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Welcome to this module, which is pertaining to the source model for various gases. Now, have 

a look about that what we have studied previously.  
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We have introduced that various aspect of source modelling. We have discussed about this step 

to follows starting from release incident to selection of model depending upon the type and a 

nature of various incidents, mitigation and a consequences analysis. We have discussed about 

the basic source models like flow of liquid through a hole, flow of liquid through a hole in a 

tank and the flow of a liquids through pipe. 
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Now, in this particular module we are going to discuss about what is the understanding aspect, 

the difference between the handling of liquid and vapour, type of flow of vapour through hole 

and pipes, flow of vapours through different type of holes, flow of gases through pipe and their 

types, flashing liquids, liquid pool evaporation or boiling. 
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Now, what we need in different models for gases. Now, usually gases are compressible fluids 

and hence all of its physical properties changes according to the external conditions, these 

external conditions may be pressure, may be temperature, etcetera. Moreover handling of gases 

can more tougher than liquid. Now, because of the variety of reasons because one reason is, 



the gases they are usually invisible hence a small leakage is difficult to detect unless otherwise 

you are able to recognize through its order. 

Vapours at same temperature due to the presence of latent heat they are more energetic than 

liquid. 
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Now, here we have a comparison of liquid versus vapour, liquid usually they are compressible 

flow whereas vapours they are the compressible one. In liquids, the kinetic energy term is 

negligible whereas in vapours the pressure energy converts to kinetic energy and the liquids 

approximately constant density however the vapours, the temperature, pressure, density all 

changes when it passes through a narrow opening. 

So, you can imagine that how critical is the scenario for the modelling in vapours. Now, 

physical properties of vapours can be assumed constant for small changes in pressure like P1, 

P2. P3 or etcetera and a very low velocities. 
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Now, let us have a look about the types of flow of vapour through holes and pipe. Now, there 

are two type of things, one is throttling and other one is the free expansion release. Now, 

throttling we all know may be through a small cracks, there is a large frictional losses, a little 

conversion of pressure energy to kinetic energy, they require the detailed information on the 

physical structure of the leaf.  

So, you must have all these type of things with you while you are considering the throttling 

behaviour. 
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Whereas in a free expansion, the most of the pressure energy converted into kinetic energy, 

assumptions to isentropic process is usually valid because while you consider this free 

expansion you may have to take certain assumptions. So, one assumption is to the isentropic 

process which is usually valid in this case. Now, they require only a diameter of a leak, so this 

is a bit easier. 

Now, there are two type of things which we need to consider under the head of the free 

expansion one is, the non-choked or subsonic another one, is the choked or sonic one. 
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So, while considering the throttling flow, throttling is a type of flow such as a flow through 

valve like in this figure you can see, the flow through a valve or a crack or within the porous 

material. So, these geometries oppose high resistance to flow that results to a large amount of 

a pressure drop. Now, you can see in these figures this is the partially open valve and you can 

see the throttling flow. 

Whereas in the second figure, you can see this is this is a porous plug and you can see the flow 

is through this porous plug under the throttling behaviour. So, while considering the throttling 

flow, we can seek the help of first law of thermodynamics.  
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Now, first law of thermodynamics says  

𝑑𝐸

𝑑𝑡
=∑𝑄̇ −∑𝑊̇𝑠 −∑𝑚̇𝑖𝑛 (ℎ + 𝐸𝑝 + 𝐸𝑘)𝑖𝑛 −

∑𝑚̇𝑜𝑢𝑡 (ℎ + 𝐸𝑝 + 𝐸𝑘)𝑜𝑢𝑡 

Now, here E is the total energy and hence “dE/ dt” represents rate of change of total energy, 

“Ws” is the shaft work and this dot over this represents the quantity per unit time, m represents 

the mass flow rate of the liquid, in case sorry, mass flow rate of fluid. Now, here fluid is gas. 

“h” is enthalpy of the gas, “EP” and “EK” are the potential and kinetic energy at inlet and outlet. 

So, we may take different assumptions for this particular equation like the potential and kinetic 

energy effects are neglected. We may assume their steady flow, adiabatic conditions and we 

may assume the shaft work is zero.  
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So, by employing these assumptions in our system we can get the this equation  

𝑑𝐸

𝑑𝑡
=∑𝑄̇ −∑𝑊̇𝑠 −∑𝑚̇𝑖𝑛 (ℎ + 𝐸𝑝 + 𝐸𝑘)𝑖𝑛 −∑𝑚̇𝑜𝑢𝑡 (ℎ + 𝐸𝑝 + 𝐸𝑘)𝑜𝑢𝑡 

dE over dt is equal to Ws which is cut because we have assumed the shaft work negligible then 

summation mi h plus EP plus EK in, now this is again cancelled out then m out h plus EP plus 

EK for the outlet, now again this is a cancel out. So, hence isenthalpic flow can be consider in 

this particular case. 

So, if we take that  

dT = f (P, h)  

then we can take the partial derivative like this  

𝑑𝑇 = (
𝜕𝑇

𝜕𝑃
)ℎ 𝑑𝑃 + (

𝜕𝑇

𝜕𝑃
)𝑃 𝑑ℎ 

Now, if define the Joule-Thomson coefficient, this is the Joule, Joule-Thomson coefficient, 

now  

𝜇 ≡ (
𝜕𝑇

𝜕𝑃
)
ℎ
 

So, if we consider the isenthalpic flow then in that particular case  

(
𝜕𝑇

𝜕ℎ
)𝑃 = 0 



and if we integrate then  

𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛 = ∫ 𝜇𝑑𝑃
𝑜𝑢𝑡

𝑖𝑛

 

Now, the most gases have positive Joule-Thomson coefficient, so as the pressure drops, the 

temperature drops.  
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Now, let us have a look about a free expansion leak. Now, here we can visualize this figure 

you are having a gas pressurized within a process unit and it leaks through this particular point. 

So, initial condition if we say that P0, T0, u0 is equal to 0, Δz is equal to 0 and shaft work is 

equal to 0 and here the things are at the external surrounding. So, here you can have a throat 

where P is  

𝑃

𝑢
< 𝑆𝑜𝑛𝑖𝑐 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 



So, if we consider this particular aspect through hole then we can write the mechanical energy 

balance for flow. 
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And that is the  

∫
Δ𝑃

𝜌
+ Δ(

𝑢
2

2𝛼𝑔𝑐
) + 𝐹 = 0 

Where delta P over delta rho is the pressure energy change, P is the pressure of the fluid of the 

fluid, ρ is the density of the fluid, 𝑢 is the average velocity at the hole. So, we need to define 

the discharge coefficient C1 at this juncture, now this is defined as  

−∫
∆𝑃

𝜌
− 𝐹 = 𝐶1

2 (−∫
Δ𝑃

𝜌
) 

So, but at this point of time we can define the discharge coefficient, now C1 is the discharge 

coefficient.  
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Now, if we combine the both the equation and integration from integrate from P is equal to P0, 

V is equal to 0 to P is equal to P then we will have  

𝐶1
2∫

Δ𝑃

𝜌

𝑃

𝑃0

+
𝑢
2

2𝛼𝑔𝑐
= 0 

So, for any ideal gas undergoing isentropic expansion, we are having this universal equation 

𝑃𝑉𝛾 =
𝑃

𝜌𝛾
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This is the well-known thermodynamic equation. 

So, velocity of a fluid any at any point during the isentropic expansion is given by  

bar u square 2 gc C 0 square gamma, gamma is a adiabatic constant and usually it is represented 

by CP/ CV. 

𝑢
2
= 2𝑔𝑐𝐶0

2 𝛾

𝛾 − 1

𝑃0
𝑃
[1 − (

𝑃

𝑃0
)
𝛾−

1
𝛾
] 

Now, therefore the mass flow rate of any time during the isentropic expansion can be given by   

𝑄𝑚 = 𝐶0𝐴𝑃0√
2𝑔𝑐𝑀

𝑅𝑔𝑇0

𝛾

𝛾 − 1
[(
𝑃

𝑃0
)

2
𝛾
− (

𝑃

𝑃0
)

𝛾
𝛾−1

] 

So, by this way you can calculate the mass flow rate at any time during the isentropic 

expansion, so this is the general equation. Now, sometimes velocity of a gases gas increases 



with the decrease in downstream pressure or increase in upstream pressure until it reaches a 

critical velocity, the choked the pressure “Pchoked” is the maximum downstream pressure 

resulting in maximum flow through the hole or a pipe. 
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So, if we wish to calculate the Pchoked then it is represented as  

𝑃𝑐ℎ𝑜𝑘𝑒𝑑
𝑃

= (
2

𝛾 + 1
)

𝛾
𝛾−1

 

to be more precise you can get this particular Pchoked from this particular equation.  

Now, for if we have P is less than Pchoked, the velocity of the fluid at throat is equal to the 

velocity of sound, velocity of the fluid at the throat is equal to velocity of sound and the velocity 

and mass flow rate cannot be increased further and third point is that become the flow become 

independent of the downstream condition, so this type of a flow is called choked, critical or 

sonic flow. 
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Now, in the next aspect, we will consider the flow of gas through pipe, flow of gases through 

pipes. Now, here we are having a pipe like this, here the initial conditions are P1, T1, U1 Ma1 

and Q is equal to 0, here the final condition are P2 is less than P1, P2 is the greater than P1, these 

two are the conditions T2, U2 is greater than U1 or U2 is less than sonic velocity Ma2 is greater 

than Ma1 and Ma2 is less than 1. 

Now, Ma is the Mach number, (here Ma is the Mach number), so Ma is represented as  

𝑀𝑎 =
𝑢

𝑎
 

Now “a” is the velocity of sound, so “a” is represented as  

𝑎 = ∫𝑔𝑐 (
𝜕𝑃

𝜕𝜌
)
𝑠
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So, for ideal gas, 

𝑎 = √
𝛾𝑔𝑐𝑅𝑔𝑇

𝑀
 

So, by this way you can calculate the velocity of a sound, so velocity of a gas if you wish of 

gas is represented as bar u is equal to a that is a speed of sound is equal to 

𝑢̅ = 𝑎 (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑) = √
𝛾𝑔𝑐𝑅𝑔𝑇

𝑀
 

So, the mass flow rate at the choked condition would be Qm that is choked is equal to  

(𝑄𝑚)̇ 𝑐ℎ𝑜𝑘𝑒𝑑 = 𝐶𝑜𝐴𝑃𝑜√
𝛾𝑔𝑐𝑀

𝑅𝑔𝑇𝑜
(

2

𝛾 + 1
)

𝛾+1
𝛾−1

 

Now, C0 is equal to 0.61 for sharp edged orifice and C0 is equal to 1 for worst case scenario. 

So, these are the two conditions which may need to encounter during the course of calculation.  
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Now, there are two types of flow, one is the adiabatic flow, adiabatic flow and second one is 

the isothermal flow. Now, in adiabatic flow the well-insulated valve there is no energy loss to 

the surrounding and in isothermal flow the constant valve temperature that is the submerged 

pipe. So, let us take the example of adiabatic flow, now please recall the previous figure which 

we have and for your the convenience I am redrawing it, that was the pipe flow, initial 

conditions were fixed at P1, T1, U1, Ma1 and the final conditions are P2 is less than P1, P2 is 

greater than P1 and so and so on, you may recall the previous figure. 

Now, as shown in the figure, the gas is flowing from left to right direction due to the presence 

of a pressure gradient across the two ends of the pipe. Now, as the gas moves forward, it is 

starts expanding due to the decrease in the pressure because P2 is less than P1 in the direction 

of the flow,this results to increase in velocity and the kinetic energy of gas. The increase in 

kinetic energy is compensated from the decrease in thermal energy of the gas. 

Now, the gas starts cooling down due to the decrease in thermal energy, so the friction force 

between the gas molecules and the valve of container also plays a significant role in the change 

in temperature of the gas as well as towards the pressure drop. Now, these frictional forces 

increases or increase the temperature of the gas hence both cooling or heating of the gas during 

the flow is possible. 

So, through this way we can write the mechanical energy balance equation  

Δ𝑃

𝜌
+
𝑢𝑑𝑢

𝛼𝑔𝑐
+
𝑔

𝑔𝑐
𝑑𝑧 + 𝑑𝐹 = −

𝛿𝑊𝑠

𝑚
 



Now, the following assumption that is  

𝑔

𝑔𝑐
𝑑𝑧 ≈ 0 

is valid for this particular case. So, assuming the straight pipe without any valve or fitting 

although this is purely an assumption, so we will have our dF is equal to  

𝑑𝐹 =
2𝑓𝑢

2
𝑑𝐿

𝑔𝑐𝑑
 

Now this is for the straight pipe without any valve or fitting and no mechanical leakage, this is 

again the purely assumption that if no mechanic leakage are present then  

𝛿𝑊𝑠 = 0 
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So, we may write the total energy balance equation like this  

𝑑ℎ +
𝑢𝑑𝑢

𝛼𝑔𝑐
+
𝑔

𝑔𝑐
𝑑𝑧 = 𝛿𝑞 −

𝛿𝑊𝑠

𝑚
 

this is the total energy balance equation. So, if we go ahead further then this is represented by 

𝛾 + 1

𝛾
𝑙𝑛
𝑃1𝑇2
𝑃2𝑇1

−
𝛾 − 1

2𝛾
(
𝑃1

2𝑇2
2 − 𝑃2

2𝑇1
2

𝑇2 − 𝑇1
)(

1

𝑃1
2𝑇2

−
1

𝑃2
2𝑇1

) +
4𝑓𝐿

𝑑
= 0 

 



Now, let us take the G which is a mass (flus) flux is equal to  

𝐺 = √
2𝑔𝑐𝑀

𝑅𝑔

𝛾

𝛾 − 1

𝑇2 − 𝑇1

(
𝑇1
𝑃1
)2 − (

𝑇2
𝑃2
)2

 

this is the mass flux.  
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Now, in the other example we may take the isothermal flow. Again considering this, the figure 

of the pipe flow P1, U1, Ma1, P2 is less than P1, P2 is greater than P choked u2 is greater than u1, 

u2 is less than sonic velocity Ma2, Ma1 or Ma2 is less than 1. So, if we consider this type of 

aspect then the isothermal flow of a gas, we have considered in this case the T is constant, let 

us have the thing that this we are considering the L length. 

Now, considering the case when the velocity of the gas is well below the sonic velocity of the 

gas, like this, now gas is flowing from left to right direction due to the presence of pressure 

gradient across the two ends of the pipe, these are the two ends of the pipe. Now, gases starts 

expanding due to the decrease in pressure in the directional of direction of flow. Now, as the 

gas expends the velocity must increase to maintain the same mass flow rate. 

So, the pressure at the end of the pipe is equal to the pressure of the surrounding. So, the 

temperature is constant across the entire pipe length we have taken (all) already taken this 

assumption. So, we may write the mechanical energy balance equation that is  



Δ𝑃

𝜌
+
𝑢𝑑𝑢

𝛼𝑔𝑐
+
𝑔

𝑔𝑐
𝑑𝑧 + 𝑑𝐹 = −

𝛿𝑊𝑠

𝑚
 

Now we may take the following assumption for this particular case that is  

𝑔

𝑔𝑐
𝑑𝑧 ≈ 0 

 

Now, we may assume that the straight pipe without any valve or a fitting. So,  

𝑑𝐹 =
2𝑓𝑢

2
𝑑𝐿

𝑔𝑐𝑑
 

this is for the straight pipe, pipe without any valve or fitting. So, if there is no mechanic leakage 

then this is  

𝛿𝑊𝑠 = 0 
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So, we may use the following conditions 

𝑇2 = 𝑇1 

with T2 is equal to T1 because we have assumed the isothermal condition. Then 

𝑃2
𝑃1

=
𝑀𝑎1
𝑀𝑎2

 



Now, 

𝐺 = 𝜌𝑢 = 𝑀𝑎1𝑃1√
𝛾𝑔𝑐𝑀

𝑅𝑔𝑇
 

 

2𝑙𝑛
𝑃1
𝑃2

−
𝑔𝑐𝑀

𝐺2𝑅𝑔𝑇
(𝑃1

2 − 𝑃2
2) +

4𝑓𝐿

𝑑
= 0 

2𝑙𝑛
𝑀𝑎2
𝑀𝑎1

−
1

𝛾
(

1

𝑀𝑎1
2 −

1

𝑀𝑎2
2) +

4𝑓𝐿

𝑑
= 0 

So, by this way we can model or we can calculate the appropriate things. Now, there are certain 

conditions related to the flashing of liquid and we may consider the four cases. 
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The adiabatic flashing, flashing of flashing liquids, so first thing is that we may assume the 

adiabatic flashing. Second is adiabatic flashing through hole, third is isothermal flashing 

through hole and fourth is the liquid pool boiling. So, flashing liquids, now flashing event may 

occur when the liquid is stored under the pressure above their normal boiling points. Now, if 

liquid is stored in a container or flowing in a pipe develops a leak under such condition, the 

liquid starts partially flashing into vapour, explosive flashing may also occur. 

So, this process can be assumed as an adiabatic process, the energy of vaporization comes from 

the superheated liquid which results to the decrease in temperature of the liquid.  

(Refer Slide Time: 30:52)  

 



Now, if m is the mass of a original liquid, mass of original liquid and CP is the heat capacity of 

the liquid energy plus mass degree and T0 is the temperature of the liquid before (depressive) 

depressurization, temperature of the liquid before the depressurization, Tb is the depressurized 

boiling point of the liquid. So, excess energy contained the superheated liquid may be 

calculated by this original thermodynamic equation, 

𝑄 = 𝑚𝐶𝑝𝑑𝑇 

This excess energy provides the heat of vaporization ΔHv for the mass of liquid vaporized that 

is dmv, this is the mass of liquid vaporized and this is the heat of vaporization. 

So,  

d𝑚𝑣 =
𝑄

Δ𝐻𝑣
=

𝑚𝐶𝑃𝑑𝑇

Δ𝐻𝑣
. 
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So, we can calculate the fraction of liquid vaporized like 

𝑓𝑣 =
𝑑𝑚𝑣

𝑚
=
𝐶𝑃𝑑𝑇

Δ𝐻𝑣
 

Now, if you integrate between the initial temperature T0 with the liquid mass m and the final 

boiling point Tb with liquid mass “m-mv”. so, if we integrate between this then  

∫
𝑑𝑚𝑣

𝑚

𝑚𝑣

𝑚

= ∫
𝐶𝑃𝑑𝑇

Δ𝐻𝑣

𝑇𝑏

𝑇𝑜

 



 Now,  

ln (
𝑚 −𝑚𝑣

𝑚
) = −

𝐶𝑃(𝑇𝑜 − 𝑇𝑏)

Δ𝐻𝑉

 

So,  

𝑓𝑣 =
𝑚 −𝑚𝑣

𝑚
= 1−

𝑚𝑣

𝑚
 

 

So, after substituting the value we get the fraction of liquid vaporized as  

𝑓𝑣 = 1 − exp⁡[−𝐶𝑃(𝑇𝑜 − 𝑇𝑏)/Δ𝐻𝑉] 

 Now, equilibrium flashing choking conditions, so fluid path is great fluid path length greater 

than 10 centimeter, now choked pressure is approximately assumed equal to the saturation 

vapour pressure of the fluid in question.  
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So, the another aspect is that the liquid is stored above saturation pressure, if we take liquid is 

stored above saturation temperature, so if L is less than 10 centimeter, assume incompressible 

liquid is flowing. Now, if L is greater than 10 centimeter assume choked flow with P is equal 

to P saturation. So, like this here the P1 this is the length L and this is the P2, so this is the case 

of adiabatic flashing through holes. 

So, mass flow rate can be given as  

𝑄𝑚 = 𝐴𝐶0√2𝜌𝑙𝑔𝑐(𝑃 − 𝑃𝑠𝑎𝑡) 

so this gives you the mass flow rate where A is area of release, C0 is the discharge of coefficient 

which is unitless, ρl is the density of liquid mass per volume, P is the pressure within tank and 

Psat (saturation) is the saturation pressure.  

Now, let us consider the isothermal flashing through a hole.  
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Now, if we assume the choked flow of a two phase fluid then  

𝑄𝑚̇ = 𝐴√−
𝑔𝑐

(
𝑑𝑉
𝑑𝑃

)
 

this is the isothermal flashing a hole. Now, here V is the specific volume,  

𝑉 = 𝑉𝑓𝑔𝑓𝑣 + 𝑉𝑓 

Vfg is the difference in specific volume,  

Vf is the liquid specific volume,  

fV is the mass fraction of vapour.  

Now, if you differentiate with respect to pressure then we will get  

𝑑𝑉

𝑑𝑃
= 𝑉𝑓𝑔

𝑑𝑓𝑣
𝑑𝑃

 

So, we derived that  

𝑑𝑚𝑣

𝑚
=
𝐶𝑃𝑑𝑇

Δ𝐻𝑣
 

and  

dmv = - dml 
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So, applying all these conditions we have therefore  

𝑑𝑚𝑣

𝑚
= −

𝐶𝑃𝑙𝑑𝑇

Δ𝐻𝑣
= d𝑓𝑣 

Now, if we substitute df in this particular thing into dV/ dP we have  

𝑑𝑉

𝑑𝑃
= −

𝑣𝑓𝑔𝐶𝑝.𝑙

∆ℎ𝑣

𝑑𝑇

𝑑𝑃
 

So, the Clausius-Clapeyron equation can be used for dT over dP, so  

𝑑𝑃

𝑑𝑇
=

∆ℎ𝑣
𝑇𝑣𝑓𝑔

 

So, if we combine the equations then we will get  

𝑑𝑣

𝑑𝑃
=
−𝑣2𝑓𝑔𝐶𝑝,𝑙𝑇

(∆ℎ𝑣)
2

 

So, we can substitute the into the final relationship that is  

𝑄𝑚̇ = 𝐴
√

−𝑔𝑐

(
−𝑣2𝑓𝑔𝐶𝑝,𝑙𝑇
(∆ℎ𝑣)

2 )

 

(Refer Slide Time: 40:03)  



 

Now, reducing the equation for vapour mass flow rate then  

𝑄𝑚̇ =
∆ℎ𝑣𝐴

𝑣𝑓𝑔
√

𝑔𝑐
𝐶𝑃,𝑙𝑇

 

So when flashing process is done or done at or a near a Psat (saturation), small droplets of liquid 

are also entrained with vapour. So, design assumption is taken as the mass of the liquid 

entrained is equal to the mass of vapour formed from the (from) flashing. So, in this particular 

module we have discussed a different aspect of leakage through hole and orifice. 

And in the subsequent module we will discuss the liquid pool evaporation and other models 

for applicable for gaseous fluid, thank you. 


