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Lecture-50
Kuhn’s Theory of Rubber Elasticity

Welcome all of you, so in this lecture we will take the review of continuum mechanics that we 

have been doing in last couple of lectures to somewhat of a logical conclusion where we are 

looking at the behavior of rubber. So, what we essentially stated in the last lecture and we took it 

for granted in the derivation is the free energy of deformation of the rubber is a function of the 

deformation gradient tensor. We will first establish that by using what is known as the Kuhn’s 

theory of rubber elasticity and then using these ideas we will look at various kinds of 

deformation of a material and we define what is known as the Shear modulus of a polymer 

network. 

So,  we will  talk  about  the Kuhn’s theory of  rubber  elasticity. So,  rubber  as  you know is  a

polymer  network and therefore  we can  represent  the  rubber  as  composed of  many polymer

chains connected together by some kind of a physical or chemical cross linking typically when it

is chemical or covalent cross linking then what that is what we call it a rubber when it is the

physical cross linking we call it an entangled polymeric system there is some difference. We also

are doing it for the case when there is no solvent when we have a polymer network in a solvent

we call it a polymer gel that is somewhat more complicated in terms of formulation then what we

are doing here. So, if we take this kind of a network then these junctions are what are known as

cross links and between every two of these cross links  we will  have a polymer strand. The

polymer strands in the entire network can vary in their end to end distance and there are number

of repeat units because if you think of like how this kind of a thing would be synthesized, you

will put polymer solutions in a beaker then you add a cross linker and the cross linker will cross

link the polymer chains in a somewhat of a random fashion it is very difficult to get a perfect

network that would have fixed number of repeat units between two cross links and of course they

will vary with the with regard to the end to end distance because the system can take many, many



confirmations  now  because  every  individual  segment  or  a  strand  can  take  many,  many

confirmations. 

These strands can also be referred as sub chains because they are not really an entire polymer

chain that we started with it is the polymer chain between the two cross links that is somewhat

constrained now because it has to move along with the cross links that connects them together.

Okay  so,  because  of  this  cross  links  the  motion  of  polymer  segments  become  somewhat

constrained and that is what give rise to a solid nature to rubber. If it is not cross linked you will

have like a polymer solution that can be viscous but not quite like an elastic solid once you cross

link it, it starts behaving like a solid. So, let us say we have a certain volume of the network, we

can define a number of strands per unit volume that is my nc and we will use that later.

So, if I now look at the free energy of this particular network one point to start with is we can

assume that each of these strand is an ideal chain itself okay that may not necessarily be the case

but this is at least a good starting point to start thinking about it. So, we can define we can define

a reference configuration that is completely theoretical in nature that is just reference. So, we can

talk of free energy with respect to or relative to that reference configuration and that reference

configuration contains all ideal chains as strands or all strands or are ideal chains. So, we are

going to assume reference, as all strands are ideal and the advantage of doing that is obvious we

already know what the elastic energy of an ideal chain is. So, for a strand of end-to-end distance

vector Re and N repeating units or segments we can write the free energy as equal to the elastic

energy which is given by this-

free energy=
3k BT

2N b2 R e
2

That we have derived for the ideal chain.

Now of course that strand will not really have a fixed number of repeat units. The number of

repeat units can change for different strands similarly it will not have a fixed Re. The Re value for

every strand can be different in fact for the same strand at different time can be different. So, in



reality  what  we do  have  is  a  probability  density P(Re ,N )  for  strand  to  have  end-to-end

distance vector Re and N repeating units. And we have to multiply the free energy with this

probability density and integrate over all possible values of N and all possible values of R and

then only we can get the total free energy or the average free energy of an strand and if I then

multiply that with the number of strands per unit volume we can get the free energy density.

So, I can write the free energy of network as the number of strands per unit volume integral of d

Re that  is  integral  of  over  all  possible  values  of  Re integral  over  N  and  can  take  values

theoretically from 0 to infinity multiplied by the probability density P (Re, N) and multiplied by

the energy that we have for a strand of n repeat units having an end-to-end distance vector Re

free energyof network=ne∫ d R⃗e∫
0

∞

dN P (Re ,N )
3k BT

2N b2 Re
2

So, if I look at this term here this is some sort of a joint probability density that is first the

probability of the chain having an end to and distance Re and second the probability that the

chain  will  have  N  repeat  units  these  two  probabilities  must  be  multiplied  to  get  the  joint

probability P (Re, N) So, this I can write as P (Re) and P (N). This we have already derived for the

ideal chain it is a Gaussian function-

P(Re)=( 3

2πN b2 )
3
2 exp(−3 Re

2

2N b2 )
And the other term P (N) should satisfy the normalization because ultimately the probabilities

must normalize to 1. So it must be – 

∫
0

∞

P (N )dN=1

So, now if I look at the deformation of this material we can talk about deformation from this

reference state and again I want to emphasize here the reference state is hypothetical in nature

because we have to define some reference to compute the free energy difference. So, we have

defined the strands being ideal as the reference state and then we are talking above changes from

that reference state. So, if we think of a deformation in the material the deformation will result in



changes in the Re of individual strands. In fact the Re will become some Re '  and I can write

this Re '   in terms of the language of deformation tensors that we have discussed because just

to recall the deformation tensor is the derivative of the current position with respect to reference

position or initial position. So, we can write as-

Eαβ=
∂R eα

'

∂ Reβ

Therefore,

Re→R⃗e
'
=É ⋅ R⃗e

So, now if I talk of the free energy change just to keep in mind that the free energy we have

defined here is already normalized. So, it is free energy per unit volume because we have defined

the number of strands per unit volume. So, if I now talk of the free energy in the final state where

the strands have an end-to-end distance  Re
'

 as opposed to Re assuming that the elastic free

energy expression that we have derived for the ideal chain still applies that in fact is only true for

small deformations. We can get the final energy as-

f⃗ =nc∫ d Re∫
0

∞

dN P (Re , N )
3 kBT

2N b2 ( É⋅ R⃗ e)
2

And from there  I  can  take  now the  free  energy difference  between  the  final  state  and  the

reference state and using that I can get the free energy of deformation. So,

free energyof deformation :
~
f−

~
f 0=nc∫d Re∫

0

∞

dN P (Re ,N )
3k BT

2N b2 [( É ⋅ R⃗e)
2
−Re

2 ]

So, now we have a clear motivation that why for polymer networks we can write the free energy

of deformation as a function of the deformation gradient tensor. And again to recall this is similar

to f of  because just like we can think of the initial position with respect to previous position orϕ

the reference position we can also think of the final volume fraction relative to the initial volume

fraction and that would be what we had for the Helmholtz free energy density we used while



talking about thermodynamics of polymer solutions similar idea is at work here again we are

doing thermodynamics the only thing is we are looking at a polymer Network where only the

elastic energy is important.

If we are doing for the gel we also have to include the χ terms the effect of solvent into the model

and then  we can  look at  what  is  known as  the  swelling  behavior  and collapse  behavior  of

polymer gels but I am not going into details of that now. So, I will not completely derive this

equation but keep in mind that we have the probability density function that we have defined to

be a Gaussian function multiplied by P (N) that is being normalized in a particular way and on

solving what we do get is the following-

f ( É )=
1
2
nc kBT [Eαβ

2
−3 ]

So, when we have done the work done in the previous lecture we have assumed that F is a

function of  we did not take the functional form into consideration because we did not know itϕ

back then but now we have a functional form so now I can go back to the work done as a

function of free energy relations and then try to look in more detail the stress tensor and so on for

this polymer network. So, going back to what we derived in last lecture we had the stress tensor

as-

σαβ=Eβμ

∂ f ( É )
∂Eα μ

−pδ αβ

Now since we have derived- 

f ( É )=
1
2
nc kBT [Eαβ

2
−3 ]=1

2
nck BT [Eαβ

2
−3 ]

I can equivalently write this as because anyway β is repeated in the relation its dummy index. So,

I can change with μ just as we have been doing in other examples. So, now we can get the

derivative as-

∂ f ( É )
∂ Eαμ

=nck BT Eαμ

And therefore we have-



σαβ=nck BT Eαμ Eβμ−p δαβ

So we will identify 

n
(¿¿c kBT )

¿
 as my shear modulus G and therefore we have-

σαβ=G Eαμ Eβμ−pδαβ

So, now let us assume a shear deformation because we have identified this G as a shear modulus.

So, let us assume a shear deformation and see what the expressions become that would explain

the idea that why we have identified (nc kBT) as the shear modulus.

So, if I have a shear deformation in Cartesian coordinates ‘r’ becoming r '  is equivalent to x,

y, z becoming x ' , y ' , z '  and the way to visualize a shear is, we assume some initial state as a

rectangle in x, y we also have a z direction but we assume that shear is being applied in the xy,

and we apply a shear deformation along the xy plane and then this material deforms and this

magnitude is what we know as the amount of shear, so it is per unit the distance in the y direction

we have a shear y on the along the x direction this is how we define the shear.  So, then the

positions actually transform as-

x '=x+γy

y '= y∧z '=z

Let us say a point moves along x by gamma and it does not move in the y and z direction so it is

true for every other point we can draw in the system. So, let us say we had a point here this point

retains the same y and z coordinates only changes along the x and we can actually do it for any

point in the material even that is not on the edge they will also essentially retain same y and z

coordinate only change in the x coordinate. 

So given this particular deformation is also called simples shear. We can define the deformation

gradient tensor as-



É=[
∂ x '

∂x
∂ x '

∂ y
∂ x '

∂ z
∂ y '

∂x
∂ y '

∂ y
∂ y'

∂ z
∂ z '

∂x
∂ z '

∂ y
∂ z'

∂ z
]=[

1 γ 0
0 1 0
0 0 1]

So if I now look at the σαβ that we have found to be given by this relation-

σαβ=G Eαμ Eβμ−pδαβ

So if I now look at the σαβ that we have found to be given by this relation, we know the shear is

being applied in the xy direction so there is that is perpendicular to the xy plane so perpendicular

to the perpendicular to the y axis. So, essentially we are looking at σxy that is the only nonzero

component in the stress tensor if I for example look at σxx σxz and so on all these has to be 0

because  stress  is  only  applied  perpendicular  to  the  y  axis  along  the  x  direction  that  is  the

direction we have this is; this particular direction. So, if I look at that term that is going to be- 

σ xy=G (E xxE yx+Ex yEyy+Exz E yz )

¿G (1 ⋅0+γ ⋅1+0 ⋅0 )=Gγ

So, this is G multiplied by γ that tells me that the stress that is being applied it is only it is just we

can call it σ is G multiplied by γ and this is how we define the modulus the stress by strain is a

modulus.  So, in this case we apply a shear, so stress by the applied shear is my modulus and that

is will be a shear modulus and that is the reason why we had identified nc kBT in that equation as

my shear modulus.

So, we can also go ahead try to look at other components of the stress tensor in this case knowing

that it is anyway 0 because we know that the stress is only applied in the xy, stress components in

all the other directions are 0 okay but knowing that we can try to compute it the advantage of

doing this is we can get the value of p from there. So, let us say if I am doing σxx that is going to

be-



σ xx=G (E xx⋅E xx+Exy⋅ Exy+E xz ⋅Exz )−p

¿G (1 ⋅1+γ ⋅ γ+0⋅ 0 )− p

¿G (1+γ2 )−p=0

Therefore,

p=G (1+γ 2 )

This is how we can analyze the Shear information.

So, we can apply similar kinds of ideas to other kinds of deformation like uniaxial deformation

and we will continue a discussion in the next lecture. 

So, with that I conclude here, thank you.




