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Multiple Reaction System - III 

 

Welcome to the third segment of multiple reaction system under the head of polymer reaction 

engineering. Now, let us have a look at about that what we studied previously.  

(Refer Slide Time: 00:35) 

 

We had a discussion about the qualitative treatment of 2 reactants in parallel reaction system. 

Now, here we discuss about the 2 reactants, both are reacting in parallel reactions profile. Then 

we perform the quantitative treatment of product distribution and a reactive size in parallel 

reaction system. We discussed about the qualitative analysis of a series reaction system.  

 

In this particular lecture, we are going to discuss the quantitative analysis of a series reaction 

in series and PFR and batch reactors both. We will perform the quantitative treatment 

methodology of a mixed flow reactor. We will discuss about the first order followed by zero 

order reaction. We will have a discussion about the zero-order followed by the first order 

reaction.  
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So, let us have a look about the quantitative analysis of a series reaction in PFR or batch 

reaction. Now, as you recall that we had a discussion about the series reaction system, where 

we were having X is converted into Y is converted into Z with the independent rate constants 

as we are representing over here. Now, this if we go for the elaborative manner, then we can 

say that the X is decomposed into the desired product Y.  

 

And further it is decomposed into the undesired product set. The most important factor here is 

the contact time and the space time for batch and flow reactor respectively. Now, if the desired 

product produced with a lower kinetic order for the undesired reaction, then it is difficult to 

produce the desired product Y. So, the first reactions order should be higher than the second 

one for a higher yield of Y.  

 

Now, another factor is the contact time in a batch reactor, the space time in the flow reactor, 

this should not be longer as the desired product to decompose further into the undesired 

product. So, you should not give more time to grab this particular aspect. Now, this particular 

thing should keep into mind while we design the reaction protocol, while we design the size of 

the reactor.  

 

Now, here we have to maximise the intermediate product Y because this is the desired one. We 

should not promote the formation of undesired one. So, that is why you need to adjust the space 

time and a contact time booth accordingly.  

(Refer Slide Time: 03:38) 



 

Now, when we talk about this the rate equation for the decomposition of a reactant which we 

discussed in this slide. Now, here the rate equation for the decomposition of a reactant X can 

be termed as rX is equal to dCX dt is equal to – kYCX. Now, this may be termed as equation 

number 1. Then you can say that this is r x. Similarly, if I write the rate equation for 

intermediate that is Y. Then it can be represented as rY is equal to dCY upon dt that is the 

concentration of y.  

 

Now, since, it is constantly being formed as well as constantly being consumed, then we can 

write that that kY CX - kY CY that is equation number 2 and we can write this case Z. Now, since 

here we experienced the formation of undesired product Z, then the rate equation for the 

undesired product can be written as rZ is equal to C dCZ upon dt. This is equal to kZ CY and you 

can say that this equation is equation number 3.  

Rate equation for the decomposition of reactant 

𝑟𝑋 =
dC𝑋

dt
=  −𝑘𝑌𝐶𝑋 

Rate equation of intermediate:  

𝑟𝑌 =
dC𝑌

dt
=  𝑘𝑌𝐶𝑋 − 𝑘𝑌𝑍𝐶𝑌 

The rate equation for the undesired product: 

𝑟𝑍 =
dC𝑍

dt
=  𝑘𝑍𝐶𝑌 
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Now, sometimes we need to find out the concentration of X at any time. So, if we use the space 

time in place of time in the batch reactor performance equation, then these equations can be 

used for plug flow reactor too. So, if at the initial concentration or initial condition of the 

concentration of the reactants X is CX at time CX0 at time t is equal to 0 and CX at time t is equal 

to t.  

 

So, if we rearrange and integrate the equation, which we discussed in this slide, then we may 

have CX0 CX dCX upon CX. This is 0 to t - kY dt or it is represented as CX /CX0 is equal to e to 

the power – kY t or CX upon CX0 is equal to e to the power – kY t. Let us say that this is equation 

number 4.  

If at the initial condition the concentration of reactant X  𝑪𝑿𝒐
 at time t= 0 and 𝑪𝑿  at time t. 

∫  
𝑑𝐶𝑋

𝐶𝑋

𝐶𝑋

𝐶𝑋𝑜

     = ∫ −𝑘𝑌 𝑑𝑡

𝑡

𝑜

 

 

On solving the above equation we get: 

 
𝐶𝑋

𝐶𝑋𝑜

 =  𝑒−𝑘𝑌𝑡              Or             𝐶𝑋 = 𝐶𝑋𝑜
𝑒−𝑘𝑌𝑡           (4) 
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Now, if we talk about the balance of CY that is remember this is the intermediate. So, we can 

rearrange this equation number 2 which we represented over here. If we rearrange this equation, 

then we may have dCY dt + kZ CY and that is kZ CX0 e to the power – kY t. This can be 

represented as equation number 5. Now, if we compare the equation 5 with a linear differential 

equation and solved it with the integration factor method.  

dC𝑌

dt
+  𝑘𝑍 𝐶𝑌 = 𝑘𝑍𝐶𝑋𝑜

𝑒−𝑘𝑌𝑡                             (5) 

Then the linear differential equation can be represented as dy over dx + P(X)Y is equal to phi 

X that is equation number 6. Now, integration factor you can write IF can be written as e to the 

power P(X) dx. So, integration factor for equation number 5 if we try to write that may become 

integration factor e to the power kZ t.  

On comparing equation (5) with a linear differential equation and solved it with the 

integration factor method. 

The linear differential equation is: 

d𝑌

dX
+  𝑃(𝑋)𝑌 =  𝑄(𝑋)                                                          (6) 

Integration factor is: 

I. F =  𝑒∫ 𝑃(𝑋)𝑑(𝑋) 

So, the integration factor for equation (5) is: 

I. F =  𝑒𝑘𝑍𝑡 
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Now, if we multiply this integration factor on both sides of the equation 5, then we may have 

dC by dt e to the power kZ t + kZ CY e to the power kZ t is equal to kZ CX0 e to the power – kY t 

e to the power kZt. Now, that is d Cy e kZt upon dt, this is equal to kZ CX0 e to the power – kY t 

e to the power kZt. You can write this as equation number 7. Now, upon integrating this 

equation with the initial moles of Y with respect to that at time t is equal to 0; CY will be 0at 

time t is equal to 0 and CY is equal to CY at time t is equal to t.  

 

And then we need to find the value of concentration of y. So, we may have this 0 to CY d CY e 

to the power kZ t is equal to 0 to t, kZ CX0 e to the power – kYt e to the power kZ t dt. You may 

say that this is equation number 8.  

On multiplying the integration factor on both sides of the equation (5)  

 

dC𝑌

dt
. 𝑒𝑘𝑍𝑡 + 𝑘𝑍 𝐶𝑌. 𝑒𝑘𝑍𝑡 = 𝑘𝑍𝐶𝑋𝑜

𝑒−𝑘𝑌𝑡 . 𝑒𝑘𝑍𝑡 

 

i.e.  

 

d(C𝑌 .𝑒
𝑘𝑍𝑡)

dt
=  𝑘𝑍𝐶𝑋𝑜

𝑒−𝑘𝑌𝑡 . 𝑒𝑘𝑍𝑡                           (7) 

Integrating the above equation with initially moles of Y are not formed and dividing with 

integration factor to find the value of the concentration of Y so, 

 



∫ d(C𝑌 .𝑒
𝑘𝑍𝑡)

𝐶𝑌

0
=  ∫ 𝑘𝑍𝐶𝑋𝑜

𝑒−𝑘𝑌𝑡 . 𝑒𝑘𝑍𝑡 𝑑𝑡
𝑡

0
             (8) 
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This can be rearranged and can be written as CY is equal to kY CX0 upon kZ – kY into e to the 

power – kYt – e to the power kZt. Now, you can write it as equation number 9.  

C𝑌 =  
𝑘𝑌𝐶𝑋𝑜

(𝑘𝑍−𝑘𝑌)
(𝑒−𝑘𝑌𝑡 −  𝑒−𝑘𝑍𝑡)                    (9) 
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Now, if sometimes, we are always looking for the optimum value; now, the optimum value 

when we talk about the optimum value, the concentration of intermediate reaches at maximum 

in a certain point within the reactor. So, to find out the optimum parameters or perimeter, we 

have to differentiate the equation number 9 which we discussed with respect to time and put 

equal to the 0.  



 

So, in that case, we can write this as dCY upon dt is equal to 0 and this is kY CX0 upon kZ – kY 

– kY e to the power – kYt + kZ e to the power – this kz, this is not – t. Now, this may be termed 

as equation number 10. Now, if we solve for t for tau optimum value, in that case that tau 

optimum that is 1 upon kY – kZ lnkY upon kZ that may become the equation number 11.  

dC𝑌 

𝑑𝑡
= 0 =  

𝑘𝑌𝐶𝑋𝑜

(𝑘𝑍−𝑘𝑌)
(−𝑘𝑌𝑒−𝑘𝑌𝑡 +  𝑘𝑍𝑒−𝑘𝑍𝑡)                       (10) 

Now solve for t or τ optimum values: 

topt. =     
1

(𝑘𝑌−𝑘𝑍)
 ln

𝑘𝑌

𝑘𝑍
                                (11) 
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Now, if we put the value of this tau optimum to the equation in the previous equation 10, we 

have the maximum value of CY. So, the amount of CY formation is higher in case of the ratio 

of a specific rate constant kY and kZ is greater than 1 and the lower when the ratio is less than 

1. So, when we try to write the conversion of X at the maximum CY. So, we can write the 

mathematical equation X optimum that is equal to CX0 – CX upon CX0 that is equal to 1 – e to 

the power – kYt optimal.  

 

And this you can represent as equation number 12. Now, if we substitute the value of tau 

optimum in this particular equation, we may have this X optimum that is equal to 1 – kY upon 

kZ to the power kY upon kY – kZ that is the equation number 13.  

The conversion of X at the maximum CY
 is  

χopt.  =
𝐶𝑋𝑜−𝐶𝑋

𝐶𝑋𝑜

= 1 − 𝑒−𝑘𝑌𝑡opt.                                                     (12) 



On substituting the value of topt. in the above equation we have 

χopt.  = 1 − ( 
𝑘𝑌

𝑘𝑍
 ) 

𝑘𝑌
𝑘𝑌−𝑘𝑍                  (13) 
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Now, sometimes you may be interested to find out the value of Z with respect to the 

concentration and that is sometimes referred to as CZ. So, the value of CZ, this can be obtained 

from the overall balance of moles consumed and remaining during the reaction of time. Now, 

you can put the value of all in terms of right-hand side, we obtain the value of CZ at any 

instance.  

 

So, let us put in the mathematical form that is CZ is equal to CX0 – CX – CY. This is quite 

obvious that is the concentration of X that is start then concentration after time t and then 

concentration of Y that is the intermediate after time t. So, we can put this as equation number 

14.  

𝐶𝑍  =  𝐶𝑋𝑜  −  𝐶𝑋 − 𝐶𝑌                                            (14) 
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Now, if we try to plot this thing and we represent with respect to the kY tau and X. You can see 

the behaviour of your flow or reactor etcetera, then you will find different things that is related 

to C upon CX0 and you see that at start, the concentration and conversion graph of PFR with a 

different value of kZ and kY in series reaction systems. So, you can see that here you can have 

the values of this one like kZ upon kY is equal to 0 and kZ upon kY is equal to 1.  

(Refer Slide Time: 14:47) 

 

Now, let us have a look about the quantitative treatment for mixed flow reactor. Now, here we 

have discussed about this the mixed flow reactor. Now, here you are having then reactant which 

is coming into this reactor system having the concentration C, this reactor is having the volume 

V and it is the s-type of reactor or mixing type of reactor. Now, again we are coming back to 

our original equation for this one that is the equation concentration of X decomposes into the 

intermediate Y.  



 

And further Y is decomposed in the undesired product Z, which is, which as per the 

requirement, it needs to be minimised in due course of time.  

X Y Z
kY

kZ
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So, in that case, if the series of above reaction takes place in a mixed flow reactor, initially the 

concentration of Y and Z are not present in the reactor. So, initially only X is present. The 

concentration of X is present. So, in other words, we can say, if we perform the steady state 

material balance for component X, that is the input of X is equal to output of X plus 

disappearance of X by reaction.  

 

So, we can write the steady state material balance equation for X and that is FX0 is equal to FX 

plus since it is being consumed in due course of time or disappearing due course of time that 

is that is why we are putting – sign over here and that is this is the equation number 15. Now, 

if we put this value into the previous equation, then we may have like nu CX0 is equal to nu CX 

+ kY CX V. Now, this is equation number 16.  

 

So, here nu is equal to FX0 upon CX0 is equal to FX upon CX and – rX is equal to kY CX and if 

you put this all values in the previous equation and rearrange this then we may have this V 

upon nu is equal to t this is equal to tau m. This is my next equation. Now, here as I evident 



that volume is V volume of the reacting fluid, it is represented as a metre cube, then nu is the 

volumetric flow rate of reacting fluid.  

Steady state material balance for component X: 

Input of X         =         Output of X         +           Disappearance of X by reaction 

                                                                     

(𝐹𝑋𝑜
)  =  (𝐹𝑋)  + ( (−𝑟𝑋)𝑉)                                

 

As     υ =
FXo

CXo

=
FX

CX
       and   −𝑟𝑋 =  𝑘𝑌 𝐶𝑋     on putting these values in equation (16) we have 

  

 

𝜐𝐶𝑋𝑜 
=  𝜐𝐶𝑋 + 𝑘𝑌 𝐶𝑋𝑉                        (16) 

 

𝑉

𝜐
= 𝑡 = 𝜏𝑚                   (17) 
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This is the units are always represented as the second inverse. Then tau is the space time of the 

mixed flow reactor; then t is the contact time of the reacting fluids; CX is the concentration of 

the reactant after time t and CX0 is the initial reactant concentration and kY is the specific rate 

constant and n is the order of the reaction.  

(Refer Slide Time: 18:01) 



 

Now, if we rearrange the things of equations 17 and 18 in the previous slides which we 

discussed, then we may have this equation the CX upon CX0 is equal to 1 upon 1 + k tau m and 

material balance equation, if we try to write the material balance for component Y, we may 

have nu CY0 is equal to nu CY + r because r, the sign of this rY is putting positive because it is 

being consumed in due course of time.  

 

Now, at initially the concentration of intermediate Y is 0 because at time t is equal to 0 and 

when reaction proceeds, then it acquires some values. So, in that case, we can put like this 0 is 

equal to nu CY plus – kY CX + kZ CY V. Now, if we rearrange this equation that is referred to 

as equation number 20. Now, if we rearrange this equation, we may have CY upon CX0 is equal 

to kY tau m upon 1 + kY tau m into 1 + kZ tau m that you can write as equation number 21.  

on arranging equation 16 and 17 we have  

CX

CXo

=  
1

1+kY τm
                        (18) 

For component Y, the material balance equation gives 

𝜐𝐶𝑌𝑜 
=  𝜐𝐶𝑌 + (𝑟𝑌)𝑉                 (19) 

As initially, the concentration of intermediate Y is 0. So, 

0 =  𝜐𝐶𝑌 + (− 𝑘𝑌 𝐶𝑋 + 𝑘𝑍𝐶𝑌)𝑉       (20) 

On arranging equation (20) we have 

𝐶𝑌

𝐶𝑋𝑜

=  
𝑘𝑌 𝜏𝑚

(1+𝑘𝑌 𝜏𝑚)(1+𝑘𝑍 𝜏𝑚)
               (21) 
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So, by this way we can put all these equations in things. Now, if we try to calculate the value 

of CZ. Now, we can write this thing like CZ is equal to CX0 – CX – CY. Now, it is quite obvious 

because we have already initiated this thing that this is the initial concentration of X, then over 

the period of time the concentration of see, X became CX. And then during this course of time 

the CY is formed and it is further decomposing that is why we are putting negating sign over 

here.  

 

Now, in putting the values in this, let us say, this is equation number 22. Now, if we put the 

value of values in equation 22 and we solve, we can have the following relations like CZ upon 

CX0 is equal to kY kZ tau m squared upon 1 + kY tau m into 1 + kZ tau m. Now, this you can 

termed as equation number 23.  

 

Now, for optimum value of space time and for the maximum intermediate concentration, this 

can be calculated by the differentiating this equation 21, the previous equation with respect to 

tau and you can put it to the 0. Then in that case, this maximum intermediate equation may 

become like dCY upon d tau m that is equal to 0. So, you can say that this is equation number 

24.  

Now CZ, can be calculated as: 

𝐶𝑍 =  𝐶𝑋𝑜
− 𝐶𝑋 − 𝐶𝑌                                                       (22) 

Simply,  on putting the values in the above equation (23) and solving we have following 

relation for concentration of Z; 

𝐶𝑍

𝐶𝑋𝑜

=  
𝑘𝑌 𝑘𝑍 𝜏

2
𝑚

(1+𝑘𝑌 𝜏𝑚)(1+𝑘𝑍 𝜏𝑚)
                                  (23) 



For optimum values of space time and for maximum intermediate concentration can be 

calculated on differentiate the above equation (22) with respect to 𝜏𝑚 and put equal to 0. 

i.e.  

𝑑𝐶𝑌

𝑑𝜏𝑚
= 0                      (24) 
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Now, if we simplify all these equations, we can find tau m optimum. Now, this tau m optimum 

that can be represented as 1 upon square root of kY kZ that you can say that question number 

25. Now, if put the corresponding values of CY maximum, this can be calculated by putting the 

equation 25, this equation in equation the previous equation where we will be finding out our 

maximum optimum tau optimum.  

 

And if we rearrange all those things, then we may get this CY maximum upon CX0 that is equal 

to 1 upon 1 + kZ kY to the power half. Now, this you can termed as equation number 26.  

On simplification, we have found 𝜏𝑚 𝑜𝑝𝑡. 

 

𝜏𝑚 𝑜𝑝𝑡. =  
1

√𝑘𝑌 𝑘𝑍 
                             (25) 

The corresponding value of CY max. calculated by putting the equation (25) in equation (22) 

and arranging, we have 

 



𝐶𝑌,   𝑚𝑎𝑥

𝐶𝑋𝑜

=  
1

[ 1+(
𝑘𝑍 
𝑘𝑌 

)

1
2

]

2

 

               (26) 
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Now, you can easily plot these concentration and conversion graph for mixed flow reactant 

with the different values of k Z over k Y in series reaction system and you may see that these 

are the standard graphs, graphs which we have requested from Levenspiel.  
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Now, if we take about these figures for series reaction system, then shows the general time 

concentration behaviour and actual progress of reaction. Now, if we compare these figures for 

plug flow reactor and the mixed flow reactor when kY is equal to kZ. The plug flow reactor 



requires a smaller time than the mixed flow reactor to achieve the maximum concentration of 

Y.  

 

For any reaction maximum, concentration of Y can be opt in the PFR which is always higher 

than the maximum CY opt in mixed flow reactor. So, these types of plots are most important 

for the kinetic study because they allow for the determination of kZ over kY by matching the 

experimental point or validating those points within the one, 2 curves given in each type of 

reactor like the either MFR or PFR in this thing.  

 

Now, if we talk about the first order followed by the zero-order reaction that is quite evident in 

different type, because people may say that we are discussing these 2 reactions.  
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There are 2 reactions indeed. One is that X is converting into Y. And the second one is that Y 

is converting into Z in respect to that whether anyone is the desired and second one is the 

undesired one. So, these are 2 reactions and sometimes you may experience that the order of 

both the reactions are different, like here we are going to discuss this thing that first order 

followed by the zeroth order.  

 

Here, you are having this first order reaction and here you are having this zeroth order reaction. 

Then we try to find out (( )) (24:53), we try to write the rate equation for the decomposition of 

reactant. Now, if plug or batch reactor used for the completion of the reaction, in that case, rX 

is equal to dCX upon dt – kY CX that you may say that equation number 1.  

 



And if we write the rate equation for the intermediate, then it may be r Y is equal to dCY upon 

dt that is kY CX – kZ that is equation, this was my question number 1 and this is if you take into 

the sequence, then it may become the equation number 27.  

 

X Y Z
kY

kZ

n=1 n=0
 

The rate equations for the decomposition of reactant: if plug or batch reactor used for 

completion of the reaction. 

 

𝑟𝑋 =
dC𝑋

dt
=  −𝑘𝑌𝐶𝑋                                          (1) 

Rate equation of intermediate:  

 

𝑟𝑌 =
dC𝑌

dt
=  𝑘𝑌𝐶𝑋 − 𝑘𝑍                                (27) 
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So, the rate equation for undesired product, again it can be written down like this rZ is equal to 

dCZ upon dt is equal to kZ. Now, you can write that equation number 28. Now, as initially the 

CX0 is equal to CZ0 is equal to 0. So, rearranging and integrating this equation number 1 which 

we discussed and this is equation number 27, then in that case CX upon CX0 will become e to 

the power – kYt that you can say that equation number 29.  



 

Now, for intermediate, you can write CY upon CX0 is equal to 1 – e to the power – kY t – kZ 

upon CX0 t that you can say that is equation number 29. Now, sometimes, it is quite obvious to 

write the equation for undesired product. So, for undesired product, you may write CZ is equal 

to CX – CX0 – CX – CY, this equation is we have already discussed.  

The rate equation for the undesired product: 

𝑟𝑍 =
dC𝑍

dt
=  𝑘𝑍                           (28) 

 

as initially CXo = CZo = 0, rearranging and interate the above equations (1) and (27) we have: 

CX

CXo

=  e−kYt
                                                       (29) 

for intermediate: 

CY

CXo

=  1 − e−kYt −
kZ

CXo

t                               (30) 

For undesired product  

𝐶𝑍 =  𝐶𝑋𝑜
− 𝐶𝑋 − 𝐶𝑌 
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So, if we differentiate these equations and for the maximum concentration of the intermediate 

because, we are always claiming that my intermediate product is my desired product and 

optimum time required for the maximum intermediate, this can be calculated by differentiating 



this equation which we discussed previously with respect to t and Z equal to 0, then in that case 

dCY upon d tau m that is equal to 0 that is a different set of equation.  

 

Now, if we solve this one, then we may have t Y optimum that is equal to 1 upon kY ln 1 upon 

K and where k is equal to kZ upon CX0 upon kY. Now, for maximum value of intermediate 

product put the value of t or tau Y optimum in the above equation, this is equation number 30, 

which we discussed previously. So, we may find the value of CY maximum on CX0 that is equal 

to 1 – k 1 – ln k. So, this is the desired equation which we are looking for.  

On differentiating the above equation (30) with respect to time t and set equal to zero. 

i.e.  

𝑑𝐶𝑌

𝑑𝜏𝑚
= 0                             (32) 

  We have get 

tY,opti =  
1

kY
ln

1

K
                         (33) 

Where, 

   𝐾 =

𝑘𝑍
𝐶𝑋𝑜

𝑘𝑌
                 

For maximum value of intermediate product put the value of tY, optimum in the above equation 

(30). We have found 

 

CY,   max.

CXo

=  1 − K(1 − ln K)                              (34) 
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Now, if we plot the product distribution for first order followed by the zeroth order, you can 

see here we have plotted this t CR maximum and this is the concentration profile, you can see 

that initially, we are having this with the help of this equation 33 that a CR maximum and if 

you follow this previous equation 29, then you see that this curve is approaching to the 

minimum value.  
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Now, sometimes the other aspect or other things that is that sometimes you may experience 

this thing that zero-order followed by the first order. So, here you see that this is the zeroth 

order and this one is the first order. So, the rate of a reaction of reactant X, this can be put 

forward like this rX is equal to dCX upon dt is equal to – kY. And similarly, if we try to solve it, 

then it can become the CX upon CX0 is equal to 1 – kY t upon CX0.  

 



Now, for intermediate product to Y, if we try to write this, then rY is equal to dCY upon dt that 

is equal to kY – kZ CY and this can be represented as dCY upon dt + kZ CY is equal to kY. Now, 

if we see that a rate of a reaction of undesired product, it is quite obvious, because we have to 

follow these series.  

 

X Y Z
kY

kZ

n=1n=0  

rate of reaction for reactant X 

𝑟𝑋 =
dC𝑋

dt
=  −𝑘𝑌               (35) 

                                 

For intermediate product 

𝑟𝑌 =
dC𝑌

dt
=  𝑘𝑌 − 𝑘𝑍𝐶𝑌                         (36) 

 

or 

dC𝑌

dt
+  𝑘𝑍𝐶𝑌 =  𝑘𝑌 
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Then it can be put forward as rZ is equal to dCZ over dt, then kZ CY. Now, if we integrate this 

equation and found the integration factor, then IF the integration factor can be written as e to 



the power kZ t. now, if we multiply both the side with the integration factor in the previous this, 

previous equation, then we may have this CY is equal to kY kZ into 1 – e to the power – kZ t.  

For undesired product 

𝑟𝑍 =
dC𝑍

dt
=  𝑘𝑍𝐶𝑌                        (37) 

 As equation (37) is the first-order linear differential equation, the integration factor for that is 

IF =  𝑒𝑘𝑍 𝑡                                       (38) 

 On multiplying both sides with the integration factor in equation (37) with IF and integrate 

with conditions t=0, and CY = 0, we have 

𝐶𝑌 =
𝑘𝑌

𝑘𝑍
(1 − 𝑒−𝑘𝑍𝑡) 
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Now, if we talk about the undesired product profile, you are always having this particular 

equation with Y that is CZ is equal to CX0 – CX – CY. Now, if you differentiate this equation 

the previous equation, then with respect to t and Z or put forward equal to 0, then it may 

become, this equation we are talking about the CY is equal to kY upon kZ 1 – e to the power kZ 

t.  

 

Now, if we differentiate this equation with respect to t and put equal to the 0, then dCY upon dt 

is equal to 0. Now, if we solve this particular equation, then we may have a t optimum tau 

optimum is equal to CX0 upon kY. So, if we put the all the values in this equation, we may have 

CY maximum that is equal to 1 – e to the power – k upon k where k is equal to kZ upon kY upon 

CX0. So, this is my final equation which I am looking for.  



For undesired product: 

𝐶𝑍 =  𝐶𝑋𝑜
− 𝐶𝑋 − 𝐶𝑌                             (40) 

On differentiating the above equation (39) with respect to time t and set equal to zero. 

i.e.  

𝑑𝐶𝑌

𝑑𝑡
= 0                                (41) 

                                     

We have : 

𝑡𝑜𝑝𝑡𝑖𝑚𝑢𝑚 =
𝐶𝑋𝑜

𝑘𝑌
                                      (42) 

On putting the value of equation (41) in equation (39) we get: 

𝐶𝑌,𝑚𝑎𝑥 =  
1−𝑒−𝐾

𝐾
                                   (43) 

Where,  

𝐾 =
𝑘𝑍

𝑘𝑌
𝐶𝑋𝑜
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Now, if we try to plot this thing with respect to the time and concentration, so, you can see that 

we are obtaining product distribution for zero order reaction. Now, you see that with the help 

of our previous equation, which we developed, you can find these 2 curves which are quite 



evident that what kind of a different product profiling, you may have in this type of a reaction 

where zero order is followed by the first order reaction.  
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Now, in this particular chapter, we have discussed about the different configuration, a special 

emphasis was given to the various reaction sequences, zero order followed by a first order and 

then first order followed by the zeroth order. And again, for your convenience, we have enlisted 

couple of references for further reading. Thank you very much. 


