.

k K
X Y oyt L7
n=1 n=0

The rate equations for the decomposition of reactant: if plug or batch reactor used for
completion of the reaction.

__dCy

) ST —kyCx 1)
Rate equation of intermediate:
dc

Ty = d_ty = kyCX - kZ (27)

(Refer Slide Time: 25:41)
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asinitially Cy, = C;, =0, rearranging and integrate _tne_abwe\equaticrs I1)and |27} we have
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For undesired product R

So, the rate equation for undesired product, again it can be written down like this rz is equal to
dCz upon dt is equal to kz. Now, you can write that equation number 28. Now, as initially the
Cxo is equal to Czo is equal to 0. So, rearranging and integrating this equation number 1 which
we discussed and this is equation number 27, then in that case Cx upon Cxo will become e to

the power — kvt that you can say that equation number 29.



Now, for intermediate, you can write Cy upon Cxo is equal to 1 — e to the power — ky t — kz
upon Cxo t that you can say that is equation number 29. Now, sometimes, it is quite obvious to
write the equation for undesired product. So, for undesired product, you may write Cz is equal
to Cx — Cxo — Cx — Cyv, this equation is we have already discussed.

The rate equation for the undesired product:

dcy

kz (28)

as initially Cxo = Czo = 0, rearranging and interate the above equations (1) and (27) we have:
X = ekt (29)
for intermediate:

= 1—e kvt _ X2y (30)

Cx, Cx,

For undesired product

CZ: CXO_CX_CY
(Refer Slide Time: 27:08)
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For the maximum concentratian of intermediate product and optimum time required far the
maximum intermediate can be calculated as:

On differentiating the above equation (30) with raspect to time t and set equal to zero
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For maximum value of intermediate product put the value {}-F-:f,-. gumen 1N the above equation

130]. We have found L:ﬂ'¢ =1-K{l-InK) _—" L
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So, if we differentiate these equations and for the maximum concentration of the intermediate
because, we are always claiming that my intermediate product is my desired product and

optimum time required for the maximum intermediate, this can be calculated by differentiating



this equation which we discussed previously with respect to t and Z equal to 0, then in that case

dCy upon d tau m that is equal to O that is a different set of equation.

Now, if we solve this one, then we may have t Y optimum that is equal to 1 upon kv In 1 upon
K and where k is equal to kz upon Cxo upon ky. Now, for maximum value of intermediate
product put the value of t or tau Y optimum in the above equation, this is equation number 30,
which we discussed previously. So, we may find the value of Cy maximum on Cxo that is equal
to 1 -k 1-Ink. So, this is the desired equation which we are looking for.

On differentiating the above equation (30) with respect to time t and set equal to zero.

ie.
dCy __
i 0 (32)
We have get
1 1
tyopti = Elni (33)
Where,
kz
K = Cxo
ky

For maximum value of intermediate product put the value of ty, optimum in the above equation
(30). We have found

S omax — 1 _K(1—InK) (34)

Cxo
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Figure: showed product distribution for first order followed by zero order reaction.

Source: Levenspiel, © 2006

Now, if we plot the product distribution for first order followed by the zeroth order, you can
see here we have plotted this t Crk maximum and this is the concentration profile, you can see
that initially, we are having this with the help of this equation 33 that a Ck maximum and if

you follow this previous equation 29, then you see that this curve is approaching to the
minimum value.
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Now, sometimes the other aspect or other things that is that sometimes you may experience
this thing that zero-order followed by the first order. So, here you see that this is the zeroth
order and this one is the first order. So, the rate of a reaction of reactant X, this can be put

forward like this rx is equal to dCx upon dt is equal to — ky. And similarly, if we try to solve it,
then it can become the Cx upon Cxo is equal to 1 — ky t upon Cxao.



Now, for intermediate product to Y, if we try to write this, then rv is equal to dCy upon dt that
is equal to ky — kz Cy and this can be represented as dCy upon dt + kz Cy is equal to ky. Now,
if we see that a rate of a reaction of undesired product, it is quite obvious, because we have to

follow these series.

k k
X Y » Y z - Z
n=0 n=1

rate of reaction for reactant X

dc

Ty = d_tX = _ky (35)
For intermediate product

dc

ry = d_tY = ky - k2Cy (36)
or
&+ k;Cy = k
dt z%y — Iy
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As pguation (37) is the first-order linear differential eguation, the integration factor far that is
gy

e
|-

On multiplying both sides with the integration factar in equation [37) and integrate with
conditions 1=0, and C, = 0, we have T gl
Ao, Moree :

| Ky —

Then it can be put forward as rz is equal to dCz over dt, then kz Cy. Now, if we integrate this

equation and found the integration factor, then IF the integration factor can be written as e to



the power kz t. now, if we multiply both the side with the integration factor in the previous this,
previous equation, then we may have this Cy is equal to ky kz into 1 — e to the power — kz t.
For undesired product

dC
Tz = d_tZ = kzCy (37)

As equation (37) is the first-order linear differential equation, the integration factor for that is
IF = ekzt (38)

On multiplying both sides with the integration factor in equation (37) with IF and integrate
with conditions t=0, and Cy = 0, we have

k
Cy = k—z (1 — ekzt)
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On differentiating the above equation (0] with respect to time tand set equal to zero.
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Now, if we talk about the undesired product profile, you are always having this particular
equation with Y that is Cz is equal to Cxo — Cx — Cv. Now, if you differentiate this equation
the previous equation, then with respect to t and Z or put forward equal to O, then it may
become, this equation we are talking about the Cy is equal to ky upon kz 1 — e to the power kz
t.

Now, if we differentiate this equation with respect to t and put equal to the 0, then dCy upon dt
is equal to 0. Now, if we solve this particular equation, then we may have a t optimum tau
optimum is equal to Cxo upon Kky. So, if we put the all the values in this equation, we may have
Cy maximum that is equal to 1 — e to the power — k upon k where k is equal to kz upon kv upon

Cxo. So, this is my final equation which I am looking for.



For undesired product:
C; = CXO —Cx—Cy (40)

On differentiating the above equation (39) with respect to time t and set equal to zero.

i.e.
dcy _
— = 0 (41)
We have :
Cc
Loptimum = kiyo (42)

On putting the value of equation (41) in equation (39) we get:

1-e

CY,max = Tx (43)

Where,
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Figure: showing product distribution for zero order reaction followed by first arder rezction

Source: Levenspiel, C |2006]
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Now, if we try to plot this thing with respect to the time and concentration, so, you can see that
we are obtaining product distribution for zero order reaction. Now, you see that with the help
of our previous equation, which we developed, you can find these 2 curves which are quite



evident that what kind of a different product profiling, you may have in this type of a reaction
where zero order is followed by the first order reaction.
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Now, in this particular chapter, we have discussed about the different configuration, a special
emphasis was given to the various reaction sequences, zero order followed by a first order and
then first order followed by the zeroth order. And again, for your convenience, we have enlisted

couple of references for further reading. Thank you very much.



