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Lecture-16 

Interpretation of Batch Reactor Data-III 

 

Welcome to the next phase of interpretation of batch reactor data for reactor design. This is another 

segment of interpretating the batch reactor data which we obtained from various course of 

equations which we developed in previous lectures. So, let us have a brief look about that what we 

studied previously. We discussed about various temperature dependent terms; they are responsible 

for the various control activities in polymerization reactor. 
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Then we discussed about the conversion, concentration, mole balance, in various chemical 

reactions under the head of interpretation of batch reactor data. We had a discussion about the 

constant volume reaction system, then we started the rate of reaction and achieved up to the first 

and zero order reaction. Now in this particular lecture we are going to study about the interpretation 

of batch reactor data phase 2. 

 

Now this comprises various second order reactors or reactions both equimolar and non-equimolar 

feed. Then we will discuss about the nth order reaction along with the half-life concept of reaction 

scheme. Then we will discuss about the varying volume reaction system, so let us start with the 



second order reaction scheme. Now this is a bit mathematical one, now suppose a second order 

bimolecular irreversible reaction is occurring with the reactants say A and B and they produced 

the product P. 

A + B
 k 
→   P 

(Refer Slide Time: 02:06) 

 

So, let us have a broad mathematical representation of this particular reaction like A + B, here our 

known reaction constant and it is the P, P stands for the product. So, the rate equation for this 

particular chemical reaction it can be written as for - rA, if you recall that in the previous lecture 

we said that A and B both are consuming in the reaction mass. So, we use to denote their rate as 

minus because they are consuming and whatever product you are getting that is being accumulated. 

 

And that is being generated into your course of time that is it is represented as with plus sign. So, 

this is equal to - dCA, recall C represents the concentration, so CA represents the concentration of 

A over the period of time. And this is represented as kCA, sorry this is beta, right, now these are 

the stoichiometric coefficients. 

The rate equation for the above chemical reaction can be written as: 

        -r𝐴 = −
dC𝐴

dt
= −

dC𝐵

dt
= kC𝛼𝐴𝐶

𝛽
𝐵 
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Now as for the elementary chemical reactions, in question the order of reaction is usually the sum 

of stoichiometric coefficient raised to the power of a concentration term in the rate law. Now see 

before we go into the detail let us have a look about the stoichiometric coefficient or stoichiometric 

number. If you recall previously, we studied about the reaction like aA + b. Now here these are 

the reactants and these are the product profiles and associated numbers they are referred as either 

stoichiometric number or stoichiometric coefficient. 

 

So as far as again go back to the elementary chemical reaction now; if we try to represent this thing 

mathematically, the overall order of reaction say n, now n if you recall the previous one, here we 

mentioned alpha and beta these are the stoichiometric coefficients of this particular reaction, so n 

= alpha + beta. Now if we take the second order the thing into cognizance, then n will be 2. 

𝑛 = 𝛼 + 𝛽 

⇒         n = 1 + 1 = 2 

 

Now from where this one and one they came into existence, if you recall that we discussed this 

equation A + B = P. Now here the coefficient number of stoichiometric coefficient of A is 1 and 

stoichiometric coefficient of B is 1, so that is why the order of reaction is 2. 
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Now and if we say that the chemical reaction in any kind of a chemical reaction the value of 

corresponding order with respect to the reactant A and B in rate law is equal to 1, hence the overall 

order of reaction is usually 2. So, usually when we talk about which is same as the sum of the 

stoichiometric coefficient of reaction in chemical reaction. So, usually when we talk about any 

kind of chemical reaction, so you need to put this stoichiometric coefficient into the consideration 

and they play a very vital role in this type of aspect. 

 

So, if you see that if you recall the previous equation which was the rate equation for this particular 

reaction, you see that we have given this rA = - dCA upon dt. Now for this the rate equation becomes 

- rA, so this is my rate equation. So, this thing is the very important for interpreting the batch reactor 

data while we go for further reactor design in any kind of chemical reaction or any kind of 

polymerization reaction. 

 

Now for equimolar concentration of a reactant A, let us say that both reactants A and B are having 

the property of equimolar. So, or in other words we say that when the concentration of reactant A 

and B are equal in amount. 
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So, that we can see that CA0 = CB0, now here CA0 and CB0 these are the concentration at time t = 0, 

concentration of both A and B at time t = 0. So, starting concentration you can see that this is same 

CA0 and CB0. So, if we are saying that we are having the equimolar concentration, so in that case 

CA0 = CB0. Or in other words we can say CA = CB for. So, the rate equation in this case becomes - 

rA dCA dt, this is original equation, now this is equal to. 

   -r𝐴 = −
dC𝐴

dt
= −

dC𝐵

dt
= kC2𝐴 

So, this is your rate equation for equimolar concentration of reactant A and B and this is the very 

common practice across in polymerization reaction engineering or chemical reaction engineering. 

Now again go back to this particular thing that if we try to rearrange and integrate with the initial 

conditions, that is the concentration may vary from say CA0 to CA from time t = 0 to t. 

   −∫
dCA

C2A

CA

CAo

= ∫ kdt
t

0

 

⇒ [
1

𝐶𝐴
−
1

𝐶𝐴𝑜
] = kt 
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Now this is a very common thing, now say if A + B again gives you P, so over the period of time 

this A is getting depleted or it is being consumed in the course of a reaction mass. And say after t 

this initial concentration of CA0 becomes the concentration of CA. So, in this case if we try to 

rearrange and integrate this initial condition then my equation will become this is your starting CA0 

to CA over the period of time t, this is the time t, this will become dCAkdt. 

 

So, if I wish to find out the rate constant, then we can utilize this particular equation or in other 

words you can say this equation will become. Now this is my final equation for representing this 

thing. So, by this way we are discussing the various integrities of batch reactor data sometimes 

you may have equimolar concentration of the reactant sometimes you may not. So, we must 

acquaint all kind of a scenario for achieving the better result to for prediction of any kind of 

reaction engineering data. 

 

So, that is why we are discussing everything pertaining to this particular approach. Now for rate 

equation if sometimes people may ask that gentlemen this thing is very good. But sometimes we 

need to represent the rate equation in terms of conversion. 
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So, on putting the value of CA in terms of the conversion in the previous equation which we 

developed over here. Then we may have the concentration of reactant A say after conversion XA, 

XA is the number of moles of component A or the reactant A. Now say after time t, at time t, so it 

is this CA = CA0 if you recall that this is my initial concentration and this is XA, now this may 

become 1 - XA. 

In term of conversion, putting the value of CA from equation in the equation we have  

 

   ⇒ [
1

𝐶𝐴𝑜(1 − 𝑋𝐴)
−
1

𝐶𝐴𝑜
] = kt 

 

   ⇒ [
1

(1 − 𝑋𝐴)
− 1] = 𝐶𝐴𝑜kt 

 

⇒ [
𝑋𝐴

(1 − 𝑋𝐴)
] = 𝐶𝐴𝑜kt 

 

⇒ [
𝐶𝐴𝑜kt

(1 − 𝐶𝐴𝑜kt)
] = 𝑋𝐴 

 

 

Now the genesis of this equation is 1 upon CA0 (1 - XA) kt. So, if we rearrange the things this may 

become XA upon (1 - XA) or CA0kt upon 1 - CA0kt this is XA. So, by this way you can find out the 

conversion of the reactant A in different approaches. And sometimes this particular information is 



extremely useful for prediction of any kind of data which is required for the designing of reactor 

or designing of other parameters for polymerization reaction. Now if sometimes it is a very useful 

practice to plot all these things and this is you can see the schematic diagram for the representation 

of variation of 1 upon CA with time in this graph. 

(Refer Slide Time: 13:32) 

 

And XA upon 1 - XA that is the mole fraction or conversion of component A or reactant A with the 

time, in this second order irreversible reaction were equimolar feed concentration. So, if you recall 

that we had this n = 2 that is the order of a reaction and both reactants A + B are equimolar in 

nature. So, you see that this slope is represented by kCA and similarly over here the slope is k if 

we try to plot with respect to time and inverse of concentration of A. So, these representation is 

very useful for prediction of any kind of unknown or prediction of any kind of the behavior of the 

batch reactor in due course of time. 

(Refer Slide Time: 14:35) 



 

Now for second order irreversible reaction we cannot achieve the full conversion of reactants. As 

usually the XA is always less than 1, if you see these previous equations, so you see that XA is 

always less than 1. Now the rate of change of XA with respect to the time is a function of initial 

concentration of a reactant. So, upon increasing the initial concentration of reactant, there is an 

increase in the conversion. So, that is a very important point for taking care of any kind of reaction 

engineering approaches. Now sometimes we may encounter another type of thing that is the 

bimolecular and irreversible second order reaction with non-equivalent molar feed of reactant A 

and B. 
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Now previously we discussed about the equimolar feed aspect where both A and B they were 

having the equimolar concentration. Now sometimes you may have a non-equimolar type of thing, 

maybe the concentration of this or number of moles of molar concentration of A maybe different 

with the molar concentration of B. So, let us try to solve this particular thing mathematically. 

 

So, suppose a bimolecular irreversible second order reaction with the different initial reactant 

concentration of say A and B is consumed to form the product A, like this, this particular equation 

deals with this type of scenario.  

A + B
 k 
→   P 

Now expression for the reactant concentration A and B in terms of the conversion at time t may 

be given as. 
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So, the reactant concentration and after time t with respect to conversion is CA is equal to CA0(1 - 

XA).  

CA = CAo(1 − XA) 

Now for because here we are not considering the equimolar concept, so again we need to put the 

things related to the reactant B. So, for reactant B, we need to write CB is equal to CB0 minus 

CA0XA, this is the conversion of reactant A after time t.  

CB = CBo − XACAo 



Now one condition is extremely essential in this approach, that it is applicable if the reactant A is 

limiting. So, this thing needs to be taken care while we calculate this type of situation. Now if we 

talk about the other rate expression for this particular reaction. 
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Now sometimes again this type of approach can be written as the rate for the chemical reaction is 

- rA dtCACB. Now 2 things are very important to at this juncture, one is that if you see that here -

rA and this is because we are saying that A is the limiting reactant, so this is the governing factor, 

so - dCA upon dt = -dCB because the concentration of B is usually tutored by this particular 

approach and this is equal to kCB. 



 

So, on putting if we go to the things that if we put the values of concentration of a reactant A and 

B after time t. So, dCA dt or that - dCB upon dt = CA that is into dXA dt in this equation which we 

discussed earlier. So, it can be represented as - dCAdt which is equal to kC1 - XACB0, this is the 

initial concentration of reactant B. So, this is I can say the final outcome for this particular 

approach. 
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Now let us see sometimes it is very convenient to represent this particular approach, let us see that 

m = CB0 upon CA0. And if we put this thing into this previous expression and try to rearrange the 

things, then we may have this d XA upon 1 - XA which is equal to k CA0 dt. Or if we try to rearrange 

the things then it will become dXA upon 1 - XA into M - XAkCA0 dt. So, this is my equation which 

we need to remember while interpreting such kind of thing in due course of time. Now next is that 

if we integrate the things this particular equation with the help of say initial conversion. 

 

Rate expression for the reaction is; 

 

-rA = −
dCA
dt
= −

dCB
dt
= kCACB 

Put the values of concentration of reactant A and B after time ‘t‘, and −
dC𝐴

dt
= −

dC𝐵

dt
= 𝐶𝐴𝑜

dX𝐴

dt
 in 

the above equation then we have 



 

  ⇒       − CAo
dXA
dt

= kCAo(1-XA)(CBo − CAoXA) 

Let M = CBo/CAo and put in the above expression and arranged we have 

 

  ⇒       
dX𝐴

(1-X𝐴) (
𝐶𝐵𝑜
𝐶𝐴𝑜

− 𝑋𝐴)

= kC𝐴𝑜dt 

On integrating the above equation with initial conversion XA=0 to final conversion XA at time ‘t’ 

we have 

  ⇒      ∫
dX𝐴

(1-X𝐴)(𝑀 − 𝑋𝐴)

𝑋𝐴

0

 = ∫ kC𝐴𝑜dt
𝑡

0

 

On breakdown the above expression with partial fraction method we have found 

 

  ⇒      ∫
dX𝐴

(1-X𝐴)(𝑀 − 1)
+

𝑋𝐴

0

∫
dX𝐴

(1-M)(𝑀 − 𝑋𝐴)

𝑋𝐴

0

 = ∫ kC𝐴𝑜dt
𝑡

0

 

 

  ⇒    
 1

(𝑀 − 1)
 [∫

dX𝐴
(1-X𝐴)

−
𝑋𝐴

0

∫
dX𝐴

(𝑀 − 𝑋𝐴)

𝑋𝐴

0

]  = ∫ kC𝐴𝑜dt
𝑡

0

 

 

  ⇒      [
 1

(𝑀 − 1)
(-ln(1-X𝐴)) ]

0

𝑋𝐴

+ [
1

(𝑀 − 1)
ln (𝑀 − 𝑋𝐴)]

0

𝑋𝐴

= kC𝐴𝑜𝑡 

 

  ⇒      
 1

(𝑀 − 1)
 [ -ln(1-X𝐴) + ln (𝑀 − 𝑋𝐴) − 𝑙𝑛(𝑀)] = kC𝐴𝑜𝑡 

 

⇒       
 1

(𝑀 − 1)
 ln [

(𝑀 − 𝑋𝐴)

𝑀(1-X𝐴)
] = kC𝐴𝑜𝑡 

 

or 

 

⇒        ln [
(𝑀 − 𝑋𝐴)

𝑀(1-X𝐴)
] = 𝑙𝑛

𝐶𝐵
MC𝐴

= (𝑀 − 1)kC𝐴𝑜𝑡 

 

This is required final result for calculation of conversion XA after time ‘t’ in second-order 

irreversible bimolecular reaction with non-equivalent reactant concentration.  It is valid for all ratio 

of M but not for M=1. 
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Now initially there was no conversion at time t = 0, so XA = 0 and if we achieve the final conversion 

XA at time t then we can integrate the things in this particular approach. So, we may have the 

equation mathematical equation like this dXA upon 1 - XA M - X which is equal to 0 to tkCA0 dt. 

Now this is our previous equation, now on breakdown the above this equation our expression with 

the partial fraction. We have dXA upon 1 - XA + 0 to XA dXA upon 1 - M into M - XA which is 

equal to 0 to tkCA0 dt. Now this may become 1 upon M - 1 0 to XA dXA upon 1 - XA - 0 to XA dX 

A upon M - XA, now these mathematical this is equal to 0 to t k CA0 dt. 
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Now again if we keep on rearranging the things with respect to the mathematical approach this 

will become – ln(1 - XA) + ln(m - XA) - lnM, this is equal to kCA0t. So, again upon rearranging M 

- 1 l n this is equal to kCA0t. So, this is my master equation or sometimes it can be represented as 

ln - M - 1. Now this is again the rearranged form of this particular equation. So, this thing is again 

very important thing pertaining to the approaches associated with this type of prediction. 
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Now this particular thing is required the final result for the calculation of conversion X is say after 

time t in the second order irreversible bimolecular reaction with non-equivalent reactant 

conversion. Now you see there are so many conditions are embedded in this particular statement 

you are having nonequivalent you are having irreversible, you are having the bimolecular 

reactions, you are having the second order reaction. 

 

So, usually it is this particular equation is valid for all ratio of M but not for M is = 1. So, this thing 

need to be remember while calculating such kind of approaches and performing the calculation for 

any kind of interpretation of batch reactor data. Now let us move to the nth order reaction. 
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Now the rate of this particular rate equation for this particular nth order reaction can be represented 

like this - rA = kCA
n, this is the order, right. 

   -r𝐴 = −
dC𝐴
dt
= kC𝑛𝐴 

 Now on rearranging and integrating this particular equation with the initial concentration of CA0 

at the time t = 0 to the concentration CA at the time t = t and where we know that n is not equal to 

1. Then we can find that 1 upon CA n - 1 - 1 upon CA0 and - 1 = kt(n – 1). Now this is the generalized 

equation where we are moving from time t = 0 to time t = t.  

  
1

𝐶n-1𝐴
−

1

𝐶n-1𝐴𝑜
= (𝑛 − 1)kt     
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Now if in this particular equation if you see that if n is greater than 1, then reaction never go to on 

completion infinite time. Now if n is less than 1 then the reactant concentration will fall to 0 and 

then becomes negative at the finite time of interval. Remember these there are only 3 possibilities 

in such kind of a scenario, one is that either n is less than 1 or n is greater than 1 or n is equal to 1. 

But we have eliminated this n is equal to 1, that is n is not equal to 1, so that is why we considered 

these 2 situation. 

 

Now for as far as the real concentration of the reactant they could not become negative. So, the 

real limit of integration method is usually we are going to discuss in this particular approach 

beyond which it is not applicable for any kind of real system. So, this is the real scenario CA0 at t 

1 - n into k, so this is the scenario where you are having you can apply for the real system. 

CA = 0  at   t ≥
Cn−1A
(1 − n)k
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Up to this stage we discussed about the second order reaction, we developed the methodology for 

or mathematical representation for batch reactor data interpretation for n th order reaction. 

Subsequently in the next lecture we will discuss about the half-life because it is again a very 

integral part of your interpretation pattern of batch reactor. So, we will discuss about the half-life 

and other associated things, thank you very much. 


