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Design Equation for Single Reaction System 

 

Welcome to the design equation for single reaction system. In this particular chapter under the 

head of polymer reaction engineering, we will discuss about the various sections applicable for 

single reaction system by a mixed flow, mixture reactor, semi batch reactor flow reactor etc. 

Now, before we go into this particular lecture. 
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Just have a brief look at what we had discussed earlier, we described the general mole balance 

equation, we had a discussion about the general equation for an ideal batch and mix flow 

reactor, plug flow reactor, semi batch reactor, we had a discussion about the space time and 

space velocity and what is its significance in the polymer reaction processes. We try to develop 

the various mathematical equations associated with the single reaction system using the batch 

reactors. 

 

So, based on this because we have already covered the batch reactor system. In this particular 

lecture, we are going to discuss about those equations which are applicable for mixed flow and 

semi batch reactor. Now, let us have a look about various design equations for mixed flow 

reactor. 
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This is your mix flow reactor if you see that various things are associated, various parameters 

are closely associated with this particular reactor. Now, if we wish to write the differential form 

of the performance equation, because performance equation is extremely important for those 

designing parameter for these polymerization reactions. So, if we would like to describe these 

performance equations for ideal and explore a CSTR reactor, so, we can write these equations 

based on the things given over here Fi0 - Fi = riV. 

 

So, this is our performance equation for this particular mixed flow reactor. Now, sometimes 

we need to encounter the single reaction system, the differential equation we need to write for 

this particular aspect. 

The differential form of performance equation for ideal mixed flow reactor or CSTR reactor is 

given as 

 Fio
− Fi = riV 
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So, it can be written as based on these applicable parameters, which we discussed in this 

particular figure. This is FA0. So, this is the single reaction system for the differential equation. 

For single reaction system the above equation can be written as  

 F𝐴𝑜
− 𝐹𝐴 = −𝑟𝐴𝑉 

 Now, sometimes we need to write the mole balance equation for any kind of the component A 

under the head of a flow system.  

For flow system the mole balance equation for any component can be written as 

 F𝐴 = 𝐹𝐴𝑜
(1 − 𝑋𝐴) 

So, these flow system equations can be written as FA = FA0(1- XA) and sometimes referred if 

you recall the previous discussion, it can be written as FA (1 – XA). 

 

Now on putting the values of moles at the outlet of the reactor in the performance equation and 

sometimes we need to rearrange the thing. So, this can be written as FA0 sorry this is V. So, this 

is you can say that the better approach for achieving the design equation for a single reaction 

system. 

 FAo
XA = −rAV 
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Now, if we try to rearrange the things, so, upon rearranging we can write this like FA0. Now, in 

terms of residence time tau that these equations can be written as tau = V upon mu V upon FA0 

CA into V CA0 CA0 CA0 XA upon - rA and that is equal to CA0 - CA. So, this is the equation with 

respect to the residence time. Therefore, based on these particular approaches the first order 

kinetic reaction or the performance equation can be written as tau = CA0 - CA upon kCA or k 

tau = CA0 - CA upon CA. 

On arranging we have 

 
𝑋𝐴

−𝑟𝐴
=

𝑉

𝐹𝐴𝑜

 

If in terms of residence time (τ) the above equation can be written as  

 τ =
𝑉

𝜈
=

VC𝐴𝑜

𝐹𝐴𝑜

=
𝐶𝐴𝑜

𝑋𝐴

−𝑟𝐴
=

𝐶Ao-C𝐴

−𝑟𝐴
 

For first order kinetic reaction the performance equation is 

 τ =
𝐶Ao-C𝐴

kC𝐴
 

Or  

 ⇒ kτ =
𝐶𝐴𝑜

− 𝐶𝐴

𝐶𝐴
 

 

So, this is our basic performance equation for the first order kinetic reaction. Now, sometimes 

we need to draw or we need to put the graphical representation of these performance equations 

under the head of MFR. 
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So, we can easily plot these things with respect to the mole upon and this is the character of 

this, but these reactions are these equations are like this. Now, here this is XA and this area 

under curve is equal to V upon FA0 is equal to tau upon CA0.This is represented as V upon FA0 

tau upon CA0 is equal to XA/-rA. Now, another approach is like this with respect to the 

concentration. Now, here if you see now, this area tau = V CA0 upon FA0 or sometimes referred 

to as tau = V upon v CA0 - CA upon - rA. 
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So, this is the basic approach for the graphical representation of mixed flow reactor. Now, for 

the varying volume system or the varying volume or varying density system, the concentration 

and volume terms you can write like this V = V0 (1 + epsilon A XA).  

If for variable volume or density system, the concentration and volume terms are written as 



V

Vo
= (1 − XA) 

The concentration of reactant A can be written as  

𝐶𝐴 =
𝑁𝐴

𝑉
=

𝑁𝐴𝑜
(1 − 𝑋𝐴)

𝑉𝑜(1 + Ɛ𝐴𝑋𝐴)
 

 
𝐶𝐴

𝐶𝐴𝑜

=
(1 − 𝑋𝐴)

1 + 𝜀𝐴𝑋𝐴
 

Now, this is represented as NA0 (1 - XA) upon V not (1 + epsilon XA) or this we can write easily 

as CA = CA0 (1 - XA) upon (1 + epsilon A XA) or sometimes referred as CA upon CA0(1 - XA) 

upon (1 + epsilon A XA). 

 

So, this is now based on this the performance equation for first order kinetics in MFR, you can 

write like this k tau CA0 or in other words we can put like this 1 - CA upon CA0. So, these 2 are 

the performance equation. 

Performance equation for first order reaction can be written as  

kτ =
CAo

− CA

CA
 

Or on simplification we can write it as 

kτ =
1 − CA/CAo

CA/CAo
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Now, put the values of CA upon CA0 in the previous equation. So, if we put all these values and 

if you go on the rearranging the aspect then it can be written as k XA upon 1 - XA. Now, this is 



the required performance equation for first order and varying volume system in MFR. So, this 

is I can see a very important equation related to the mix flow reactor.  

 kτ =
𝑋𝐴(1 + 𝜀𝐴𝑋𝐴)

(1 − 𝑋𝐴)
 

Now, we have discussed the mixed flow reactor. Now, let us have a look about the plug flow 

reactor in this regard and we will discuss about the various design equation for the PFR. 
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Now, this is our general PFR. Now, mole balance if you write the mole balance equation on 

the plug flow reactor for a single reaction system at various differential level. So, we can easily 

write that input is equal to output plus disappearance plus accumulation. Now, this can be 

written as FA0 based on this particular approach FA0 = FA + rate of disappearance - rA dv + 0. 

So, this is my basic equation or the mole balance equation for this particular approach. 

Mole balance on the plug flow reactor for single reaction system at differential volume of the 

reactor is 

Input=output+disappearance+accumulation 

FA = FA + dFA + (-rA dV ) + 0 
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Now, if we rearrange the given equation, we can get the formal equation based on this particular 

discussion and this will be - dFA upon dV. This is based on the rearrangement.  

On rearranging the above equation, we get the differential performance equation  

   [−
d F𝐴

dV
] = −𝑟𝐴 

 

Now, for the flow system the mole balance equation can be represented as FA = FA0 (1 - XA). 

Now, the performance equation based on the differential form and terms of a mole fraction this 

can be written like this – d(FA0 (1 – XA)) upon dV is equal to -rA. 

Now, this term is equal to this one. So, therefore, FA0 dXA = -rAdV. This is the differential form 

of the performance equation with respect to the mole fraction. 

For the flow system, the mole balance equation is 

 

 F𝐴 = 𝐹𝐴𝑜
(1 − 𝑋𝐴) 

From the above two equations, the differential performance equation in terms of the mole 

fractions can be written as  

   [−
d (𝐹𝐴𝑜

(1 − 𝑋𝐴))

dV
] = −𝑟𝐴 

  F𝐴𝑜
dX𝐴  = −𝑟𝐴dV 
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And plug flow system the reactants usually are consumed and converted into the product 

usually as it moves through the reactor length and the final conversion cannot end at the output 

of that reactor. So, if we try to integrate the things the previous this particular differential 

equation and for the whole reactor volume so, the final conversion if we are interested in the 

final conversion XA. 

 

So, write we can put the things like this FA0 dV. Now, this we can write like this dXA or in front 

term CA0 0 to XA dXA upon - rA. So, this is my final conversion XA with respect to the final 

conversion. Now, let us have a look about the constant volume system. Now, these are 

performance equation is usually required in a plug flow reactor for any type of kinetic order 

and the reacting system. 

 ∫
 FAo

dV

V

0

= ∫
dXA

−rA

XA

0

  

⇒
V

FAo

= ∫
dXA

−rA

XA

0

 =
τ

CAo

 

⇒ τ = CAo
∫

dXA

−rA

XA

0

  

 

Now, for varying volume or a constant volume reacting system or it may be in the form of a 

convergent term. So, if we discuss about the constant volume system under the head of a 

polymer reactor the performance equation, we can we can write like this CA = CA0 (1 - XA) or 



dCA - CA0 dXC dCA CA0. Now at XA0 is 0 at the start up and then CA will be equal to CA0, that 

is the initial concentration of reactant A and in this case, this is the monomer. 

As for constant volume system   

𝐶𝐴 = 𝐶𝐴𝑜
(1-X𝐴) 

−
dC𝐴

𝐶𝐴𝑜

= 𝑑𝑋𝐴 

And if we achieve after say time t is X A f or the final concentration of the monomer would be 

C Af. So, on putting this reaction of the performance relation of the performance equation we 

may have tau = CA0 0 XA dXA - rA or CA0 CA. This is the final one and dCA A 0 - rA So, the 

performance equation in terms of concentration for constant volume or density system can be 

written as CA0, that is the initial concentration and then this is the final one and then it is 

represented like this. 

                                                 𝜏 = − ∫
dC𝐴

−𝑟𝐴

𝐶𝐴

𝐶𝐴𝑜
                 

So, it is a very useful equation with respect to the predicting the final concentration under the 

head of plug flow polymerization reaction. Now, if we try to represent with respect to the 

graphical approach. 
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Then we can put like this and this is the truly experimental approach like this. Now, we are 

having tau = CA0 0 to XA dXA upon - rA. Now, for any epsilon we can write the area = V upon 

FA0 = tau /CA0. And if we wish to have with respect to the concentration term, then this can be 

represented with respect to the concentration of monomer A. Then it is like this, this is the 

initial concentration and over the period of time the concentration of monomer A got depleted. 



 

So, the area then tau equal to minus integration from initial to say final dCA/rA. Now, if we 

have this one, so, area under curve will give you let me put over here, area will give you tau = 

CA0 V upon FA0. So, this is the graphical representation of the performance equation of any 

kind of a polymerization reaction in the head of plug flow reactor. Now, for variable volume 

system which we discussed in the previous lecture, you can put the concentration of the variable 

volume in the rate of performance equation for varying volume. Now, therefore, the 

performance equation under the head of first order irreversible reaction can be generated under 

the ages of varying volume. Let us have a look about this one. 
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Now, the performance equation for PFR where we have this, that is the first order irreversible 

reaction. So, tau = CA0 dXA Now, for varying volume system CA = CA0 (1 - XA) upon (1 + 

epsilon A XA).  

 
𝐶𝐴

𝐶𝐴𝑜

=
(1 − 𝑋𝐴)

1 + 𝜀𝐴𝑋𝐴
 

Now, according to the rate law we can write - rA = kCA or tau = CA0 integration because initially 

the moles of A was 0 then XA then dXA 1 + epsilon A XA upon kCA0 (1 - XA). 

⇒ 𝜏 = 𝐶𝐴𝑜
∫

dX𝐴(1 + 𝜀𝐴𝑋𝐴)

𝑘𝐶𝐴𝑜
(1 − 𝑋𝐴)

𝑋𝐴

0

  

So, if we solve this and rearrange the thing accordingly, so, the final equation will come out to 

be k tau = 1 + epsilon A ln 1 - XA - epsilon A XA. So, this is my required performance equation 

for the first order with the varying volume system. So, this is according to this, this varying 

volume and we are considering the plug flow reactor, it is very useful equation especially when 



we carry out any kind of a polymerization reaction within the thing. Now, come to the last 

segment of this particular lecture that is that this equation for semi batch reactor. 

kτ = −(1 + 𝜀𝐴)ln(1 − 𝑋𝐴) − 𝜀𝐴𝑋𝐴 
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We have already gone through the concept of the semi batch reactor. Now, let us consider one 

of any type of semi batch data for the constant molar flow rate, for liquid phase reaction in 

which A is continuously added to the slowly and B is already present in this reaction. So, the 

generalized mole balance on the reactant can be written as the rate of mole of reactant A, 

whatever going inside minus rate of moles of reactants. 

Those were out plus rate of generation equal to the rate of accumulation. So, this is a very broad 

thing, now, if we try to write the mole balance based on the reactant A, which was added slowly 

with the molar flow rate of FA0. 
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This can be written as FA0 - 0 + -rAV = dNA and dt. So, with respect to the concentration we 

can write like this. So, if you differentiate the above equation and try to rearrange the things, 

we may have this final equation CA V dV dt plus this one d CA dt. So, let us put this equation 

as equation number 1. 

Mole balance on the reactant A 

[
Rate of mole

 of reactant A

         in

] − [
Rate of mole

 of reactant A

         out

] + [
Rate of 

generation 
] = [

Rate of 

accumulate
] 

[𝐹Ao] − [0] + [(-r𝐴𝑉) ] = [
dN𝐴

dt
] 

⇒ 𝜈𝑜𝐶𝐴𝑜
+ (−𝑟𝐴𝑉) =

𝑑(𝐶𝐴𝑉)

dt
 

on differentiating and rearranging it, we have 

⇒ 𝜈𝑜𝐶𝐴𝑜
+ (−𝑟𝐴𝑉) = 𝐶𝐴

𝑑(𝑉)

dt
+ 𝑉

𝑑(𝐶𝐴)

dt
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Now, if we try to write the overall mass balance, then we can write like this was the density. 

So, for the constant density system this can be represented as like this. Now, if we differentiate 

with initial concentration say at the start that V was V0 and at time t = 0. So, we may have V - 

V0 is equal to this one, let us put forward as equation number 3. 

Overall mass balance  

 

[
Rate of mass in

of reactant A
] − [

Rate of mass out

of reactant A
] = [

Rate of mass of A

accumulate
] 

 

⇒ νoρ − 0 =
d(ρV)

dt
 

For constant density system 

νo =
dV

dt
                     (2) 

Let the density of the reaction mixture be constant then the above equation can be rearranging 

and integrate with initial condition V=Vo at t=0, we have 

𝑉 − 𝑉𝑜 = 𝜈𝑜𝑡      (3) 
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So, if we take the equation number 1 and 2 into cognizance, then we may have you know this 

CA0 + rAV = CA0 + V d CA dt and nu 0 CA0 - CA nu 0 + V dCA dt or in other words we may 

write CA0 - CA V +. So, this is our ordinary differential equation. Now, this is the required 

performance equation and for the determination of reactant A on concentration pattern. So, this 

is again a very useful equation related to the reaction engineering especially when we try to 

design specific polymer reactors. 

Now from equation 2 and 1 we have  

 

⇒ 𝜈𝑜𝐶𝐴𝑜
− 𝐶𝐴𝜈𝑜 + (−𝑟𝐴𝑉) = 𝑉

𝑑(𝐶𝐴)

dt
 

⇒
𝜈𝑜(𝐶𝐴𝑜−𝐶𝐴)

𝑉
+ (−𝑟𝐴) =

𝑑(𝐶𝐴)

dt
               (4) 

⇒
𝐶𝐴𝑜

𝑡
−

𝐶𝐴

𝑡
+ (−𝑟𝐴) =

𝑑(𝐶𝐴)

dt
                      (5) 
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Now similarly for reactant B; because if you recall that one reactant was within the reactor and 

other was slowly added to that particular reactor, so, this was your A and this is the B. So, for 

the other reactant the mole balance equation you can easily write and that is your generic mole 

balance equation that is a rate of mole of reactant be in and whatever it is coming out plus the 

rate of generation is equal to rate of accumulation. 

 

So, if we try to find out the mole balance equation around B, then it can be put like this because 

initially there was no then - rB V because it is being consumed over the period of time is equal 

to total number of moles divided by time, then dt. Now this can be put forward like this sorry 

+ V, let us mark this equation as equation number 5. Now, if we recall that we discussed about 

the equation number 2 over here. So, from equation number we have this dV by dt. So, from 

equation 2 and 5. 
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And if we rearrange the things then we have this - rB V + V dCB upon dt. Now, this is my 

equation number 6. So, if we rearrange the things, then we may have the final equation like V 

0 and V. Now, this is the ordinary differential equation and can be solved for the concentration 

with respect to time. 

Similarly for reactant B 

[
Rate of mole

 of reactant B

         in

] − [
Rate of mole

 of reactant B

         out

] + [
Rate of 

generation 
] = [

Rate of 

accumulate
] 

 

[0] − [0] + [-r𝐵V ] = [
dN𝐵

dt
] 

⇒ [-r𝐵V ] = [
𝑑(𝐶𝐵𝑉)

dt
] 

 

⇒ [-r𝐵V ] = [𝐶𝐵

dV

dt
+ 𝑉

dC𝐵

dt
] 

From equation (1) for constant density system 𝜈𝑜 =
dV

dt
 

⇒ [-r𝐵V ] = [𝐶𝐵𝜈𝑜 + 𝑉
dC𝐵

dt
] 

On rearranging the above equation, we have 

 



                                  ⇒
dC𝐵

dt
= (-r𝐵) -

𝐶𝐵𝜈𝑜

𝑉
                       (5) 

These are first order linear differential equation can be solved for the concentration and time 

required.  
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In this particular chapter, we discussed about the various design equation of mixed flow reactor, 

plug flow reactor, semi batch reactor, which are extremely useful in the various aspect of 

polymerization process and especially applicable in the industries with respect to the various 

product profiling. And if you wish to have more and more study in this aspect, we have enlisted 

several references for your convenience you may go through, thank you very much. 


